

Type 1 Font Format
Supplement

Technical Specification #5015

15 May 1994

Adobe Developer Support

PN LPS5015

Adobe Systems Incorporated

Adobe Developer Technologies
345 Park Avenue
San Jose, CA 95110
http://partners.adobe.com/

®

® ®

Copyright



1993, 1994 Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

Adobe, Acrobat, Adobe Originals, Adobe Type Manager, ATM, Minion, Myriad, PostScript, the Post-
Script logo, SuperATM and Viva are trademarks of Adobe Systems Incorporated which may be regis-
tered in certain jurisdictions. Macintosh and Personal LaserWriter are registered trademarks of Apple
Computer Incorporated. Hewlett-Packard and LaserJet are registered trademarks of Hewlett-Packard
Company. Windows is a trademark of Microsoft Corporation. All other brand or product names are
the trademarks or registered trademarks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice,
and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty
of any kind (express, implied or statutory) with respect to this publication, and expressly disclaims any
and all warranties of merchantability, fitness for particular purposes and noninfringement of third
party rights.

3

Contents

List of Figures

 5

1 Introduction 7

2 Counter Control Hints 7
Performance and Quality Benefits of Counter Control Hinting 8

OtherSubrs

 for Counter Control 9
Stack Limit Considerations for Counter Control 11
Counter Control Groups 12

Private

 Dictionary Extensions for Counter Control:

ExpansionFactor

 12
Counter Control Example 13

3 Multiple Master Font Extensions 14
Multiple Master Design 15
Multiple Master Font Programs 17
Multiple Master Font Dictionaries 18
Explanation of a Typical Multiple Master Font Program 19
Multiple Master Keywords and Procedures 23
The

makeblendedfont

 Procedure 25
The Multiple Master

findfont

 Procedure 26
The

NormalizeDesignVector

 Procedure 27
The

ConvertDesignVector

 Procedure 27
Multiple Master Font Names 28
Multiple Master Charstring Representation 28

OtherSubrs

 for Multiple Master Font Programs 29
Sample

Subrs

 Code for Calling

OtherSubrs Procedures 31

4 Adobe Type Manager Compatibility 32

5 Font Program Testing 32

6 Errata 33

4 Contents (15 May 94)

Appendix A: The makeblendedfont Operator

 35

Appendix B: Updated OtherSubrs Code for Flex and Hint Substitution

 39

Appendix C: NormalizeDesignVector Example

 43

Appendix D: ConvertDesignVector Example

 45

Appendix E: Changes Since Version 1.0 of the Type 1 Font Format Spec-
ification

 47

Index

 49

5

List of Figures

Figure 1 Sample glyph with Counter Control hint zones 13
Figure 2 Multiple master font space arrangement 17
Figure 3 Arrangement of multiple master design space for a four axis font 17
Figure 4 Multiple master font dictionaries 19

6 List of Figures (15 May 94)

7

Type 1 Font Format
Supplement

1 Introduction

This document describes extensions to the Adobe



 Type 1 font format since
version 1.0, and contains a list of errata for both version 1.0 and 1.1 in section
6. It supersedes Adobe Technical Note #5047, “Updates to the Adobe Type 1
Font Format” and #5086, “Multiple Master Extensions to the Adobe Type 1
Font Format.”

This supplement describes two significant extensions to the Type 1 format:

Counter Control

, a hinting mechanism for fonts with complex glyphs; and
the multiple master font format, which was previously described in Technical
Note #5086, “Multiple Master Extensions to the Adobe Type 1 Font Format.”

The Counter Control hint mechanism is used for controlling the counters (the
white spaces between stems) in complex glyphs such as those contained in
Chinese and Japanese language fonts. These hints may also have other
applications such as for bar code or logo fonts.

A multiple master font contains from 2 to 16

master designs

 in a single font,
from which users may interpolate a large number of intermediate

font
instances

. This format, discussed in section 3, provides the potential for
unprecedented flexibility and control over typographic parameters.

In addition, the following appendices are included:

• Appendix A:

makeblendedfont

 Code
• Appendix B: Updated

 OtherSubrs

 Code for Flex and Hint Substitution
• Appendix C:

NormalizeDesignVector

 Example
• Appendix D:

ConvertDesignVector

 Example
• Appendix E: Changes Since Version 1.0

2 Counter Control Hints

The Counter Control hint mechanism controls counter spaces in a glyph. A

counter

 may be defined as an area of white space which is delimited by a pair
of horizontal or vertical stems. This mechanism is designed to aid in the

8 (15 May 94)

rendering of fonts containing complex glyph shapes by ensuring that the size
and proportions of all counters in a glyph are rendered as accurately as
possible. For example, if multiple counters are exactly the same measurement
in width or height, the Counter Control mechanism will make them the same
number of pixels, providing there are a sufficient number of pixels available.
Similarly, if the width of two counters in the original design are, for example,
in the ratio of 3:5, the interpreter attempts to preserve this proportion, based
on the constraints of the glyph’s width.

Counters may be organized into

groups

, with each group consisting of a
section of the glyph whose stems are to be considered in relation to each
other by the rasterizer. For a relatively simple glyph, for example, all
horizontal stems may be considered to be in a single group. For more
complex glyphs, putting all stems in a single group might overconstrain the
grid fitting problem. Also, the ordering of the groups determines the priority
for the allocation of pixels, which may be critical for lower resolutions. The
grouping of counters is discussed in section 2.4.

To use Counter Control hints, the

LanguageGroup

 and

RndStemUp

 entries
(see page 44 of the Adobe Type 1 Format Book for more details) must be
defined as follows in the

Private

 dictionary of the font program:

/LanguageGroup 1 def

/RndStemUp false def

and Counter Control hints, in the form of calls to

OtherSubrs

 entries 12 and
13, must be added to the appropriate charstrings as explained in section 2.2.

2.1 Performance and Quality Benefits of Counter Control Hinting

For fonts with complex glyphs, it is very important to include Counter
Control hints; failure to do so can result in performance and quality
degradation. Some rasterizer implementations are able to control counters by
making an initial pass through the font to compile hint data, and a second
pass to rasterize the glyphs. Thus the rasterizer supplies some of the Counter
Control hints, but at the cost of reduced performance. The ATM rasterizer
included in some Level 1 Japanese PostScript printers, most Level 2 printers,
and ATM



-J software fall into this category.

