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Abstract
Cyclic Redundancy Codes (CRCs) provide a first line of

defense against data corruption in many networks.

Unfortunately, many commonly used CRC polynomials

provide significantly less error detection capability than

they might. An exhaustive exploration reveals that most

previously published CRC polynomials are either inferior

to alternatives or are only good choices for particular

message lengths. Unfortunately these shortcomings and

limitations often seem to be overlooked. This paper

describes a polynomial selection process for embedded

network applications and proposes a set of good

general-purpose polynomials. A set of 35 new

polynomials in addition to 13 previously published

polynomials provides good performance for 3- to 16-bit

CRCs for data word lengths up to 2048 bits.

1. Introduction
Cyclic Redundancy Codes (CRCs) are commonly used

for error detection in embedded networks and other appli-

cations. But many applications employ CRCs that provide

far less error detection capability than they might achieve

for a given number of CRC bits. This is largely because

there is little published guidance and less quantitative data

upon which to base tradeoff decisions. To help improve

this situation, this paper proposes “good” general purpose

CRCs for error detection applications that encompass

many current and future embedded network protocols and

other uses having data words up to 2048 bits in length.

While various CRC designs can be found in standards

and folklore, most of them are far from optimal for the

short messages found in embedded networks. For embed-

ded networks, the property of interest is usually the

Hamming Distance (HD), which is the minimum possible

number of bit inversions that must be injected into a mes-

sage to create an error that is undetectable by that mes-

sage's CRC-based Frame Check Sequence. For example,

if a CRC polynomial has HD=6 for a given network, that

means there are no possible combinations of 1-, 2-, 3-, 4-,

nor 5-bit errors (where a bit error is an inversion of a bit

value) that can result in an undetected error, but there is at

least one combination of 6 bits that, when corrupted as a set

within a message, is undetectable by that CRC. An addi-

tional property of interest is burst error detection capabil-

ity, but all codes we will discuss can detect burst errors up

to the size of the CRC width. Other possible evaluation

criteria exist such as unidirectional bit error detection

(which depends on data values) and high-noise detection.

Unfortunately there does not seem to be any authoritative

characterization of faults in embedded networks. Our in-

teractions with industry indicate that HD for random inde-

pendent errors on a binary symmetric channel is usually the

primary factor considered in embedded network CRC de-

sign, and thus is the metric we use in this paper.

After a series of protocol evaluations for industry appli-

cations in which the question arose as to whether it would

be possible to achieve a given Hamming Distance (HD)

with a given CRC size, we decided to explore the design

space of CRC size, message length, and attainable

Hamming Distance. The results indicate that there are sig-

nificant opportunities for improving CRC effectiveness

because some commonly used CRCs have poor perfor-

mance. Moreover, many sources used in industrial prac-

tice teach engineers to select a polynomial without taking

into account the length of the data being error checked,

which ignores an important engineering tradeoff. And,

even if engineers want to make detailed design tradeoffs,

tools and data tables on polynomial performance are scarce

and often difficult to apply.

This paper presents a small set of polynomials that pro-

vides good overall performance while including message

length as a key design parameter. After discussing back-

ground and previous work, a methodology for defining

“good” CRC designs is proposed, and the results of apply-

ing that methodology are presented. Comparisons of pub-

lished CRCs to the proposed designs reveal both strengths

and serious weaknesses in the existing state of practice.

2. Background
A CRC can be thought of as a (non-secure) digest func-

tion for a data word that can be used to detect data corrup-

tion. Mathematically, a CRC can be described as treating a
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binary data word as a polynomial over GF(2)

(i.e., with each polynomial coefficient being

zero or one) and performing polynomial di-

vision by a generator polynomial G(x),

which is commonly called a CRC polyno-

mial. (CRC polynomials are also known as

feedback polynomials, in reference to the

feedback taps of hardware-based shift regis-

ter implementations.) The remainder of that

division operation provides an error detec-

tion value that is sent as a Frame Check Se-

quence (FCS) within a network message or

stored as a data integrity check. Whether im-

plemented in hardware or software, the CRC

computation takes the form of a bitwise con-

volution of a data word against a binary ver-

sion of the CRC polynomial. The data word

size is the data protected by the CRC but not including the

CRC itself. [Peterson72] and [Lin83] are among the com-

monly cited standard reference works for CRCs. [Wells99]

provides a discussion for non-specialists.

Error detection is performed by comparing an FCS

computed on data against an FCS value originally com-

puted and either sent or stored with the original data. An

error is declared to have occurred if the stored FCS and

computed FCS values are not equal. However, as with all

digital signature schemes, there is a small, but finite, prob-

ability that a data corruption that inverts a sufficient num-

ber of bits in just the right pattern will occur and lead to an

undetectable error. The minimum number of bit inversions

required to achieve such undetected errors (i.e., the HD

value) is a central issue in the design of CRC polynomials.

Using the right polynomial is central to CRC-based er-

ror detection schemes. The prime factorization of the gen-

erator polynomial brings with it certain potential

characteristics, and in particular gives a tradeoff between

maximum number of possible detected errors vs. data word

length for which the polynomial is effective. Many poly-

nomials are good for short words but poor at long words,

and the converse. Unfortunately, factorization of a polyno-

mial is not sufficient to determine actual HDs. A polyno-

mial with a promising factorization might be vulnerable to

some combination of bit errors, even for short message

lengths. Thus, factorization characteristics suggest poten-

tial capabilities, but specific evaluation is required of any

polynomial before it is suitable for use in a CRC function.

