
© Copyright 3Dlabs, 2000 - Page 1

Future Future
DirectionsDirections
Overview Discussion

September 2001

© Copyright 3Dlabs, 2000 - Page 2

AgendaAgenda
Cooperative discussion for the future of OpenGLCooperative discussion for the future of OpenGL
• Setting the scene

- Why we think OpenGL needs to quickly make significant forward progress

• The outline of 3Dlabs’ proposal for a direction for OpenGL
- A technical heads-up and a suggested cooperative framework

• A technical discussion of the “OpenGL 2.0” proposal
- Simplifying OpenGL with backwards compatibility
- Programmability
- Time Control
- Memory Management

• Convergence between Khronos and the ARB
- OpenML 1.1 and OpenGL 2.0 are solving many similar problems

• Open discussion
- We need feedback from the ARB
- Is this the right direction?
- How can we cooperate to get it done?

© Copyright 3Dlabs, 2000 - Page 3

OpenGL in Crisis?OpenGL in Crisis?
Many think OpenGL is not moving fast enoughMany think OpenGL is not moving fast enough
• The industry needs OpenGL to be vigorous and evolving

- A cross platform API – Windows, Mac, Linux, Embedded
- Open, multi-vendor standard that cares about backwards compatibility and stability

• But OpenGL faces a number of critical issues:

Solution Proposal
… OpenGL 2.0

?

OpenGL is not providing
hardware independent access to

programmable processors
Current direction is to expose multiple

hardware architectures

OpenGL is becoming more and more
complex and unwieldy

A confusing mixture of specialized
extensions

IP discussions are holding up
progress at the ARB

Are IP issues a CAUSE of lack of progress
or a SYMPTOM of a deeper problem?

© Copyright 3Dlabs, 2000 - Page 4

The Transition to ProgrammabilityThe Transition to Programmability
A significant industry discontinuityA significant industry discontinuity
• Programmability is becoming recognized as the future of graphics

- A lot of work (e.g. at Stanford) on high-level shading languages

• An Opportunity
- Enables new classes of applications
- Replaces escalating arbitrary complexity with generalized programmability

• A Challenge
- Growing perception that OpenGL is lagging Direct3D in programmable functionality
- Programmable control should be hardware independent

1993 1997 2001

VGA

2D

3D

Programmable

© Copyright 3Dlabs, 2000 - Page 5

Does OpenGL Really Need Change?Does OpenGL Really Need Change?
Yes! Seize the moment!Yes! Seize the moment!
• OpenGL 1.0 was finished in 1992

- It has served us well

• Graphics Processors are becoming programmable
- A fundamental industry transition

• Some original design assumptions are no longer valid
- “What’s fast” is different today than it was in 1991

• System architecture has evolved significantly
- CPU, memory & system buses have evolved rapidly, memory is much, much cheaper

• Over 230 OpenGL extensions have been defined
- Nvidia's extension documentation is 500+ pages, the OpenGL 1.3 spec is 284 pages

• Direct3D has overtaken OpenGL with some advanced features
- Microsoft have taken some bold design decisions

• Many ISVs are considering transitioning from OpenGL to D3D
- For advanced features and performance

• The time is right to make some bold, forward looking changes
- Programmable hardware revolution is an ideal inflection point to move OpenGL forward

© Copyright 3Dlabs, 2000 - Page 6

D3D and ProgrammabilityD3D and Programmability
Some API design misSome API design mis--steps, but making good progresssteps, but making good progress

DX7

Final Goal
Hardware Independent

High-level Shading Language

The last fixed-function
D3D API

DX8
1.2 PS

Some limited
programmability
but hardware-
centric API
design makes
problematic
compiler target

DX8.1
1.4 PS

Another hardware-centric API
with different register
architecture. More confusion

DX9
Progress!
Dropping hardware idiosyncrasies
Software driven API design

Currently proposed OpenGL extensions
are repeating the mistakes of DX8

How is OpenGL going to respond to DX9?