Note There are two types of “two-pass” rasterizers: newer versions of the ATM-J
software and Level 2 printers will do only one pass if Counter Control hints
are in the font, thus improving performance, but are capable of doing two
passes if the hints are not in the font; earlier versions will do two passes even
if Counter Control hints are in a font (ignoring the data in the font).

2 Counter Control Hints 9

Other rasterizers do not compile Counter Control data on-the-fly. With this
rasterizer, a font is likely to have unsatisfactory quality unless the Counter
Control hints are pre-compiled in the font program. The current version of
the Type 1 Coprocessor is in this category of one-pass rasterizers.

The advantage of including Counter Control hint information in a font
program is that the font will perform better on most two-pass rasterizers, and
it is the only way to control counter spaces with a one-pass rasterizer. Also, if
Counter Control hinting is pre-compiled into a font program, it is possible to
define more precise hints than if it is done at run-time by the rasterizer.

If a font does not contain complex glyphs, it is important for performance
reasons to not use hint settings which will cause a two-pass rasterizer to
compile Counter Control hints. Any of the following situations will cause a
two-pass interpreter to make an extra pass, whether or not it is required:

• The top edge of the first

BlueValues

 hint zone is represented by a negative
number. This signifies that the first (baseline) zone is set to be outside of
the area of the character paths (this is one convention for representing
fonts which do not require vertical alignment zones).

• The keyword

RndStemUp

 is defined in the font program. The value of the
Boolean does not make a difference: if

RndStemUp

 is defined at all,
Counter Control is invoked regardless of the value.

•

LanguageGroup

 is defined to have a value of 1.

• The charstrings contain calls to

OtherSubrs

 entries 12 or 13.

2.2 OtherSubrs for Counter Control

Counter Control hints are specified using the

callothersubr

 charstring
operator and

OtherSubrs

 number 12 and 13. These calls must immediately
follow the

hsbw

 or

sbw

 operator, and must only occur once in the charstring
procedure. All other hints and hint substitution is done in the usual manner.

The

callothersubr

 operators for Counter Control hinting will be interpreted
directly by newer Type 1 BuildChar procedures, but will be ignored by 2-pass
rasterizers which will compile their own Counter Control data at run-time.

For a rasterizer which does not know about Counter Control hints, the
PostScript language implementation of the Counter Control

OtherSubrs

only serves the purpose of removing the Counter Control data from the stack
so the data will not accumulate. These procedures (which are shown below)
do not implement Counter Control hints, they merely make a font
backward-compatible on older interpreters.

10 (15 May 94)

As in the

Adobe Type 1 Font Format

 book, the

stack bottom symbol

 ()
preceding the first argument means that the arguments are taken from the
bottom of the Type 1 BuildChar stack. Commands that clear the stack are
indicated by the stack bottom symbol () in the result position of the
command definition.

The following

OtherSubrs

 calls are used to invoke Counter Control hinting:

Counter Control OtherSubrs Entry 12

A

1

 A

2

 A

3

 ... A

n

 n

 12

callothersubr

where

A

1

 through

A

n

 are arguments for declaring counter data,

n

 is the
number of arguments, and ‘12’ is the

OtherSubrs

 entry number. The value of

n

 must be in the range 0

≤

 n

≤

 22 (see section 2.3 for explanation of the stack
limit).

 OtherSubrs

 entry 12 is used to present Counter Control data to the
Type 1 BuildChar. It may be used to pass any number of arguments within the
stated limits, but it should be used efficiently as excess calls may significantly
affect file size and performance. A call to entry 12 implies that there is more
data to follow. A sequence of one or more calls to entry 12 must be followed
by exactly one call to entry 13. Usually, arguments will be presented in
groups of 22 until there are 22 arguments or fewer, and the remaining
arguments are then passed using

OtherSubrs

 entry 13.

The data format is the same as for

OtherSubrs

 entry 13, which is shown
below.

Counter Control OtherSubrs Entry 13

A

1

 A

2

 A

3

 ... A

n

 n

 13

callothersubr

where

A

1

 through

A

n

 are arguments for declaring counter data,

n

 specifies the
number of arguments, and ‘13’ is the

OtherSubrs

 entry number. The value of

n

 must be in the range 0

≤

 n

≤

 22.

OtherSubrs

 entry 13 tells the interpreter
that all of the Counter Control data is on the stack and ready for processing. It
must be called exactly once for each glyph, and only after a sequence of zero
or more calls to

OtherSubrs

 entry 12. The data format for both

OtherSubrs

entries 12 and 13 follows.

Data Format for Counter Control OtherSubrs

The data format is:

#

H HG1 HG2 ... HGn #V VG1 VG2 ... VGn m 13 callothersubr

2 Counter Control Hints 11

where #H is the number of stem groups (0 if none). HG1 is the data for the
most important hstem group (Group 1), and HGn is the data for the least
important hstem group (Group n). #V is the number of vstem groups (0 if
none); VG1 is the data for the most important vstem group; VGn is the data for
the least important group; and m is the number of arguments being passed.

The PostScript language code contained in OtherSubrs entries 12 and 13 is
shown below. These two PostScript language procedures are not used for
backward compatibility, except in the sense that they remove data from the
stack when the interpreter does not understand Counter Control hints, or
when the interpreter can only do two passes. When an interpreter is capable
of only doing one pass, the data in the charstring OtherSubrs calls are
interpreted directly by the interpreter.

The code for the two OtherSubrs entries are as follows:

OtherSubrs entry 12:
{}

OtherSubrs entry 13:
{ 2 { cvi { { pop 0 lt { exit } if } loop } repeat } repeat }

Entry 12 does not clear data from the stack because any calls to entry 12 must
be followed by one call to entry 13, which does clear all elements from the
stack.

Note Some PostScript interpreters fail to execute the PostScript language
OtherSubrs procedures. This is incorrect behaviour. This primarily affects
the Apple Personal LaserWriter NT and the Hewlett-Packard Level 1
PostScript Cartridge for LaserJet printers. The likely consequence is that
an invalidfont error will occur, the fonts will not appear on the page, or the
interpreter will fail.

2.3 Stack Limit Considerations for Counter Control

Since there may be more than 22 numbers required to define all group data,
and no more than 22 numbers may be on the type 1 stack when an
OtherSubrs procedure is invoked, the call to OtherSubrs entry 12 is used to
present arguments in groups of 22, until 22 or fewer arguments remain. This
final group is then passed using OtherSubrs entry 13.