Conventional wisdom is that the best way to select a

CRC polynomial is to use one that is already commonly

used. For example, [Press92] lists 16-bit polynomials and

states the choice of polynomial “is only a matter of conven-

tion.” This approach assumes that those polynomials were

selected for optimal error detection, which in some cases is

incorrect. For example, several standardized 16-bit poly-

nomials have error detection performance inferior to avail-

able alternatives, and appear to have been chosen to mini-

mize the number of “1” bits in the feedback value at a time

when each such bit had substantial hardware implementa-

tion cost. [Lin83] states that polynomial selection is “a

very difficult problem” and says that some good cyclic

codes have been discovered, but provides no details. Most

coding theory and practice books are similar to [Wells99]

in that they give only a handful of published polynomials

and little or no guidance on polynomial selection tradeoffs.

A Hamming weight N is the number of errors, out of all

possible message corruptions, that is undetected by a CRC

using a particular polynomial. A set of Hamming weights

captures performance for different numbers of bits cor-

rupted in a message at a particular data word length, with

each successively longer data word length having set of

Hamming weights with higher values. The first non-zero

Hamming weight determines a code’s Hamming Distance.

Table 1 shows some example Hamming weights for

CRC polynomials at a data word size of 48 bits, which is a

representative length for many embedded networks. The

first polynomial shown is the ubiquitous CCITT-16 poly-

nomial 0x8810. 0x8810 is a hexadecimal representation of

the polynomial x16 +x12 +x5 +1, with x16 as the highest bit

and an implicit +1 term, as is common in software-based

CRC implementations. It has only three “feedback” bits

set in the polynomial, which was advantageous for early

hardware implementations. For data words that are 48 bits

in length, CCITT-16 detects all 1-bit errors (as does any

CRC polynomial), and all 2- and 3-bit errors. However, it

only provides HD=4 at this length because, as shown by

the weights in Table 1, it fails to detect 84 of all possible

4-bit errors. In comparison, the 16-bit polynomial 0xC86C

[Baicheva00] attains HD=6 at this length.

We can also do better than CCITT-16 for this example

using smaller CRCs. The well known CAN 15-bit polyno-
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CRC Size

(bits)
CRC Polynomial HD

Hamming weights for number of bits corrupted:

1 bit 2 bits 3 bits 4 bits 5 bits 6 bits

16 CCITT-16 0x8810 4 0 0 0 84 0 2 430

16 [Baicheva00] 0xC86C 6 0 0 0 0 0 2 191

15 CAN 0x62CC 6 0 0 0 0 0 4 314

12 CRC-12 0xC07 4 0 0 0 575 0 28809

12 0x8F8 5 0 0 0 0 1 452 13 258

8 DARC-8 0x9C 2 0 66 0 2 039 13 122 124 248

8 CRC-8 0xEA 4 0 0 0 2 984 0 253 084

7 CRC-7 0x48 3 0 0 216 2 690 27 051 226 856

7 0x5B 4 0 0 0 5 589 0 451 125

Table 1. Example Hamming weights for data word size 48 bits.



mial 0x62CC, which is optimized for data word sizes of up

to 112 bits, provides HD=6 at this length, missing only

4,314 of all possible 6-bit errors while using one less bit for

its 15-bit CRC. Perhaps a surprise, though, is that 12-bit

polynomial 0x8F8 can achieve HD=5 at this length, while

the best published 12-bit CRC, 0xC07, achieves only

HD=4. The 8-bit CRC-8 polynomial 0xEA also achieves

HD=4 at this length – but a designer would have to know to

use that published polynomial rather than the published

DARC-8 polynomial, which does not. The smallest CRC

polynomial achieving HD=4 at this length is the 7-bit CRC

0x5B (albeit with a higher weight than CCITT-16), al-

though the best published 7-bit CRC achieves only HD=3.

This example points out two fundamental problems with

current practice: there are gaps in the set of published poly-

nomials, and there is a need for specific guidance on which

polynomials to use when.

Proposing to make changes to decades of entrenched

CRC folklore and standardization is no small task. While

some might think that there is little need for new CRC

polynomials because networking standards force the use of

existing polynomials, this is often not the case for embed-

ded networks. New embedded networks are continually

being developed, each with unique performance and error

detection tradeoffs. The Train Control Network (TCN) is a

recent example for which we provided a CRC effective-

ness evaluation that demonstrated an 8-bit CRC could have

provided HD=4 protection compared to the 7-bit CRC plus

parity bit scheme used that provided only HD=3 protection

[Koopman01]. In all fairness, TCN was constrained by

legacy compatibility to use a 7-bit CRC; but many proto-

cols for new application areas are not so constrained.

Moreover, proprietary embedded network development

happens continually in industry. Given that there is no end

in sight to the proliferation of application-specific network

protocols, it makes sense to find out what the best CRC

polynomials are so that they can be used by new applica-

tions and emerging standards.

3. Previous work
Previous published work on CRC effectiveness has

been limited by the computational complexity of determin-

ing the weights of various polynomials. Only a few de-

tailed surveys of polynomials have been published.

Baicheva surveyed 8-bit CRC polynomials with certain

factorization structures up to data word length 127

[Baicheva98]. Baicheva proposed a good polynomial that

was better than the ATM Header CRC polynomial. But, as

discussed below, the actual optimal polynomial for the

ATM Header data word length has a factorization that was

not evaluated in that survey. This illustrates the impor-

tance of an exhaustive search of polynomials when design-

ing a CRC for an application.

Baicheva later surveyed all 16-bit CRCs for data words

up to 1024 bits in length [Baicheva00], identifying various

polynomials as both “good” in general and optimal for par-

ticular data word lengths. A later survey paper

[Kazakov01] extended those results to longer data words,

focusing on computing a point-by-point optimal bound for

16-bit CRC effectiveness. We have included their results

in our evaluation of alternatives.