© Copyright 3Dlabs, 2000 - Page 7

A Perspective on Open StandardsA Perspective on Open Standards
As a positive force for market developmentAs a positive force for market development
• OpenGL 1.0 was a stroke of genius

- It set a long-term agenda for hardware vendors to strive for – pulling the industry forward

• Today, OpenGL can be implemented on a chip
- ARB discussing which features from existing chips to standardize
- Not a positive dynamic for a forward-looking industry standard

• Need new long-term vision – Hardware Independent Shading Language!
- Defines the long-term agenda for the new generation of programmable hardware

Primordial Soup
IRIS GL, PHIGS
Pex, GKS, Core

A Coherent Vision
of the future

No Forward Progress!
IP, not customer needs,

dominates many discussions

A coherent Vision
of the future

High-level
Programmability!

© Copyright 3Dlabs, 2000 - Page 8

Hardware Independence is the KeyHardware Independence is the Key
Programmability without stalling the ARBProgrammability without stalling the ARB
• We need to raise the level of debate
• Set out a future vision for the industry as OpenGL 1.0 did

1.3
Just

Ratified

1.4???
Extended current chip

implementation discussions
Slow progress.

Functionality gap versus
D3D widens further.

2.0
Long terms goals create
hardware independent,

unifying direction

© Copyright 3Dlabs, 2000 - Page 9

Holistic Approach to OpenGL 2.0Holistic Approach to OpenGL 2.0
Solving more than “just” the programmability issueSolving more than “just” the programmability issue

Time Control
Generalized, unified

solution for
parallelism and timing
estimation and control

Simplify OpenGL
Replace complexity

with programmability

Hardware independent high-
level shading language

Tightly integrated with OpenGL

Streamline Memory
Management

Simple yet powerful
mechanisms to enable
application control of

memory policies

© Copyright 3Dlabs, 2000 - Page 10

OpenGL 2.0 Design GoalsOpenGL 2.0 Design Goals
A holistic approach for a new generation OpenGLA holistic approach for a new generation OpenGL
• 100% backward compatibility with OpenGL 1.3

- Include complete OpenGL 1.3 functionality
- Enable OpenGL 2.0 programmability to be mixed with 1.3 functionality

• Enable a smooth transition to a simplified OpenGL 2.0 subset
- A well-defined profile of forward looking functionality

• Set an agenda for future hardware
- Don’t be limited to what hardware can do today

• Generalized support for multi-pass rendering
- Define a new data buffer to hold generalized data for programmable processing
- Either spatially or FIFO buffered data

• Further optimize data movement between host and graphics subsystem
- A key performance enabler

© Copyright 3Dlabs, 2000 - Page 11

Process for Creating OpenGL 2.0Process for Creating OpenGL 2.0
A call for cooperation at the ARBA call for cooperation at the ARB
• 3Dlabs is willing to generate an OpenGL 2.0 specification proposal

- We are willing to commit the necessary intellectual bandwidth and resources
- Regular reviews of the specification at the ARB and in the wider industry

• We need to cooperate with ARB members and interested third parties
- To make this work genuinely vendor independent and be a positive direction for OpenGL
- To deploy in a meaningful timeframe

• 3Dlabs is discussing this proposal without an NDA
- Instead, a simple agreement that states any IP disclosed by any party in these discussions

will be made available royalty-free if included in the OpenGL 2.0 specification

2.0

Academia
Basis in independent

research creates a non-
partisan foundation

OpenGL-based ISVS
They want it, they need it

Hardware Vendors
All stand to benefit

The industry should unite!

Stanford wants to
contribute technology
and review progress

Very positive feedback from
DCC, visualization and

simulation ISVs

Feedback so far has been
uniformly positive

© Copyright 3Dlabs, 2000 - Page 12

Expediting OpenGL 2.0 DeploymentExpediting OpenGL 2.0 Deployment
We need much more than a specWe need much more than a spec
• We need to agree how we can work together to implement and deploy

- Cooperative resources and funding to expedite timescales

• Rapid reference software implementation
- Can ship initially as OpenGL 1.3 extensions
- Prove detailed design before ratifying specification

• Define and implement complete OpenGL 2.0 package
- Conformance tests, benchmarks, development tools, marketing support etc. etc..