In all cases, the arguments are placed on an internal pseudo stack by popping
arguments off the Type 1 stack and pushing them onto this internal pseudo
stack, and then finally processed by popping them off the internal pseudo
stack. This inverted order is a consequence of the requirement that it be
possible to execute a Type 1 font program with a Type 1 BuildChar procedure
that does not have direct support for OtherSubrs.

12 (15 May 94)

2.4 Counter Control Groups

A Group is a list of coordinates for counters, delimited by stems of a single
orientation (either horizontal or vertical), that are to be adjusted relative to
each other. They are listed in ascending order (in character space) as pairs of
numbers. Each pair consists of a value for the left (or bottom) edge and the
width of the stroke, where the left (or bottom) edge is encoded as the distance
from the previous stem, or the distance from zero (for the horizontal
direction, the distance from the left sidebearing point) for the first entry.

Since the count of the number of stems in a group is not given, the sequence
is encoded by making the distance to the final stem extend to the far edge of
the stem, and then making the final width negative. For example, if the last
pair of numbers would ordinarily be ‘…100 20…’, it must be encoded as
‘…120 – 20…’. Not all stems in a glyph need be included; if one or more
counter spaces are judged to not need control, they may be omitted from the
Counter Control hinting.

The order of each group in the calling sequence determines the priority for
that group. This priority (for a group, not for individual counters) determines
the order in which the groups are allocated white space pixels. The order of
the groups can be determined algorithmically, or by a designer.

This prioritizing scheme gives the designer the ability to specify the groups
whose counters will be the last to “collapse” (have no white pixels) at small
sizes, and which will be more accurately rendered at intermediate sizes. This
has the potential to significantly improve quality and legibility at a range of
sizes. Even if the group order is not manually or algorithmically determined,
it is still much better to have Counter Control hinting than to not have it at all.

2.5 Private Dictionary Extensions for Counter Control: ExpansionFactor

The optional ExpansionFactor entry is a positive real number that gives a
limit for changing the size of a character bounding box during the processing
that adjusts the sizes of counters in fonts of LanguageGroup 1. The default
value of ExpansionFactor is 0.06, which is equivalent to allowing a ± 6%
change in the character bounding box. This change is allowed in both the x-
and y-directions, but might be constrained in the y-direction depending on
vertical alignment values specified in the BlueValues array.

At small point sizes or low resolutions, the system might have to accept
irregular counters rather than violate this limit. Bar code or logo fonts
containing glyphs with multiple counters might benefit by setting
LanguageGroup to 1 and increasing the ExpansionFactor limit to a larger
amount such as 0.5 or more. For example:

/ExpansionFactor 0.5 def

2 Counter Control Hints 13

If strict adherence to the metrics is essential, the value should be set to zero.

2.6 Counter Control Example

The following is a simplified example of how Counter Control hints may be
applied to a glyph. Figure 1 shows a Kanji glyph and the coordinates of the
stems and counter boundaries. In this example, only the hinting most relevant
to Counter Control is shown; miscellaneous hints and hint substitution are not
addressed. Also, the ordering of the groups is top-to-bottom and left-to-right,
rather than being based on typographic significance.

Figure 1 Sample glyph with Counter Control hint zones

The horizontal stem hints for this example would be:

– 44 58 hstem 273 25 hstem
155 25 hstem 430 25 hstem
445 25 hstem 582 25 hstem
703 25 hstem 735 25 hstem

and the vertical stem hints would be:

86 60 vstem
281 60 vstem
430 60 vstem
670 60 vstem
790 60 vstem

86
146

281 430 790

760

735

607

582

455

430

298

273

728
703

470
445

180
155

670
730

341 490 850

14

(–44)

14 (15 May 94)

Counter Control hinting involves dividing the counters which are delimited,
for example, by hstems, into groups which are to be considered at one time
by the rasterizer. In Figure 1, the hstems on the left side of the glyph form a
logical group, and those on the right side form a second logical group (stems
in a logical group do not need to be part of the same subpath).

Based on the stem data shown above and the chosen division of groups, the
corresponding data to describe the counters for each group would be
(excluding the horizontal stem at – 44 and the vertical stem at 670):

2 155 25 265 25 258 -25 273 25 132 25 127 25 153 -25 1 86 60 135

60 89 60 360 -60

where #H = 2 (the number of hstem groups); HG1 = (155 25 265 25 258
–25); HG2 = (273 25 132 25 127 25 153 –25); #V = 1 (the number of vstem
groups); and VG1 = (86 60 135 60 89 60 360 –60). In this example, the ‘–60’
argument would end up on the bottom of the stack, and the ‘2’ argument on
the top of the stack.

The hstem from – 44 to 14, and the vstem from 670 to 730, are not included
in the Counter Control data. The hstem at –44 does form a counter space
with the hstem above it, but it is omitted in this example. Reasons for
omitting a particular counter might include the judgement that its proportions
are not as critical as those of other counters, or that including it might
overconstrain the problem.

Because using the above data as arguments to a callothersubr call would put
more than 22 items (in addition to the OtherSubrs entry number and the
number of arguments), on the stack, the call must be divided into two calls.
Allowing for the necessary stack order noted above, the calls would be as
follows:

25 265 25 258 -25 273 25 132 25 127 25 153 -25 1 86 60 135 60 89

60 360 -60 22 12 callothersubr

2 155 2 13 callothersubr

This command sequence is now ready for encoding.

3 Multiple Master Font Extensions

The multiple master font format is an extension of the Type 1 font format
which allows the generation of a wide variety of typeface styles from a single
font program.

A multiple master font program contains two or more outline typefaces called
master designs, which describe one or more design axes. The master designs
that constitute a design axis represent a dynamic range of one typographic

3 Multiple Master Font Extensions 15

parameter, such as the weight or width. This range of styles is defined in a
multiple master font program by specifying one master design to represent
each end of an axis, such as a light and extra-bold weight, as well as any
intermediate master designs that are required. The maximum number of
master designs allowed is sixteen.

Note Intermediate designs are not supported in the current version of Adobe Type
Manager software: version 3.6.1 for the Macintosh, and 2.6 for Windows.