While 8 and 16 bit CRC sizes are often used, it is also

common to use other CRC sizes in embedded network ap-

plications to conserve bandwidth while achieving a partic-

ular desired HD. As illustrated by CAN’s use of a 15-bit

instead of 16-bit CRC, even saving one bit on the FCS field

makes a difference that matters.

Finding a comprehensive list of well known polynomi-

als in print is difficult. [Peterson72] gives a list of irreduc-

ible polynomials of degree 16 or less, but does not give an

evaluation of error detection capabilities when those poly-

nomials are used for CRCs. A search revealed published

polynomials for 3-, 4-, 5-, 6-, 7-, 8-, 10-, 12-, 14-, 15-, and

16-bit CRCs. In many cases there is more than one recom-

mended polynomial for a given CRC size. Worse, in the

case of the CRC-12 polynomial, there are three different

polynomials given under the same name, with most refer-

ences evenly split between two of them. In the words of

one of the more complete listings of polynomial candi-

dates, “These [polynomials] differ in bit 1 and calculations

using them return different values. With citations evenly

split, it is hard to know which is correct” [Jaffer03]. Given

a lack of published quantitative analysis, popularity con-

tests are a common method for selecting polynomials.

This paper seeks to publish readily usable engineering

guidelines for CRC selections of polynomial sizes 3 to 16

bits for embedded networks. CRC performance was deter-

mined by performing a complete evaluation of every possi-

ble undetected error pattern in messages as described in

[Koopman02], yielding an exact result rather than an ap-

proximation. The balance of this paper first presents some

case studies illustrating the severity of current problems,

then describes a methodology for selecting “good” general

purpose polynomials, and finally presents data for choos-

ing embedded networking polynomials.

4. Case studies of current protocols
Adopting a previously published polynomial has two

potential problems. One problem is that some polynomials

in use simply provide very poor error detection capabilities

overall. A second problem is that even a “good” polyno-

mial is of necessity optimized for message sizes of a partic-

ular length, and will do poorly when misused for messages

of a different length. Some case studies of current polyno-

mials in use illustrate these points.
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4.1. USB vs. ITU for 5 bit CRCs
5-bit CRCs are used, among other places, for providing

error detection for Universal Serial Bus (USB) tokens and

by an ITU standard for telecommunication systems. Fig-

ure 1 shows the performance of these polynomials com-

pared to the best achievable bound. The probability of

undetected error Pud is summed from the probability of

successively higher numbers of bit errors at an assumed

Bit Error Rate (BER) of 10-6 weighted by the percentage of

errors caught per corresponding polynomial weights for

each data word length. The bound line shown assumes a

different, optimal, polynomial is selected for each length,

and thus is a firm bound on performance. Lower numbers

are better, indicating a lower probability of undetected er-

ror slipping past the CRC.

The USB 5-bit CRC standard, “USB-5,” is hexadeci-

mal value 0x12 = x5 + x2 + 1 [USB00]. This polynomial is

used by USB to protect data words of length 11 bits.

USB-5 is optimal for 11-bit messages, and is nearly opti-

mal for longer data word lengths. It is, however, not neces-

sarily a good choice for data words sized 10 and lower,

because it is a full bit of HD worse than the bound.

ITU G.704 [G704] uses a 5-bit polynomial CCITT-5,

0x15 = x5 + x3 + x + 1. Figure 1 shows CCITT-5 as optimal

at length 10. However, CCITT-5 is a full bit of HD worse

that USB-5 at lengths 11-26, and more than a factor of 2

worse than the bound (and USB-5) at longer lengths. ITU

G.704 uses CCITT-5 for a data word length of 3151 bits,

which is clearly a length at which this is an inefficient

CRC. (At 3151 bits USB-5 is optimal, and is 2.077 times

better at error detection that CCITT-5.).

CCITT-5’s polynomial is divisible by (x+1), which re-

sults in an ability to detect all odd numbers of bit flips and

is commonly said to be desirable (e.g., [Tanenbaum96]).

Indeed, at a data word length of 3151, CCITT-5 is the best

polynomial out of all 5-bit polynomials divisible by (x+1).

USB-5, on the other hand, is not divisible by (x+1) and per-

forms better than CCITT-5 at all lengths above 10 bits. To

understand why USB-5 does so much better in Figure 1, it

is helpful to examine the weight structure at length 3151,

shown in Table 2. For a BER of 10-6, most messages of

length 3151 suffer zero-, 1-, or possibly 2-bit errors, with

each increasing number of erroneous bits less likely. As

Table 2 shows, USB-5 is almost twice as effective at de-

tecting 2-bit errors, and the 3-bit error

weight for USB-5 is not high enough for

it to outweigh this advantage. Thus,

USB-5 is superior for this BER.

4.2. 8-bit polynomials
8-bit polynomials are commonly used

because they are efficient for 8-bit

microcontroller applications. Perhaps

the most commonly used 8-bit polynomial is “CRC-8”,

which is 0xEA = x8+x7+x6+x4+x2+1. Figure 2 shows that

this polynomial provides HD=4 up to length 85. However,

at lengths 86 to 119 it provides only HD=2 compared to a

bound of HD=4. At lengths above 119 it provides the same

HD=2 as the bound, but with a significantly higher Pud.

Overall, this polynomial is adequate up to length 85, but

could be improved upon. Many uses of CRC-8 in current

systems are therefore questionable, because they attempt to

provide error detection for a large data word (such as

across a long message or a large block of memory data).
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Polynomial HD
Hamming weights for number of bits corrupted:

1 bit 2 bits 3 bits 4 bits 5 bits

USB-5 0x12 2 0 159 075 163 552 409 128 929 654 767 81 278 805 135 219

CCITT-5 0x15 2 0 330 435 0 257 909 068 726 0

Table 2. Weights for CCITT-5 and USB-5; data word size 3151 bits.