• Suggested timescales
- Circulate White Papers on main design aspects – 2H01
- Initial detailed review – December ARB meeting
- Reference implementation and specification refinement – 1H02
- Final draft ready for ratification - Siggraph 2002

• Need feedback from this meeting on interest and possible resources
- But first… more technical details…

© Copyright 3Dlabs, 2000 - Page 13

Future Future
DirectionsDirections
Technical Discussion

September 2001

© Copyright 3Dlabs, 2000 - Page 14

Reinvigorating OpenGLReinvigorating OpenGL
With 100% backwards compatibility for existing appsWith 100% backwards compatibility for existing apps
• OpenGL 2.0 adds powerful new features to OpenGL 1.3

- OpenGL 2.0 includes both new functionality and OpenGL 1.3 functionality

• New OpenGL 2.0 functionality can be used incrementally by apps
- Vertex programmability
- Fragment programmability
- Pack/unpack programmability
- Time control
- Memory management
- Data buffer
- OpenML 1.0 extensions

OpenGL 2.0

Imaging Subset

Multi-texture

Sync Control

Fixed Functionality Pipeline Texture
Env

Vertex ArraysFog Rescale
Normal

Subsample
Resample

Frame buffer opsClip
Project
Viewport

Cull

Vertex
Processor

Fragment
Processor

Pack/Unpack
Processor Data Buffer

Time Control

Memory Mgmt

OpenML 1.0
Features

Lighting Transform

OpenGL 1.3

© Copyright 3Dlabs, 2000 - Page 15

“Pure” OpenGL 2.0“Pure” OpenGL 2.0
Defining the direction for future versions of OpenGLDefining the direction for future versions of OpenGL
• Replaces complexity with programmability

- Transform and lighting
- Texture application
- Pack/unpack pixels
- Lots and lots of extensions

• Cleaner API, smaller footprint, less complexity
- Easier and cheaper to implement

OpenGL 2.0

Imaging Subset

Multi-texture
Sync Control

Fixed Functionality Pipeline
Texture Env

Fog

Rescale
Normal

Subsample
Resample

Lighting

Transform

Vertex Arrays
Frame buffer ops

Clip
Project
Viewport

Cull

Vertex
Processor

Fragment
Processor

Pack/Unpack
Processor Data Buffer

Time Control

OpenML 1.0
Features “Pure”

OpenGL 2.0

Memory Mgmt

© Copyright 3Dlabs, 2000 - Page 16

Smooth Transition PathSmooth Transition Path
For existing and nonFor existing and non--legacy OpenGL applicationslegacy OpenGL applications
• Pure OpenGL 2.0 is the path forward

- Reduces implementation burden for markets where legacy support is not required
- Replaces complexity with programmability
- Drastically reduces the need for extensions
- Legacy functionality could be deprecated once apps have migrated

OpenGL 1.3OpenGL 1.3

OpenGL 2.0OpenGL 2.0

“Pure” OpenGL 2.0“Pure” OpenGL 2.0

Future
Streamlined API
Standards

OpenGL 2.0
includes full 1.3
functionality – so
all applications
run unmodified

Applications can
incrementally
make use of
OpenGL 2.0
functionality

Applications
gradually
migrate to “Pure
OpenGL 2.0”
functionality
over time

Non-legacy
applications can use
“Pure OpenGL 2.0”
directly and benefit
from a simple,
compact, efficient and
flexible API

© Copyright 3Dlabs, 2000 - Page 17

Programmability PhilosophyProgrammability Philosophy
Add flexibility where it is most neededAdd flexibility where it is most needed
• OpenGL is a good design, just inflexible
• Add programmability where innovation and customization most needed

- Look at where most additions/changes have been made to OpenGL

• Keep fixed functionality for areas where flexibility is less compelling
- Frustum clipping, backface culling, viewport mapping
- Fixed functionality can still be disabled or set to identity mapping for full programmability