A font instance consists of a font dictionary derived from the multiple master
font program (or from another font instance). It contains a WeightVector
array having k values (that sum to 1.0) which specify the relative contribution
of each master design to the resulting interpolated design.

All derived font instances share the CharStrings dictionary and Subrs array
of the main multiple master font program, making it relatively economical to
generate a variety of font instances. Multiple master fonts can be made
compatible with the installed base of PostScript language interpreters by
including several PostScript language procedures and a set of OtherSubrs
routines in the font program. The procedures include the interpolation
procedure $Blend, the makeblendedfont operator emulation procedure (see
Appendix A), and a re-definition of the findfont operator (see section 3.7).
The multiple master related OtherSubrs procedures are used, along with the
$Blend procedure, to interpolate the charstring data on-the-fly to produce the
interpolated glyph shapes specified in the font instance.

3.1 Multiple Master Design

It is possible to think of the master designs as being arranged in a 1, 2, 3, or 4
dimensional space with various font instances corresponding to different
locations in that space. The entries in the FontInfo dictionary specify what
this space is and where in that space the master designs are located. This
information is necessary for interactive programs that allow users to create
new font instances, and should be included in the font’s Adobe Multiple Font
Metrics (AMFM) file (see “Adobe Font Metrics File Format Specification,”
Version 4.0).

Multiple master coordinates are of two types: design coordinates, which
represent the design space, and blend coordinates, which represent the blend
space.

Design coordinates are integers whose range for a particular typeface is
chosen by the designer. They are used in font names and in the user interface
for software which creates and manipulates multiple master font programs.
The standard minimum and maximum values for a weight or width axis is

16 (15 May 94)

from 1 to 999 design units; however a typical typeface, with styles ranging
from light to black, might only have a dynamic range of from 200 (for light)
to 800 units (for black).

Note In the case of the Adobe Originals typeface Viva , the range of design
coordinates has been extended to range from 1 to 2000. This is purely an
extension for a type design with a much wider width than most conventional
designs. Extending the width axis does not change the coordinates for
designs in the standard range.

Another type of axis is optical size, in which the character design changes
with the point size to optimize legibility for each point size. The design
coordinates for the optical size axis might have a dynamic range of from 6- to
72-point, which represents the practical extremes of sizes for typefaces
designed for publishing purposes.

Blend coordinates are normalized values, in the range of 0 to 1, which
correspond to the minimum and maximum design space coordinates for a
specific font. They are used by the Type 1 rasterizer because they are more
convenient for mathematical manipulations.

The mapping between the design and the blend coordinate space may be
specified to be non-linear by using the BlendDesignMap entry (discussed
below) in the font dictionary. While the non-linear mapping may be used for
any axis, it is especially useful for the OpticalSize axis.

Figure 2 illustrates an example of the design space of a three axis multiple
master font. In this example, the axes are weight, width, and optical size. It is
recommended that a font program be organized to have the lightest weight,
narrowest width, and smallest design size mapped to the origin of the blend
coordinate space.

3 Multiple Master Font Extensions 17

Figure 2 Multiple master font space arrangement

Figure 3 illustrates how a four axis design might be represented. An example
of a fourth axis would be a font with an axis for a typographic style (serif –
sans serif) or contrast (high/low: the ratio of thick to thin stem widths). This
diagram illustrates that if four axes are defined, sixteen master designs are
required. Also, since sixteen is the maximum number of designs allowed,
there can be no intermediate designs with four axes.

Figure 3 Arrangement of multiple master design space for a four axis font

3.2 Multiple Master Font Programs

Multiple master typefaces may contain from two to sixteen master designs,
which may be designed to represent from one to four design axes. The
allocation of master designs within the sixteen master design limit is
expressed by the equation 2n + x = 16, where n is the number of design axes,

Black
Expanded
Large
1,1,1

Black
Condensed
Large
1,0,1

Light
Expanded
Large
0,1,1

Black
Condensed
Small
1,0,0

Black
Expanded
Small
1,1,0

Light
Expanded

Small
0,1,0

Light
Condensed

Small
0,0,0

Light
Condensed
Large
0,0,1

design axis 1: weight
desig

n axis
 3: s

ize

de
si

gn
 a

xi
s

2:
 w

id
th

Style A

Style B

design axis 4: Style

18 (15 May 94)

x is the number of intermediate designs (though these are not currently
supported by ATM software), and 16 is the maximum allowed number of
master designs.

The values used for calculating the weighted interpolation are stored in the
font dictionary in the WeightVector array. The multiple master font program,
as shipped by the font vendor, can have a default setting for the
WeightVector. It is recommended that it be set so the default font instance
will be the normal roman design for that typeface.

3.3 Multiple Master Font Dictionaries

Figure 4 shows a diagram of the dictionary organization of a multiple master
font program. A multiple master font contains a Blend dictionary defined in
the unencrypted portion of the top level font dictionary. The Blend dictionary
contains an entry for the interpolated values for FontBBox, plus definitions
for two subdictionaries: a Private and a FontInfo dictionary (also referred to
as the Private blend and Fontinfo blend dictionaries).

The Private blend dictionary (defined in the Blend dictionary) will only
contain those keywords found in the top level Private dictionary which have
different values for each master design. If the keywords do not have values
that must be interpolated for each instance, they do not need to be in the
Private subdictionary. The keywords which might be required in the
subdictionary are BlueValues, OtherBlues, StdHW, StdVW, StemSnapH,
StemSnapV, BlueScale, BlueShift, FamilyBlues, FamilyOtherBlues, and
ForceBold.

The values for the Private blend dictionary are expressed as an array with
one set of values for each master design; the top level Private dictionary
contains only single value entries (or set of values, as appropriate to the
keyword) which have been interpolated using the WeightVector specified in
the font dictionary.

3 Multiple Master Font Extensions 19

Figure 4 Multiple master font dictionaries

Similarly, the FontInfo blend dictionary will contain only keywords found in
the top level FontInfo dictionary that do not have the same value in each
master design. The values for the UnderlinePosition, UnderlineThickness,
and ItalicAngle keywords are elements of an array with one value for each
master design. It is not necessary to include entries if their values are the
same for each design.