Data Word Length (bits)

8 16 32 64 128 256 512 1024 2048

P
u

d

1e-12

1e-15

1e-18

1e-21

1e-24

1e-27

0x15 CRC-5

0x12 USB-5

Bound

HD=2

HD=3

HD=4

0x15

0x12

Figure 1. Performance of published 5-bit CRCs.

Data Word Length (bits)

8 16 32 64 128 256 512 1024 2048

P
u

d

1e-12

1e-15

1e-18

1e-21

1e-24

1e-27

1e-30

1e-33

0x9C DARC-8

0xEA CRC-8

0x97

Bound

HD=2

HD=3

HD=4

HD=5

0x9C

0xEA
0x97

Figure 2. 8 bit, HD=4 CRC performance.



How can a designer do better than CRC-8? One way is

to take advantage of published improved polynomials. In

this particular case, [Baicheva98] has published polyno-

mial C2, with value 0x97 = x8+x5+x3+x2+x+1 . Figure 2

shows that 0x97 has the same or better performance as

CRC-8 at every data word length (this is also true at lengths

beyond 2048 bits as well). Because of this, 0x97 domi-

nates CRC-8 and therefore is an unconditionally better

polynomial choice given our fault assumptions. Moreover,

0x97 has optimal performance at length 119, the largest

possible length at which HD=4 can be achieved with an

8-bit CRC. Unfortunately, such analysis for polynomials is

difficult to find for other situations; there are no published

complete surveys for other CRC sizes except those already

mentioned.

The ATM-8 HEC polynomial 0x83 = x8 + x2 + x + 1

(said to be from ITU standard I.432) does not dominate

CRC-8, but is close to C2. The two polynomials perform

essentially the same at lengths above 112 bits, but ATM-8

degrades to 45% worse than C2 at length 8 bits. For a

32-bit ATM data word, C2 is 4.9% more effective than

ATM-8 at error detection for moderate to low BERs.

A pitfall of choosing a published polynomial is that it

might not be good for most data word lengths. For exam-

ple, the DARC polynomial [ETSI02] 0x9C =

x8+x5+x4+x3+1 is optimal for length 8, but provides only

HD=2 at lengths 10 and above with rather poor Pud perfor-

mance as shown in Figure 2. The DARC application uses

this polynomial for data word lengths 16 through 48 bits,

where it performs poorly.

Figure 2 makes it clear that there are two missed oppor-

tunities even when choosing the best published 8-bit CRC

polynomials. The first is that they miss the HD=3 “ledge”

on the bound curve between lengths 120 and 247. The sec-

ond is that none of them are close to optimal for lengths of

248 and higher. For example, CRC-8 is a factor of 3.3

worse at 1024 bits. Other published CRCs such as the

ATM HEC do no better than a factor of 2.3 worse than the

bound at 1024 bits and higher. But, there are polynomials

that are far better than commonly used ones for HD=3 and

HD=2 applications. Figure 3 shows that 0xA6 = x8 +x6 +x3

+x2 +1 maintains HD=3 up to 247 bits, and indeed is opti-

mal at that length. Moreover, 0xA6 gives performance al-

most indistinguishable from the bound at lengths of 120

and up.

Two examples of real protocols help to illustrate the po-

tential of improved CRCs: SMBus and Xmodem. SMBus

is a low speed communication bus used for “smart” batter-

ies and portable electronic device power management ap-

plications. Version 1.1 of SMBus added a CRC-8

polynomial [Smbus00], presumably inherited from the

older I2C bus standard. Many of the messages are between

16 and 40 bits in length, and are suitably protected by

CRC-8 at HD=4. However, there is a data packet transfer

command that results in 35-byte (280 bit) message pay-

loads. The protection afforded by CRC-8 is only HD=2 for

messages 11 bytes and longer. The ATM-8 polynomial

might have been a better choice because it would have held

HD=4 for longer messages, and provided better error de-

tection for HD=2 operating regions.

One can make the case that 0xA6 would have been an

even better choice for SMBus, depending on the expected

message workload. Longer messages make bigger targets

for random bit errors, and are therefore more likely to ac-

cumulate multiple errors. If the message workload for

SMBus in a particular application makes heavy use of long

messages, the HD=3 operating region of 0xA6 and the

better performance for HD=2 operating regions might out-

weigh the penalty of increased vulnerability (HD=3 in-

stead of HD=4) for short messages. The details depend on

the weighted sum of undetected error probabilities for

messages of each length, which would vary by application.

But the point is that sometimes it is worth giving up a little

error detection at short message lengths to gain better pro-

tection for longer messages. (An alternate strategy would

be to use 0xA6 for long messages and a good HD=4 poly-

nomial for short messages.)

Another common CRC-8 application is for the

XMODEM protocol, developed by Ward Christansen in

1977. This protocol transmits packets in 128-byte (1024

bit) chunks protected by CRC-8. While polynomial evalu-

ations were not generally available then, any of the alter-

nate CRCs discussed here (except DARC-8) would have

been a more effective choice.

5. Polynomial selection
The difference between good HD=4 polynomials and a

good HD=3/HD=2 polynomial for 8-bit CRCs illustrates

that a one-size-fits-all approach to CRC selection can cost

a significant amount of error detection performance, in-

cluding losing a bit (or more) of possible error detection

capability for some message lengths. Therefore, selection

of a good CRC polynomial must involve not only the size

of the CRC, but also the size of the data word. Moreover,

many commonly used polynomials are poorly suited to

likely applications. Therefore, we propose “good” polyno-

mial candidates and prescribe a method for selecting an

appropriate candidate for each application.