• Keep fixed functionality for areas where hardware implementation is
cheap, programmability is complex

- Frame buffer operations that involve read/modify/write operations

• Programmability replaces fixed function state machines in several areas
- Vertex Processor
- Fragment Processor
- Pixel Pack
- Pixel Unpack

• Make programmability HARDWARE INDEPENDENT

© Copyright 3Dlabs, 2000 - Page 18

OpenGL 2.0 Data Path DiagramOpenGL 2.0 Data Path Diagram

Host
Memory

Vertex
Processor

Rasterize

Fragment
Processor

Per
Fragment

Operations

Frame
Buffer

Operations

Texture
Memory

Frame
Buffer

Memory

Pack
Processor

Read
Control

Unpack
Processor

Data
Buffer

Data
Read

Control

= Programmable Processor

Data
Write

Control

Data
Pixels
Vertices
Fragments
Textures

Primitive
Assembly

Clip
Project

Viewport
Cull

© Copyright 3Dlabs, 2000 - Page 19

Vertex Processor CapabilitiesVertex Processor Capabilities
Lighting, material and geometry flexibilityLighting, material and geometry flexibility
• Vertex programs replace the following parts of the OpenGL pipeline:

- Transform
- Normalization
- Lighting
- Texture coordinate generation
- Fog

• The vertex shader does NOT replace:
- Perspective projection and viewport mapping
- Clipping
- Backface culling
- Primitive assembly
- Two sided lighting selection
- Polymode processing
- Polygon offset
- User clipping support

© Copyright 3Dlabs, 2000 - Page 20

Fragment Processor CapabilitiesFragment Processor Capabilities
Texture access, interpolator & pixel operation flexibilityTexture access, interpolator & pixel operation flexibility
• Fragment programs replace the following parts of the OpenGL pipeline:

- Smooth shading
- Texture access
- Texture application
- Alpha test
- Pixel transfer including ARB Image extensions

• The fragment shader does NOT replace:
- Pixel ownership test
- Depth test
- Stencil test
- Alpha blending
- Logical ops
- Dithering
- Plane masking

© Copyright 3Dlabs, 2000 - Page 21

Pack/Unpack ProcessorPack/Unpack Processor
Replaces complexity of pixel storage operationsReplaces complexity of pixel storage operations
• Pack/unpack processor capabilities

- Flexible pixel formatting as data is streamed to/from host memory
- Provides access to flexibility through programmability
- Produces a coherent stream of pixel data

• Pack/unpack processing replaces
- Complexity of pixel formats/types

• Eliminates need for pixel format extensions
- EXT_cmyka
- SGIX_ycrcb
- EXT_422_pixels
- OML_subsample
- OML_resample
- NV_packed_depth_stencil
- And variations of all the above

© Copyright 3Dlabs, 2000 - Page 22

Shading Language for OpenGL 2.0Shading Language for OpenGL 2.0
Hardware independentHardware independent
• Integrated intimately with OpenGL 1.3

- Existing state machine is augmented with programmable units

• Enables incremental replacement of OpenGL 1.3 fixed functionality
- E.g. make simple lighting changes without having to rewrite parameter management

• C-based - with comprehensive vector and matrix types
- Also integrates some RenderMan features

• Virtualizes pipeline resources
- Programmers, for the most part, needn’t be concerned with resource management

• Same language for Vertex Program and Fragment Programs
- Some specialized built-in functions and data qualifiers

© Copyright 3Dlabs, 2000 - Page 23

Shading Language StructureShading Language Structure
TypesTypes
• float

- a single floating point scalar

• vec2, vec3, vec4
- floating point vector

• mat2, mat3, mat4
- floating point square matrix

• int
- 16 bit integer for loops and array index

• texref
- synonymous with texture stages

© Copyright 3Dlabs, 2000 - Page 24

Shading Language StructureShading Language Structure
QualifiersQualifiers
• const