The representation of any dictionary entry in the Blend dictionary (except
ForceBold), or in one of the subdictionaries under it, is defined by the
following recursive rules:

Let “REP(k)” stand for the Blend dictionary representation for the entry
k. If k is a number, then REP(k) is the array of numbers [N1 ... Nk] that are
the values for the entry in the k master designs. If k is an array of n items
V1 ... Vn of any type, then REP(k) is an array of the n representations
REP(V1) ... REP(Vn). If k is of any type other than number or array, then
REP(k) is k itself.

3.4 Explanation of a Typical Multiple Master Font Program

Example 1 shows a sample multiple master font program for the Myriad
typeface.

font dictionary

/FontInfo dictionary

/Private dictionary

/CharStrings dictionary

/Blend dictionary

FontInfo dictionary

Private dictionary

/FontBBox
/Private
/FontInfo

/UnderlinePosition
/UnderlineThickness

/OtherSubrs
/Subrs

/BlueValues
/OtherBlues

/A

/RD

.

.

.

/BlendAxisTypes
/BlendDesignPositions
/BlendDesignMap

array
array
array

/version string

charstring
/B charstring

/.notdef charstring

.

.

.

.

.

.

/WeightVector
/Blend

/FontInfo
/Private
/CharStrings

array
dictionary
dictionary
dictionary
dictionary

/FontName name

.

.

.

procedure

array
array

.

.

.

/$Blend procedure

array
dictionary
dictionary

array
array

array
array

20 (15 May 94)

Example 1:

%!PS-AdobeFont-1.0: Myriad 000.009

%%CreationDate: Wed Jul 31 11:43:43 1991

%%VMusage: 69881 80580

15 dict begin

/FontInfo 13 dict dup begin

/version (000.009) readonly def

/Notice (Copyright (c) 1991, 1992 Adobe Systems Incorporated. All

Rights Reserved.) readonly def

/FullName (Myriad) readonly def

/FamilyName (Myriad) readonly def

/Weight (All) readonly def

/ItalicAngle 0 def

/isFixedPitch false def

/UnderlinePosition -100 def

/UnderlineThickness 50 def

/BlendDesignPositions [[0 0] [1 0] [0 1] [1 1]] def

/BlendDesignMap [[[1 0.00][999 1.00]][[1 0.00][999 1.00]]] def

/BlendAxisTypes [/Weight /Width] def

end readonly def

/FontName /MyriadMM def

/Encoding StandardEncoding def

/PaintType 0 def

/FontType 1 def

/WeightVector [0.18 0.07 0.53 0.22] def

/$Blend {0.07 mul exch .53 mul add exch .22 mul add add } bind def

/FontMatrix [0.001 0 0 0.001 0 0] readonly def

/FontBBox{-55.14 -220.84 1148.04 839.18 }readonly def

/Blend 3 dict dup begin

/FontBBox{{-52 -64 -58 -48 }{-212 -216 -224 -222 }{1000 1000 1100

1432 }{828 850 830 867 }}def

/Private 14 dict def

end def

.

% makeblendedfont procedure omitted (see Appendix A)

.

currentdict end

%currentfile eexec

dup /Private 18 dict dup begin

/-|{string currentfile exch readstring pop}executeonly def

/|-{noaccess def}executeonly def

/|{noaccess put}executeonly def

/BlueValues[-11.00 0.00 667.00 685.00 483.48 494.48 650.00 660.56

710.00 720.56] def

/OtherBlues[259.46 264.90 -211.20 -200.64] def

/BlueScale 0.051208 def

/MinFeature{16 16} |-

/StdHW [67.01] |-

/StdVW [86.14] |-

/StemSnapH [67.01] |-

/StemSnapV [86.14] |-

/ForceBoldThreshold .57 def

/ForceBold false def

/password 5839 def

3 index /Blend get /Private get begin

/BlueValues[[-8 -8 -12 -12][0 0 0 0][664 664 668 668][682 682 686

686][480 492 480 492][488 500 492 504][650 650 650 650][658 658

3 Multiple Master Font Extensions 21

662 660][692 692 716 716][700 700 728 726]] def

/OtherBlues[[258 258 262 255][263 263 267 262][-200 -200 -212

-222][-192 -192 -200 -212]] def

/BlueScale[0.052125 0.052125 0.052125 0.0479583] def

/ForceBold [false true false true] def

/StdHW [[37 108 39 146]] def

/StdVW [[43 155 49 189]] def

/StemSnapH [[37 108 39 146]] def

/StemSnapV [[43 155 49 189]] def

/OtherSubrs

[{} {} {}

{

systemdict /internaldict known not

{pop 3}

{1183615869 systemdict /internaldict get exec

dup /startlock known

{/startlock get exec}

{dup /strtlck known

{/strtlck get exec}

{pop 3}

ifelse}

ifelse}

ifelse

} executeonly

{} {} {} {} {} {} {} {} {} {}

{ 4 1 roll $Blend } bind

{ exch 8 -3 roll $Blend exch 5 2 roll $Blend } bind

{ 3 -1 roll 12 -3 roll $Blend 3 -1 roll 9 -3 roll $Blend 3 -1 roll 6

3 roll $Blend } bind

{ 4 -1 roll 16 -3 roll $Blend 4 -1 roll 13 -3 roll $Blend 4 -1 roll

10 -3 roll $Blend 4 -1 roll 7 -3 roll $Blend } bind]|-

This font program begins with an allocation of a dictionary with 15 entries,
one of which is the top level FontInfo dictionary. While the FontInfo
dictionary is generally optional, it is required for a multiple master font. In
addition to the standard entries, this dictionary includes three multiple master
keywords which define information about the axes, design space, and the
mapping from the design to the blend coordinate space (see section 3.1).

The font dictionary also contains the WeightVector keyword which specifies
the contribution of each master design for the current font instance. Its value
is an array of k elements, where k is the number of master designs. The
elements must sum to 1.0 (with a tolerance of 0.001). It is recommended that
the WeightVector in a multiple master font program be set to represent the
normal style for that typeface.

The WeightVector entry is followed by a $Blend procedure which calculates
the weighted average of values from the master designs. It uses the values
specified by the WeightVector array, and is referenced by OtherSubrs
entries 14 through 18. This procedure should be of the following form for a
multiple master font program with 2 master designs:

/$Blend {W1 mul add} bind def

22 (15 May 94)

where W1 is the second element in the WeightVector array. If there are more
than two master designs, the procedure should be of the form:

/$Blend { W1 mul exch

Wi mul add exch

 . . .