5.1. Candidate polynomial selection
The selection of a “good” polynomial for generic use is

of course a matter of engineering judgement. The follow-

ing selection process was chosen to result in polynomials

that primarily maintained high HD values to the longest

data word lengths possible, secondarily achieved good

performance at shorter lengths, and thirdly achieved good
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performance at longer lengths than the stated maximum us-

age length. The prioritization of these goals keeps in mind

that embedded network applications typically have a maxi-

mum message length that needs a certain HD; that short

messages can benefit from improved HD protection so

long as protection of long message is not materially sacri-

ficed; and that sometimes a protocol revision adds mes-

sages longer than originally envisioned, so good

performance at longer message lengths is desirable as a

safety net.

The steps followed were performed for all distinct CRC

polynomials of size 3 bits to 16 bits.

(1) Compute weights for all polynomials at data word

lengths 8 bits through 2048 bits.

(2) Find the bounding weights by selecting the polyno-

mial with the lowest weight at each length (i.e., generating

a list of point-wise optimal polynomials). In general this

means a different polynomial is selected as the bound for

each length from 8 bits through 2048 bits, although in

many cases a single high-performing polynomial happens

to account for multiple bound values. This data was the

source of our “bound” curves.

(3) Identify “break points” in the bound, in which the

best achievable HD value changes. For example, the 8-bit

CRC bound in Figure 2 has break points as follows: HD=5

is possible to length 9, so the HD=5 break point is at 9. The

HD=4 break point is at length 119 (HD=4 is the best possi-

ble HD from length 10 to 119). The HD=3 breakpoint is at

length 247. And of course HD=2 is possible at all lengths

with any CRC polynomial. Follow the subsequent steps

for each breakpoint in turn.

(4) Identify all polynomials that achieve the HD bound

at the breakpoint. This guarantees that the polynomial se-

lected gets all the way into the “corner” of the bound curve

at the break point. If there are multiple polynomials, select

the one with the lowest weights. If there is a tie for lowest

weights or several low weights are within 1% of each other

(a near-tie), invoke Steps (5) and (6). If there is an existing

published polynomial within 1% of the bound, use that

polynomial. This step excludes polynomials that might be

better at lower weights at the expense of decreasing HD be-

fore the break point (the HD=4 break point of CRC-8,

shown in Figure 2, is an example of a polynomial being

pruned from consideration for this reason).

(5) If multiple polynomials have been identified in Step

4, select the polynomial having the longest-length break

point for the next higher HD value. For example, there are

30 distinct 10-bit polynomials that achieve the break point

HD=3 at length 1013, all of which have identical 3-bit

Hamming weights. However, among those polynomials,

the longest length for which HD=4 is possible is length 73

from polynomial 0x327, making it the choice for a “good”

polynomial. Similarly, polynomial 0xBAAD is the only

polynomial that provides both HD=4 at length 2048 and

HD=5 up to length 108 bits (other polynomials with HD=4

at 2048 bits provide HD=5 at shorter data word lengths),

and is only 0.39% worse in performance than the optimal

polynomial at length 2048, which is 0xD3E9 given by

[Kazakov01]. This screening step provides polynomials

that not only provide good performance at break points,

but also have a bonus of even better HD at smaller lengths.
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Max length at HD

Polynomial

CRC Size (bits)

3 4 5 6 7 8 9 10 11 12 13 14 15 16

HD=2
2048+

0x5

2048+

0x9

2048+

0x12

2048+

0x21

2048+

0x48

2048+

0xA6

2048+

0x167

2048+

0x327

2048+

0x64D
– – – – –

HD=3
11

0x9

26

0x12

57

0x21

120

0x48

247

0xA6

502

0x167

1013

0x327

2036

0x64D
2048

0xB75
– – – –

HD=4
10

0x15

25

0x2C

56

0x5B

119

0x97

246

0x14B

501

0x319

1012

0x583

2035

0xC07

2048

0x102A

2048

0x21E8

2048

0x4976

2048

0xBAAD

HD=5
9

0x9C

13

0x185

21

0x2B9

25

0x5D7

53

0x8F8
none

113

0x212D

136

0x6A8D
241

0xAC9A

HD=6
8

0x13C

12

0x28E

22

0x532

27

0xB41

52

0x1909

57

0x372B
114

0x573A
135

0xC86C

HD=7
12

0x571
none

12

0x12A5

13

0x28A9

16

0x5BD5
19

0x968B

HD=8
11

0xA4F

11

0x10B7

11

0x2371

12

0x630B

15

0x8FDB

Table 3. “Best” polynomials for HD at given CRC size and data word length.

Underlined polynomials have been previously published as “good” polynomials.



(6) If Step 5 does not apply or results in a tie, select the

polynomial with best performance at 2048 bits (the maxi-

mum length computed). This yields a polynomial that has

good performance for long data word lengths.

(7) If Step 6 is an approximate tie (the HD weights are

within 1%), pick the polynomial with the best weights at

smaller lengths, even if those smaller lengths are at the

same HD as the break point.

The result of applying this selection process is shown in

Table 3. Each cell in Table 3 has two numbers – a top num-

ber for the break point length at the given HD, and a bottom

“good” polynomial for lengths up to the break point.

Lengths above 2048 bits were not studied in detail, but for

11 bit and smaller CRCs, the given polynomials are also

near-optimal for arbitrarily longer lengths. The underlined

polynomials are ones that have been previously published

as suitable for use in CRCs (see Table 4 for details). Table

3 can be used in the following ways:

• Find a “good” polynomial given CRC size and length:

Select the appropriate CRC size column in Table 3.