- variables is a constant and can only be written during its declaration

• attribute
- vertex input data to the Vertex Shader

• uniform
- a constant provided via the API

• varying
- an interpolated value
- output for Vertex Shader
- input for Fragment Shader

• Uniform and varying variables can be aggregated into arrays
- [] to access element

• Layout of attribute, uniform and varying fixed by position in block { }
- as in structures, used to direct binding between API/vertex program and fragment program

© Copyright 3Dlabs, 2000 - Page 25

Shading Language StructureShading Language Structure
ExpressionsExpressions
• constants
• variables
• scalar/vector/matrix operations as expected
• +, -, * and /
• built in functions
• user functions
• Component accessor for vectors and matrices
• Row and column accessors for matrices

© Copyright 3Dlabs, 2000 - Page 26

Shading Language StructureShading Language Structure
Flow ControlFlow Control
• if, if else
• for
• while
• break and continue supported

© Copyright 3Dlabs, 2000 - Page 27

Shading Language StructureShading Language Structure
FunctionsFunctions
• User Functions

- Arguments passed by reference
- Modifiable arguments qualified with output keyword
- Function overloading
- May need to cast return to resolve ambiguities
- One return value (can be any type)
- Scope rules same as C

• Built-in Functions work on scalars and vectors
- sin, cos, tan, asin, etc.
- pow, log2, exp2, sqrt, inversesqrt
- abs, sign, floor, ceil, fract, mod, min, max, clamp
- mix, step, smoothstep
- length, distance, normalize, dot, cross
- element (Vertex Program only)
- texture, lod, dPdx, dPdy, fwidth, kill, noise (Fragment Program only)

© Copyright 3Dlabs, 2000 - Page 28

Example Fragment ProgramExample Fragment Program
Gouraud shaded, modulated, fogged fragment Gouraud shaded, modulated, fogged fragment
// State
uniform
{

vec3 fogColor;
};

// Interpolated parameters (input from vertex program)
varying
{

vec2 texCoord;
vec4 color;
float fog;

};

texref texMap = 1; // define OpenGL texture 'stage'

void main (void)
{

vec4 col;
float f;

col = color * vec4 texture(texMap, texCoord);
f = clamp(fog, 0.0, 1.0);
fragColor = mix(col, fogColor, f); // standard frag color

}

© Copyright 3Dlabs, 2000 - Page 29

Vertex Program ExampleVertex Program Example
Dual directional light, texture and fog Dual directional light, texture and fog –– 1 of 31 of 3
// State
uniform
{

mat4 ModelViewMatrix;
mat4 ModelViewProjectionMatrix;
mat3 NormalMatrix;
vec3 Material[5];
float MaterialSpecularExponent;
vec3 Light0[7];
vec3 Light1[7];
float FogStart, FogEnd;

};

// Vertex attributes
attribute
{

vec4 inPosition;
vec3 inNormal;
vec4 inTexture;

};

// Output to Fragment Program (position is predefined).
varying
{

vec2 texCoord;
vec4 color;
float fog;

};

// Globals
vec3 ambientIntensity;
vec3 diffuseIntensity;
vec3 specularIntensity;
vec3 normal;

© Copyright 3Dlabs, 2000 - Page 30

Vertex Program ExampleVertex Program Example
Dual directional light, texture and fog Dual directional light, texture and fog –– 2 of 32 of 3
void main (void)
{

float eyeZ;

// Transform vertex to clip space
position = ModelViewProjectionMatrix * inPosition;

normal = NormalMatrix * inNormal;

// Clear the light intensity accumulators
ambientIntensity = vec3 (0);
diffuseIntensity = vec3 (0);
specularIntensity = vec3 (0);

DirectionalLight (Light0, MaterialSpecularExponent);
DirectionalLight (Light1, MaterialSpecularExponent);
color = Material (Material);

// Just copy through for simplicity.
texCoord = vec2 (inTexture.s, inTexture.t);

// Simple linear fog. Note 3_ notation selects row 3 of matrix
eyeZ = dot (ModelViewMatrix.3_, inPosition);
fog = (FogEnd - abs (eyeZ)) * (FogEnd-FogStart);