Wk-1 mul add

add } bind def

where the Wi line (Wi mul add exch) is repeated for i = 2 to (k–1) where k is
the number of master designs.

After defining the FontMatrix, the FontBBox value is defined using either a
default value for the chosen default master design, or if it is a font instance, it
will have a value interpolated by the makeblendedfont procedure.

The Blend dictionary is then defined, and a FontBBox array containing a set
of values for each master design is defined in this dictionary. A Private
subdictionary is then created, but no entries are defined until after the
interpolated entries in the Private dictionary have been declared (see section
4, “Adobe Type Manager Compatibility”). This example does not have a
FontInfo subdictionary under the Blend dictionary because the values for
Myriad are the same for all of the master designs.

The next section of code is the definition of the makeblendedfont procedure.
This is included in the font for backward compatibility with interpreters in
which this operator is not defined (see section 3.6).

All of the remaining code in the example is in the eexec encrypted section of
the font. This includes the top level Private dictionary, with its interpolated
values based on the WeightVector values in the font; and the Private blend
dictionary which was allocated and defined in the Blend dictionary, but
whose entries are specified in this encrypted portion of the font program. The
entries in the Private blend dictionary contain arrays with one value for each
master design.

A ForceBold array may be included in the Private blend dictionary of the
Blend dictionary. When this array is present, a new keyword, the keyword
ForceBoldThreshold must be included in the top level Private dictionary.
The value for ForceBoldThreshold is a number. If the sum of the
WeightVector elements, for which ForceBold is true in the corresponding
multiple master font, is greater than or equal to ForceBoldThreshold, then
ForceBold is true for the font instance with that WeightVector.

The Private dictionary continues with the global hint operators, which are the
same as for regular Type 1 font programs except that there is one value for
each master design. The OtherSubrs array for Myriad includes null
procedures for the flex mechanism OtherSubrs, and includes the
OtherSubrs code for hint substitution. Next are ten null procedures before

3 Multiple Master Font Extensions 23

the code for OtherSubrs entries 14 through18. In the case of Myriad, only
OtherSubrs entries 14 through 17 are included because entry 18 (which
returns 6 values) is not used in this particular font program.

3.5 Multiple Master Keywords and Procedures

The following keywords are required entries in the FontInfo dictionary of a
multiple master font (for which the FontInfo dictionary is a required
dictionary).

BlendAxisTypes

(Required.) BlendAxisTypes is an array of n PostScript language names
where n is the dimensionality of the design space and hence the number of
axes. Each string specifies the corresponding axis type. In the above 3-axis
example, this value would be:

/BlendAxisTypes [/Weight /Width /OpticalSize]

These three axes should always occur in this relative order.

Note The keywords Weight, Width, and OpticalSize are reserved for use as axis
types for multiple master font programs. Font developers interested in
registering new types for additional design axes should write to:

UniqueID Coordinator
Adobe Developer Relations
Adobe Systems Incorporated
P.O. Box 7900
Mountain View, CA 94039-7900

BlendDesignPositions

(Required.) BlendDesignPositions is an array of k arrays giving the
locations of the k master designs in the blend space. Each location subarray
has n numbers giving the location of the design in the n dimensions of the
design space, with a minimum value of zero and a maximum value of one.
The order of the entries in the array must be the order of the corresponding
master designs in the font.

Table 1 shows an example of a font with eight master designs based on the
example shown in Figure 3.

24 (15 May 94)

Table 1

Design label Blend space coordinates

design 1: light condensed small 0 0 0

design 2: light expanded small 0 1 0

design 3: black condensed small 1 0 0

design 4: black expanded small 1 1 0

design 5: light condensed large 0 0 1

design 6: light expanded large 0 1 1

design 7: black condensed large 1 0 1

design 8: black expanded large 1 1 1

The BlendDesignPositions array for this font would be:

/BlendDesignPositions [[0 0 0] [0 1 0] [1 0 0] [1 1 0]

[0 0 1] [0 1 1] [1 0 1] [1 1 1]] def

Note While the relative order of the design axes are specified in this document, the
order of the master designs is not. However, it is imperative that the order of
the master designs specified in BlendDesignPositions, the order of the
WeightVector values, the order of the charstring arguments, and the
configuration of the NormalizeDesignVector and ConvertDesignVector
procedures must all correspond, or unexpected results will occur.

BlendDesignMap

BlendDesignMap (Required.) is an entry consisting of an array of n arrays
where n is the dimensionality of the design space. Each array contains m
subarrays that specify the mapping of design coordinates into blend
coordinates for each axis.

The data for the coordinate mapping for the BlendDesignMap keyword is of
the form:

[[D1 B1] . . . [Dm Bm]]A1. . . [[D1 B1] . . . [Dm Bm]] An

where D1 and B1 are the lower limits of the design and blend coordinate
range, respectively; and Dm and Bm are the upper limits of the design and
blend coordinate ranges. The subscript A1 designates the mapping data for
the first axis, and An represents the mapping data for the last axis of an n axis
font. The subscript m represents the number of points defining the mapping
from design to blend coordinates. The minimum value allowed for m is two

3 Multiple Master Font Extensions 25

(for a linear mapping), and the maximum is twelve. Also, the value for m may
be different for each axis. The order of the subarrays must correspond to the
order of design axes in BlendAxisTypes.

Example 2 illustrates the values of a sample BlendDesignMap for a font with
three axes: Weight, with design coordinates from 200 to 900; Width, with
design coordinates from 300 to 700; and OpticalSize, with design coordinates
from 6 (point) to 72.

Example 2:

/BlendDesignMap [[[200 0] [500 .5] [900 1]] [[300 0] [700 1]]

[[6 0] [11 .5] [72 1]]]

This capability for piecewise linear mapping of the coordinate range is
particularly important for achieving optimal results for the OpticalSize axis.
To be optically correct, small changes in design coordinates, such as
changing from 6- to 8-point, requires significantly more change in the blend
coordinates (and hence in the shape of the glyph) than does a change from
66- to 68-point. Without this capability, at least one additional intermediate
master design would have to be included in the font.

3.6 The makeblendedfont Procedure

makeblendedfont – blendedfontdict weightvector makeblendedfont blendedfontdict´ –

This operator creates a font dictionary with pre-interpolated entries. The
blendedfontdict argument is a font dictionary of an existing multiple master
font; it can be from either the original multiple master font itself, or from an
interpolated font instance since any Blend dictionary contains all elements
needed to derive additional font instances.