Pick the row with the smallest length greater than or

equal to the desired length. The polynomial in that box

will provide the best HD possible at that length and

CRC size. For example, for a 9-bit CRC, a length of 246

would use polynomial 0x14B and achieve HD=4, but

the best HD that can be achieved at length 247 is HD=3

using polynomial 0x167.

• Find the minimum size CRC required to achieve a given

HD at a particular length: Pick the row of Table 3 with

the desired HD. Select the furthest left column in that

row with a length greater than or equal to the desired

length. That is the smallest CRC that can provide the

desired HD at the required length. For example, HD=6

for a data word length of 52 bits can be achieved with a

13-bit CRC using polynomial 0x1909.

Of course this selection table is not without limitations.

For applications that have only a single data word length,

and in which optimal performance is required even at the

expense of more effort in polynomial selection, an optimal

polynomial should be selected.

5.2. Performance of published polynomials
Despite the fact that Table 3 has many novel polynomi-

als, that does not necessarily mean that a previously pub-

lished polynomial will perform poorly in any specific

application. In particular, the self-imposed requirement to

achieve the maximum possible HD for break point values

disqualified some otherwise good standard polynomials.

For example the CAN polynomial 0x62CC is good for

lengths up to 112 bits, but has a break point at 112 bits com-

pared to the bound’s break point at 114 bits for HD=6. For

most applications, the CAN polynomial is likely to be good

enough, and there is little point selecting a novel polyno-

mial. Therefore, it is important to present an evaluation of

the performance of commonly used polynomials so de-

signers can choose between the extra potential effort of

justifying a “non-standard” polynomial selection vs. the

potential error detection gain.

Table 4 is a list of polynomials either in public use or

proposed as “good” polynomials in the literature that we

have encountered. (Only select polynomials from the pub-

lished 8- and 16-bit surveys previously discussed have

been included, since they are for the most part point solu-

tions rather than generic suggested polynomials.) The best

available citation for each polynomial has been given,

along with the most commonly used nickname.

Table 4 gives the performance for data word lengths

through 2048 bits. To keep the data manageable, perfor-

mance is categorized into four columns. The first column

indicates that performance is optimal or near optimal

(within 1% of the best possible performance bound). The

second column indicates that undetected error probabilities

are within a factor of two of the bound, which is a some-

what arbitrary distinction but overall is useful in conveying

which polynomials are close to being good for particular

data ranges. The third column indicates where polyno-

mials have more than twice the undetected error rate of the

bound, and the fourth column indicates where each poly-

nomial’s HD is one or more bits worse than the bound. Un-

derlined entries correspond to recommendations from

Table 3. Tables of weights for these polynomials and

bounds are available from the primary author, and are on

the Web at http://www.ece.cmu.edu/~koopman/crc

Some CRC polynomials appear to be incorrect as a re-

sult of data transcription or similar errors that have oc-

curred as polynomials are passed down over time. For

example [Ottoson01] gives a “CRC-7” value of 0x68 in-

stead of 0x48 as given elsewhere, which might be due to a

one-bit data transcription error into a source code binary

7

HD=2

HD=3

HD=4

HD=5

0xA6

Data Word Length (bits)

8 16 32 64 128 256 512 1024 2048

P
u

d

1e-12

1e-15

1e-18

1e-21

1e-24

1e-27

1e-30

1e-33

0xA6

Bound

Figure 3. A good 8-bit polynomial for lengths 120

and above.
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CRC
Size
(Bits) Nickname Polynomial Source