}

© Copyright 3Dlabs, 2000 - Page 31

Vertex Program ExampleVertex Program Example
Dual directional light, texture and fog Dual directional light, texture and fog –– 3 of 33 of 3
void DirectionalLight (vec3 lightInfo[], float specularExponent)
{

float normalDotVP;
float normalDotHalfVector;
float powFactor;

normalDotVP = min(0, dot (normal, lightInfo[ePosition]));
normalDotHalfVector = min(0, dot (normal, lightInfo[eHalfVector]));

if (normalDotVP == 0.0)
powFactor = 0.0;

else
powFactor = pow(normalDotHalfVector, specularExponent);

ambientIntensity += lightInfo[eAmbientIntensity];
diffuseIntensity += lightInfo[eDiffuseIntensity] * normalDotVP;
specularIntensity += lightInfo[eSpecularIntensity] * powFactor;

}

vec4 Material (vec3 mat[])
{

vec3 color;

color = mat[eEmissive] + mat[eAmbient] * SceneAmbient +
ambientIntensity * mat[eAmbient] +
diffuseIntensity * mat[eDiffuse] +
specularIntensity * mat[eSpecular];

return vec4(color.red, color.green, color.blue, mat[eDiffuseAlpha]);
}

© Copyright 3Dlabs, 2000 - Page 32

Comparing OpenGL 2.0Comparing OpenGL 2.0
To the Stanford Shading LanguageTo the Stanford Shading Language
• RenderMan provides the whole graphics pipeline (and a lot more)

- Has no connection to OpenGL
- No compromises for real time or direct hardware implementation

• The Stanford Shading Language is at a lower level than RenderMan
- More geared for hardware support
- Still sits on top of OpenGL and abstracts lights and surfaces which are defined separately

• OpenGL 2.0 language is lower level still - integrated into OpenGL itself
- Provides alternative methods to the state controlled pipeline
- This has some advantages and disadvantages…

© Copyright 3Dlabs, 2000 - Page 33

Stanford Shading LanguageStanford Shading Language
Pros and ConsPros and Cons
• Stanford has a higher level of abstraction than OpenGL 2.0

- Easier programs where the abstraction matches the problem domain

• OpenGL 2.0 retains the level of abstraction of the current OpenGL
- Allows intimate blending of old and new functionality
- Incremental adoption of OpenGL 2.0 features
- Appropriate abstraction level for video and image processing
- Can layer higher levels of abstractions on top of a programmable OpenGL

• Stanford compilers detect computational frequencies
- Enabled by higher abstraction level that defines the total graphics operation
- Compiler can detects what runs at the primitive group, primitive, vertex & fragment levels
- Compiler can generate code for CPU, vertex processor and fragment processor

• OpenGL 2.0 exposes vertex, fragment and pixel operations
- Incremental integration into existing OpenGL state machine
- glBegin and glEnd are still available as are display lists and other core OpenGL features
- Can still use the standard OpenGL T&L operations with a custom fragment shader

• This language proposal is “OpenGL-like” and adds programmability
without re-designing the whole OpenGL infrastructure

© Copyright 3Dlabs, 2000 - Page 34

The Data BufferThe Data Buffer
A new OpenGL bufferA new OpenGL buffer
• Simple, generalized concept to enhance programmability

- Obviates the need for specialized future functionality extensions

• Can hold any data
- Enables multi-pass fragment processor programs

• Supports stream processing
- Not random RW

• Flexible addressing
- Spatially buffered data
- FIFO buffered data

• Usage examples
- Multiple outputs from fragment processor
- Intermediate results
- Multi-spectral processing
- Sweeney style color/normal buffer
- Can render floating point images and read-back to the host

for back-end rendering acceleration

Fragment
Processor

Data
Buffer

Data
Read

Control

Data
Write

Control

© Copyright 3Dlabs, 2000 - Page 35

Generalized Time ControlGeneralized Time Control
Improve parallelism and control of operation timingImprove parallelism and control of operation timing
• OpenGL traditionally worries about how and where - not when