The weightvector argument is an array of numbers summing to 1.0 to be used
as the weighting values for interpolating the new font instance. The value of
WeightVector in blendedfontdict´ is set to the values in the array
weightvector. Interpolated values are calculated for entries in the Private and
FontInfo dictionaries. The result is a font dictionary that can be used as an
argument to definefont. The resulting dictionary and its contents will still
have read-write permission, so the caller of makeblendedfont can make
further modifications if necessary (such as assigning a UniqueID). This
makeblendedfont operator or procedure will not copy FIDs, UniqueIDs, or
XUIDs.

For backward compatibility, the downloadable file for a multiple master
typeface must include conditional code (shown in Appendix A) which will
check for an existing definition of makeblendedfont in either systemdict,
shareddict or userdict, and only if none exists will it store a new definition
in shareddict or userdict. If a definition already exists, the font program will

26 (15 May 94)

reclaim the storage of its own definition by using save/restore and use the
existing version (unless the downloaded font has a newer version number
than the existing font).

The Blend dictionary data structures provide the information needed by the
makeblendedfont procedure. This makes it unnecessary to have the
makeblendedfont procedure contain a list of entries to be interpolated,
which means that the procedure can be used in the future, even if the set of
entries to be interpolated varies in future fonts.

3.7 The Multiple Master findfont Procedure

Multiple master font programs from Adobe Systems include a procedure
which will alter the behavior of the findfont operator in systemdict. For
Level 1 interpreters, findfont is redefined with a new definition in another
dictionary. In Level 2 interpreters, the FindResource procedure is replaced in
the /Font resource category implementation. This is necessary because of the
need to generate font instances on-the-fly to satisfy multiple master font
references in a PostScript language document.

The code for the multiple master version of the findfont operator is available
from the Adobe Developers Association. Adobe Systems grants permission to
use this code as long as the code is not altered and the copyright notice
remains intact.

The procedure creates all necessary font instances before it calls the standard
findfont procedure. These instances are only created if the font name
conforms to the naming conventions for a multiple master font. The design
coordinates must be separated from the family and style name by an
underscore character; there must be a numeric design coordinate for each
axis in the font, and these coordinates must be separated by non-numeric
characters. For more information on multiple master font names, see Adobe
Technical Note #5088, “Font Naming Issues.”

In the situation where a multiple master font has been downloaded to a
printer’s hard disk, the alternate findfont may not be instantiated when a job
referencing multiple master font instances is being interpreted. The solution
is to have a Sys/Start file containing the findfont definition on the hard disk.
The interpreter executes the Sys/Start file upon startup, thus ensuring that the
necessary findfont is defined.

An example of a call to findfont might look like:

MyriadMM_367wd_450wt findfont

The redefined findfont procedure parses the name and calls the
NormalizeDesignVector procedure (see below) to convert the design
coordinates in the FontName into normalized coordinates. It then calls

3 Multiple Master Font Extensions 27

ConvertDesignVector (see below) to convert these into WeightVector
values for use as arguments for calling makeblendedfont, which leaves the
font dictionary of the font instance on the stack.

3.8 The NormalizeDesignVector Procedure

– d1 . . . dn NormalizeDesignVector nc1 . . . ncn –

NormalizeDesignVector is a procedure that must be included in a multiple
master font program; it is used by the findfont procedure to calculate the
normalized equivalent of the design coordinates in the FontName. If the
values in the BlendDesignMap array for a particular axis indicate that the
mapping is non-linear, the normalized values must be found by piecewise
linear interpolation of the design coordinates using the appropriate segment
of the map.

The normalized coordinates nc1 through ncn are left on the stack for use by
the ConvertDesignVector procedure. The code for this procedure must be
configured for the number of axes and master designs in the font program in
which they are used. Sample code for a representative multiple master font is
shown in Appendix C.

3.9 The ConvertDesignVector Procedure

– nc1 . . . ncn ConvertDesignVector V1 . . . Vk –

ConvertDesignVector is a required procedure that takes the normalized
coordinates nc1 through ncn, which were left on the stack by the call to
NormalizeDesignVector, and generates WeightVector values V1 . . . Vk by a
simple linear weighting with the following properties (see Figure 3 for
illustration of the design space):

• The WeightVector value for any master design is 0 (zero) when the
instance is another master design (for example, the instance is at another
corner of the design space).

• The WeightVector value for any master design is 1 when the instance is
that master design.

• When the instance is in the middle of the design space, all master fonts
contribute equally.

The code for this procedure must be configured for the number of axes and
master designs in the font program in which they are used. Appendix D
shows an example of the necessary calculations for a sample multiple master
font as well as an example of the code that would be included in the font.

28 (15 May 94)

3.10 Multiple Master Font Names

The PostScript language FontName and the font menu name of multiple
master fonts require special attention, both for compatibility reasons and to
standardize the meaning of design coordinates in order to benefit users,
software applications, and utilities. See Technical Note #5088, “Font Naming
Issues” for more information on multiple master font names.

3.11 Multiple Master Charstring Representation

The encoded and encrypted data in the charstring procedures and Subrs
array entries contain the raw (not interpolated) data from each of the k master
designs, along with calls to the OtherSubrs procedures used for multiple
master interpolation (see following section on OtherSubrs). Each glyph in
each master design must be represented by an identical sequence of
commands. The different master designs can differ only in numerical values
for their arguments. For example, if the first command in each path for a
given glyph in a single Type 1 font is

dx dy rmoveto

then the first command for that glyph in a multiple master font would be

dx1 dy1 (dx2–dx1) ... (dxk–dx1) (dy2–dy1) ... (dyk–dy1) 15 callsubr

rmoveto

where dxi and dyi are the values from the ith master design.

Note In the above example, as well as ones that follow, expressions such as
(dx2–dx1) are a symbolic representation of what must be encoded in the
charstring procedure. The Type 1 BuildChar interpreter cannot interpret such
an arithmetic expression, it is the difference between dx2 and dx1 that is
encoded.

This format makes it possible to use the same charstrings and Subrs for all
font instances derived from the multiple master font. In this example, 2*k
values are put on the stack, and Subrs entry 15 calls OtherSubrs entry 15
which calculates the weighted average for both dx and dy, using the
WeightVector. This call returns the interpolated values of dx and dy on the
stack; these values are then used as arguments to rmoveto.