Performance compared to bound at lengths given

Within 1% of
bound

Within 2x of
bound

Same HD, but
more than 2x

bound

Worse HD
than bound

3 0x5 = (x3 + x + 1)‡ [RFC 3095] 8-2048 – – –

4 CCITT-4: 0x9 = (x4 + x + 1)‡ [G704] 8-2048 – – –

4 CRC-4: 0xF = (x4 + x3 + x2 + x + 1) [Ottoson01] – – 12-2048 8-11

5 CRC-5: 0x15 = (x+1)(x4 + x3 + 1)‡ [G704] 8-10 – 27-2048 11-26

5 0x12 = (x5 + x2 + 1)‡ [USB00] 11-13; 17-2048 14-16 – 8-10

6 DARC-6: 0x2C = (x+1)(x5 + x4 + x2 + x + 1)‡ [ETSI02] 12-25 8-11 58-2048 26-57

6 CRC-6: 0x21 = (x6+x+1)‡ [G704] 26-28; 37-2048 29-36 – 8-25

7 0x5B = (x+1)(x6 + x5 + x3 + x2 + 1)‡ new 29-56 11-28 8-10; 121-2048 57-120

7 CRC-7: 0x48 = (x7+x4+1)‡ [G704] 87-91; 99-2048 57-86; 92-98 – 8-56

7 0x44 = (x7+x3+1)‡ (CRC-7 inverse) [G832] 87-91; 99-2048 57-86; 92-98 – 8-56

FT2: 0x72 = (x7+x6+x5+x2+1)‡ [Funk88] 87-89; 99-2048 57-86; 90-98 – 8-56

7 0x67 = (x+1)(x3 + x + 1)‡(x3 + x + 1)‡ [RFC3095] – – 121-2048 8-120

7 0x68 = (x+1)(x2 + x + 1)‡(x4 +x3 +1)‡ [Ottoson01] – 8 121-2048 9-120

8 DARC-8: 0x9C = (x8 + x5 + x4 + x3 + 1) [ETSI02] 8-9 – 248-2048 10-247

8 C2: 0x97 = (x+1)(x7 + x6 + x5 + x2 + 1)‡ [Baicheva98] 27-50; 52; 56-119 18-26; 51; 53-55 10-17; 248-2048 8-9; 120-247

8 DOWCRC: 0x98 = (x+1)(x7+x6+x5+x3+x2+x+1)‡ [Whitfield01] 43-119 19-42 10-18; 248-2048 8-9; 120-247

8 ATM-8: 0x83 = (x+1)(x7+x6+x5+x4+x3+x2+1)‡ [Ottoson01] 53-119 18-52 10-17; 248-2048 8-9; 120-247

8 WCDMA-8: 0xCD = (x+1)(x7 + x3 + 1)‡ [Ottoson01] 28-31; 43-119 20-27;32-42 10-19; 248-2048 8-9; 120-247

8 0xA6 = (x8 +x6 +x3 +x2 +1)‡ new
136-140;
210-2048

11-15; 120-135;
141-209

10 8-9; 16-119

8 CRC-8: 0xEA = (x+1)(x2+x+1)‡(x5+x4+x3+x2+1)‡ [Ottoson01] – 20-85 10-19; 248-2048 8-9;86-247

9 0x13C = (x+1)(x8 +x7 +x6 +x4 +x2+x+1) new 8 – 503-2048 9-502

9 0x185 = (x2 + x + 1)‡(x3 +x2 + 1)‡(x4 +x3 +1)‡ new 13-16 – 9-12; 503-2048 8; 17-502

9 0x14B = (x+1)(x8 +x7 +x3 +x2 +1)‡ new 147-246 26-28; 30-146
14-25; 29;
503-2048

8-13;
247-502

9 0x167 = (x9 +x7 +x6 +x3 +x2 +x +1)‡ new
45-46; 48;
412-2048

18-44; 47;
247-411

14-17 8-13; 49-246

10 0x28E = (x+1)(x2 + x + 1)‡(x3 +x2 + 1)‡(x4 +x3+1)‡ new 9-12 8; 77-95 22-76; 1014-2048
13-21;

96-1013

10 0x2B9 = (x5 +x2 +1)‡(x5 +x3 +x2 +x +1)‡ new 17-21 13-16 1014-2048
8-12;

22-1013

10 CRC-10: 0x319 = (x+1)(x9 + x4 + 1)‡ [Jaffer03] 306-501 73-305 22-72; 1014-2048
8-21;

502-1013

10 0x327 = (x10 +x9 +x6 +x3 +x2 +x +1)‡ new 880-2048 32-73; 502-879 22-31 8-21; 74-501

11 0x571 = (x11 +x9 +x7 +x6 +x5 +x +1) new 8-12 – 2037-2048 13-2036

11 0x532 = (x+1)(x10 +x9 +x5 +x +1) new 21-22 13-20 2037-2048
8-12;

23-2036

11 0x5D7 = (x11 +x9 +x8 +x7 +x5 +x3 +x2 +x +1)‡ new 25-28; 1775-2048
23-24;

1013-1774
–

8-22;
29-1012

11 0x583 = (x+1)(x10 +x9 +x7 +x6 +x5 +x4 +x3 +x2 +1)‡ new 625-1012 13-17; 96-624 27-95; 2037-2048
8-12;18-26;
1013-2036

11 0x64D = (x11 +x10 +x7 +x4 +x3 +x +1)‡ new
111-131;

1775-2048
62-110; 96-624;

1013-1774
27-61

8-26;
132-1012

12 0xA4F = (x+1)(x11 +x10 +x6 +x5 +x4 +x2 +1) new 8-11 – – 12-2048

12 0xB41 = (x+1)(x3 +x2 +1)‡(x8 +x4 +x3 +x2 +1)‡ new 22-27 13-21 12 8-11

12 0x8F8 = (x12 +x8 +x7 +x6 +x5 +x4 +1) new 42-53 28-41 –
8-27;

54-2048

12
0xC05 = (x2+x+1)‡(x2+x+1)‡(x8+x7+x6+x5+x2+x+1)‡

[Press92]
– 55-160 54

8-53;
161-2048

12 0xC06 = (x12+x11+x3+x2+1) [Whitfield01] – – – 8-2048

12 CRC-12: 0xC07 = (x+1)(x11 +x2 +1)‡ [Ottoson01] 1074-2035 221-1073 54-220
8-53;

2036-2048

12 0xB75 = (x2+x+1)‡(x3+x2+1)‡(x7 +x5 +x4 +x3+1)‡ new 2036-2048 – – 8-2035

Table 4. Performance of polynomials at BER = 10
-6

. Underlined ranges correspond to Table 3.
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CRC
Size
(Bits) Nickname Polynomial Source

Performance compared to bound at lengths given

Within 1% of
bound

Within 2x of
bound

Same HD, but
more than 2x

bound

Worse HD
than bound

13 0x10B7 = (x+1)(x+1)(x11 +x9 +x7 +x6 +x5 +x +1) new 10-11 8-9 – 12-2048

13 0x12A5 = (x2+x+1)‡(x11 +x10 +x6 +x5 +x4 +x2 +1) new 12-13 – 53-56
8-11; 14-52;

57-2048

13 0x1909 = (x+1)(x12 +x8 +x7 +x6 +x5 +x4 +1) new 44-52 21-43 13, 14-20
8-12;

53-2048

13 0x102A = (x4+x3+x2+x+1)(x9+x8+x4+x3+x2+x+1)‡ new 363-2048 171-362 53-170 8-52

14 0x2371 = (x+1)(x+1)(x+1)(x11+x10+x6+x5+x4+x2+1) new 11 10 8-9 12-2048

14 0x28A9 = (x14 +x12 +x8 +x6 +x4 +x +1)‡ new 13-14 12; 136-317 114-135
8-11; 15-113;