- Need better mechanisms for knowing and controlling when things happen

• Allow work to continue while waiting for something else to finish
- For example, clear depth buffer while waiting for a swap

• OpenGL needs a generalized and unified synchronization mechanism
- Eliminates the need for each extension to invent its own mechanism
- Solves short term problems – such as parallel image download
- Enables more sophisticated use of timing control in the future

• Enable application to dictate timing policy
- Controlling when things are going to happen

• Allow parallel execution of longer OpenGL operations
- Long operation “runs in the cracks” with respect to main rendering

• Provide better replacements for flush and finish

© Copyright 3Dlabs, 2000 - Page 36

Generalized Time ControlGeneralized Time Control
Underlying MechanismsUnderlying Mechanisms
• Synchronization data type

- Useful across many parts of OpenGL

• Stronger flush
- To guarantee host and graphics parallelism

• Fences
- Better alternative to finish
- Synchronize between host and graphics
- Synchronize between two graphics streams

• Background context selection
- Schedule long task to a parallel background stream
- Allow priority for isochronous operations

• Asynchronous Operations
- Enables asynchronous data binding of long commands
- Frees thread to do other things while the asynchronous operation is underway
- Allows other rendering to occur while waiting to start asynchronous operation

• Eliminates OpenML extensions and existing fence extensions
- SyncControl, Async, AsyncPixels
- Nvidia’s Fence extensions

© Copyright 3Dlabs, 2000 - Page 37

Holistic Memory ManagementHolistic Memory Management
Current OpenGL memory management is a black boxCurrent OpenGL memory management is a black box
• Everything done automatically by OpenGL

- Application does not know when an operation will happen
- Application does not know how long an operation takes
- Application does not know how much backing store is allocated

Application does not have control over:
- Where objects are stored (textures, display lists, vertex arrays)
- When objects are copied, moved, deleted, or packed (defragmented)
- Virtualization of memory resources

OpenGL has very limited ‘query for space’ functionality
- Proxy textures only

© Copyright 3Dlabs, 2000 - Page 38

Holistic Memory ManagementHolistic Memory Management
Application can get control, if it wantsApplication can get control, if it wants
• Application sets a memory management policy for each object

- OpenGL should not dictate policy
- Application should be able to adopt and dynamically change a policy

• Unifying mechanisms for all objects
- Textures, display lists, vertex arrays, images
- Policies, priorities, queries, timing estimates

• No distinction between texture, display list & vertex array memory etc.
- Does not prevent OpenGL implementations from having these object specific pools

• Application can still let OpenGL manage memory
- Just another policy

© Copyright 3Dlabs, 2000 - Page 39

Holistic Memory ManagementHolistic Memory Management
Underlying MechanismsUnderlying Mechanisms
• Query for Space and Make Space functions

- Ask if there is room for an object or objects with a certain policy
- Make room for an object or objects with a certain policy

• Set priorities for all objects, not just textures
- Used when querying for space and making space

• Time estimates
- How long does a memory management operation take

• Set and unset a policy
- Two currently defined policies – more can be added
- Pinned and OpenGL default

• Pinned policy – application gets control
- OpenGL will not move, copy, pack or delete an object once data loaded
- The object is pinned down in high performance graphics memory
- Application is responsible to store or delete objects, or to initiate a packing operation

© Copyright 3Dlabs, 2000 - Page 40

OpenGL 1.3 Memory ManagementOpenGL 1.3 Memory Management
Some outstanding issuesSome outstanding issues

• OpenGL memory layout today

Display list

Texture 1

Texture 2

Graphics memory Host backing store

• No control over when or where objects
are stored, or when deleted

• No control if, and when, object gets
copied or memory defragmented

• Typically allocates backing store

© Copyright 3Dlabs, 2000 - Page 41

OpenGL 2.0 Memory ManagementOpenGL 2.0 Memory Management
Issues fixedIssues fixed

• New OpenGL memory layout

Display list

Texture 1

Texture 2

Graphics memory Host backing store

• Texture 1 GL_POLICY_DEFAULT

• Display list and Texture 2 have
GL_POLICY_PINNED set

• Note, backing store not necessarily
allocated for pinned objects

© Copyright 3Dlabs, 2000 - Page 42

Vertex Data Host PerformanceVertex Data Host Performance
Minimize data movement from host to graphicsMinimize data movement from host to graphics
• Both static and dynamic vertex arrays

- Dynamic – OpenGL today
- Compiled vertex arrays
- Vertex array objects

• Enhance vertex arrays
- Vertex array memory mapping
- Index arrays for each data type

• Asynchronous vertex array data binding
- Relax current OpenGL constraints

• Direct access to graphics memory
- Image buffer memory
- Vertex array memory

• More efficient primitive types
- Grid primitives

• De-emphasize immediate mode glBegin/glEnd

© Copyright 3Dlabs, 2000 - Page 43

ARB / Khronos ConvergenceARB / Khronos Convergence
OpenML 1.0 Requirements versus OpenGL 2.0 proposalOpenML 1.0 Requirements versus OpenGL 2.0 proposal
• OpenGL imaging subset

- Implemented in the fragment processor

• OML_subsample/resample extensions
- Implemented in a pack/unpack processor

• OML_interlace extension
- Implemented in a pack/unpack processor

• OML_sync_control extension
- Implemented using the “time control” mechanisms

• SGIS_texture_color_mask
- Need to add to OpenGL 2.0

An increasingly common set of
requirements – significantly met by
OpenGL 2.0. Should we consider
tighter integration of Khronos and

ARB activities?

© Copyright 3Dlabs, 2000 - Page 44

OpenML 1.1 RequirementsOpenML 1.1 Requirements
Mapped against OpenGL 2.0 proposalMapped against OpenGL 2.0 proposal
• Extended precision and greater dynamic range for colors

- Fragment processor, data buffer help achieve what’s needed

• Render to texture
- Could be defined as part of OpenGL 2.0

• Memory & texture management improvements
- Combination of “memory management” mechanisms and fragment processor

• Non power of 2 textures
- Still needs a resolution

• Pixel shaders and vertex shaders
- Provided by fragment processor and vertex processor

• Async extension
- Satisfied by “time control” mechanisms

• Texture filtering for interlaced video
- Customized filters implemented in fragment processor

• Support for integrated video and graphics
- Enhanced with programmable flexibility

© Copyright 3Dlabs, 2000 - Page 45

SummarySummary
The OpenGL 2.0 InitiativeThe OpenGL 2.0 Initiative
• We believe that this is the right time to define OpenGL 2.0

- Programmability marks a fundamental industry shift – requiring a new API approach
- Programmability is an opportunity to reduce API complexity

• 3Dlabs is proposing a holistic approach to OpenGL 2.0
- Hardware independent shading language, time control, memory management
- “Pure” OpenGL 2.0 provide a smooth transition path to a simple, flexible, powerful API

• This needs to be a cooperative project
- 3Dlabs volunteering to develop the specification – with full industry participation
- Need wide cooperation for implementation and infrastructure development

• An opportunity to let the ARB move forward again
- Developing standards that set a direction for the industry
- Enabling closer cooperation with Khronos

• Let’s work together to ensure OpenGL continues to meet the needs of
the graphics industry in the 21st century

© Copyright 3Dlabs, 2000 - Page 46

Outstanding IssuesOutstanding Issues
We need your feedbackWe need your feedback
• How to resource this initiative

- Who is interested to help?

• The correct balance for backward compatibility
- What is the correct balance between full and “pure” OpenGL 2.0

• Technical questions
- Tessellation - still an area of research?

- Generalize a single vertex processor or add another unit?
- Structures do not currently exist in OpenGL

- What were the issues?
- PINNED_ALWAYS is a potentially dangerous policy

- But could it be needed in applications such as the embedded space
- Language bindings

- Is C sufficient?
- Handles vs. Ids

- Pros and cons