318-2048

14
0x372B = (x+1)(x+1)(x12+x11+x10+x7+x5+x4+x3+x +1)‡

new
51-57 30-50; 304-2048 14-29; 114-303

8-13;
58-113;

14 0x212D = (x7 +x6 +x3 +x +1)‡(x7 +x6 +x5 +x4 +1)‡ new 101-113 20-21; 58-100 14-19
8-13; 22-57;

114-2048

14 0x21E8 = (x4 +x3 +x2 +x +1)(x10 +x9 +x4 +x +1)‡ new 1940-2048 227-1939 114-226 8-113

14 DARC-14: 0x2402 = (x+1)(x13 + x12 + x11 +x +1)‡ [ETSI02] – 540-2048 114-539 8-113

15 0x630B = (x+1)(x14 +x9 +x3 +x2 +1)‡ new 12 10-11; 732-2048 8-9; 137-731 13-136;

15 0x5BD5 = (x3+x2+1)‡(x12+x11+x8+x6+x5+x3+x2+x+1) new 16 14-15 13
8-12;

17-2048

15 0x573A = (x+1)(x14+x13+x10+x8+x7+x6+x4+x+1) new 78; 98-114 49-77; 79-97 17-48
8-16;

115-2048

15
CAN: 0x62CC = (x+1)(x7 +x3 +1)‡(x7 +x3 +x2 +x +1)‡

[Bosch91]
64-112 49-63 17-48

8-16;
113-2048

15 0x6A8D = (x15 +x14 +x12 +x10 +x8 +x4 +x3 +x +1) new 123-136 115-122 –
8-114;

137-2048

15
0x4976=(x4+x3+x2+x+1)(x11+x10+x8+x7+x6+x4 +x2+x+1)‡

new
1771-2048 441-1770 17-18; 137-440 8-16; 19-136

15 0x4001 = (x15 +x +1)‡ [Gilmore02] – – – 8-2048

15 0x740A=(x3+x2+1)‡(x6+x+1)‡(x6+x4+x2+x+1) [MPT1327] – – – 8-2048

16
0x8FDB =

(x+1)(x15+x14+x13+x12+x10+x8+x6+x5+x3+x2+1)‡ new
14-15

12-13; 42-51;
913-2048

8-11; 20-41;
242-912

16-19;
52-241

16 0x968B = (x2+x+1)‡(x14 +x13 +x9 +x7 +x5 +x4 +1) new 19 16-18; 245-363 8; 242-244
9-15;

20-241;
364-2048

16
0xC86C = (x+1)(x15+x11+x10+x9+x8+x7 +x5+x4+x2+x+1)

[Baicheva00]
110-111; 113-135 39-109; 112 20-38

8-19;
136-2048

16
C3 0xAC9A = (x16+x14+x12+x11+x8+x5+x4+x2+1)

[Castagnoli90]
219-241 33-35; 136-218 8; 20-32

9-19;
36-135;

242-2048

16 0xBAAD = (x3+x2+1)‡(x6+x5+x2+x+1)‡(x7+x3+1)‡ new 1578-2048 242-1577 20 8-19; 21-241

16
0xD3E9 = (x3+x2+1)‡(x6+x5+x2+x+1)‡(x7+x6+x5+x4+1)‡

[Kazakov01]
1270-2048 256-1269 242-255 8-241

16 CRC-16: 0xA001 = (x+1)(x15 +x14 +1)‡ [Press92] – 1270-2048 242-1269 8-241

16 ANSI-16: 0xC002 = (x+1)(x15 + x + 1)‡ [USB00] – 1270-2048 242-1269 8-241

16
0xD04B = (x+1)(x+1)

(x14+x13+x12+x10+x8+x6 +x5+x4+x3+x+1)‡ [Ottoson01]
–

39-67;
1146-2048

8; 20-38;
242-1145

9-19; 68-241

16
IEC-16: 0xADC9=(x+1)(x+1)(x7+x6+x3+x+1)‡

(x7+x6+x5+x4+x3+x2+1)‡ [Baicheva00]
– 39-112 8-9; 20-38

10-19;
113-2048

16
CCITT-16: 0x8810 = (x+1)(x15+x14+x13+x12+x4+x3+x2+x+1)‡

[ETSI02]
– 1015-2048 242-1014 8-241

Notes: All polynomials are represented as a product of irreducible factors

All polynomial factors marked with (
‡
) are primitive.

Table 4 continued.



data array. Unfortunately, 0x68 is dominated by six other

polynomials and is generally inferior to 0x48.

Similarly [Jaffer03] indicates that various web-based

sources are evenly split between 0xC06 and 0xC07 as be-

ing the “standard” CRC-12 polynomial. Numerical

Recipes states that CRC-12 is 0xC05 [Press92]. One can

speculate that these are also one-bit transcription errors.

6. Conclusions
New embedded networks that use CRCs are continually

being created. Unfortunately, the usual practice of select-

ing a published CRC polynomial under the presumption

that it is “good” runs into trouble because some published

values perform quite poorly. Moreover, even if a good

published polynomial is available, there is generally no

published guidance on what range of data word lengths it is

good for nor, for that matter, quantitative data to help dis-

tinguish that good polynomial from any competing pub-

lished or standardized “bad” polynomials.

This paper presents the first exhaustive survey of all

CRC polynomials from 3 bits to 15 bits, and discusses

16-bit polynomials as well. A methodology for selecting

generically “good” CRC polynomials is based on achiev-

ing maximum Hamming Distance for the longest possible

data word sizes and other performance considerations.

Our tables of good polynomials given should enable prac-

titioners to use quantitative information in selecting effec-

tive polynomials for embedded computing error detection

applications for data word sizes up to 2048 bits.
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