Since the font interpreter stack is limited to 24 entries, font programs with
four axes may need to call the interpolation procedures in a way that avoids
too many elements accumulating on the stack. The limit is effectively 22
items on the stack since callothersubr requires two arguments to pass the
Subrs entry number and the number of arguments.

3 Multiple Master Font Extensions 29

For example, the rrcurveto operator requires six arguments. If the font has
four master designs, then OtherSubrs entry 18 cannot be used and the set of
arguments must be split into two calls. One way to do this is by calling
OtherSubrs entry 16 twice. In the following example, if there are k master
designs, there will be k sets of:

a b c d e f

to be interpolated for each rrcurveto operator. If k = 4, there would be 26
elements on the stack (including the two extra arguments mentioned above).
If these arguments were divided into two calls to OtherSubrs entry 16, each
of which returns three results, the code would look like:

a1 b1 c1 (a2-a1)...(an-a1) (b2-b1)...(bn-b1) (c2-c1)...(cn-c1)

16 callsubr

d1 e1 f1 (d2-d1)...(dn-d1) (e2-e1)...(en-e1) (f2-f1)...(fn-f1)

16 callsubr rrcurveto

In this example, Subrs entry 16 is used to call OtherSubrs entry 16 as a
means of saving space.

3.12 OtherSubrs for Multiple Master Font Programs

There are five new entries in the OtherSubrs array which are used by
multiple master font programs to compute weighted averages using the
WeightVector. The new entries are numbered 14 through 18, so the necessary
number of procedure brackets (“{ }”) must be inserted in the array to fill
unused positions.

OtherSubrs 14 through 18 consist of PostScript language code whose only
purpose is to reorder the arguments on the stack before calling the $Blend
procedure (discussed in section 3.4) to interpolate those arguments. These
routines differ only in the number of results they return. Each must be
configured to manipulate the expected number of elements on the stack,
which is dependent on the number of master designs, so that they are in the
correct order for calling the $Blend procedure.

Note There is no requirement for the number of a Subrs procedure to correspond
to the number used for an OtherSubrs procedure.

In the summary of OtherSubrs calls listed below, k is the length of the
WeightVector array (and hence the number of master designs in the font).
The charstrings and Subrs will call the appropriate OtherSubrs to create the
required weighted averages for various parameters. The font interpreter stack
is limited to 24 entries, which includes the arguments used to indicate the
OtherSubrs entry number and the number of arguments being passed.
Therefore, some of the OtherSubrs entries may only be useful with fonts
having a small value of k.

30 (15 May 94)

The OtherSubrs for multiple master fonts are numbered 14 through 18; the
calling sequences are shown below. In each case, k is the number of master
designs in the font (The maximum value of k for any font is 16.). Each of the
following descriptions uses a notation of the form:

a1 (a2–a1) (a3–a1) (a4 –a1) ... (ak–a1) 14 callsubr a

which indicates the form of the invocation in a charstring. This is the form in
which the values for each master design are represented in the font program,
with a1 being the character coordinate value for the first master design, and
all subsequent values are expressed as deltas relative to the first value. Subrs
entry 14 puts the argument count on the stack and calls OtherSubrs entry 14
(see section 3.13), which arranges the elements on the PostScript language
stack and calls the $Blend procedure to calculate the weighted average of the
input values. In each example, the number of items left on the stack is
indicated by the characters to the right of the arrow.

OtherSubrs 14: Input: k values; Result: 1 value

a1 (a2 –a1) (a3–a1) (a4 –a1) ... (ak–a1) Subr# callsubr a

where Subr# is the index of the Subrs entry that calls OtherSubrs entry 14.
Entry 14 uses WeightVector values to form a weighted average of k values
from the stack. The results are pushed onto the stack. The value of k is found
from the length of the WeightVector array.

OtherSubrs 15: Input: k × 2 values; Results: 2 values

a1 b1 (a2–a1) (a3–a1) (a4 –a1) ... (ak –a1) (b2–b1) (b3–b1) (b4 –b1) ...
(bk–b1) Subr# callsubr a b

where Subr# is the index of the Subrs entry that calls OtherSubrs entry 15.
Entry 15 uses WeightVector values to form two weighted averages, one for
the ‘a’ values and the other for the ‘b’ values indicated in the pseudo code
above.

OtherSubrs 16: Input: k × 3 values; Results: 3 values

a1 b1 c1 (a2– a1) ... (ak–a1) (b2 –b1) ... (bk–b1) (c2–c1) ... (ck–c1)
Subr# callsubr a b c

where Subr# is the index of the Subrs entry that calls OtherSubrs entry 16.
Entry 16 uses WeightVector values to form three weighted averages.

OtherSubrs 17: Input: k × 4 values; results: 4 values

a1 b1 c1 d1 (a2–a1) ... (ak–a1) (b2 –b1) ... (bk –b1) (c2–c1) ... (ck–c1) (d2–d1)
... (dk–d1) Subr# callsubr a b c d

3 Multiple Master Font Extensions 31

where Subr# is the index of the Subrs entry that calls OtherSubrs entry 17.
Entry 17 uses WeightVector values to form four weighted averages.

OtherSubr 18: Input: k × 6 values; Results: 6 values

a1 b1 c1 d1 e1 f1 (a2–a1) ... (ak –a1) (b2–b1) ... (bk –b1) (c2–c1) ... (ck–c1)
(d2–d1) ... (dk –d1) (e2–e1) ... (ek –e1) (f2 –f1) ... (fk –f1) Subr# callsubr a
b c d e f

Note where Subr# is the index of the Subrs entry that calls OtherSubrs entry 18.
Entry 18 uses WeightVector values to form six weighted averages.

Note Some PostScript interpreters fail to execute the PostScript language
OtherSubrs procedures. This is incorrect behaviour. This primarily affects
the Apple Personal LaserWriter NT and the Hewlett-Packard Level 1
PostScript Cartridge for LaserJet printers. The likely consequence is that
an invalidfont error will occur, the fonts will not appear on the page, or the
interpreter will fail.

3.13 Sample Subrs Code for Calling OtherSubrs Procedures

Since the charstring encoding for a Subrs call is shorter than that for an
OtherSubrs call, use of Subrs to call OtherSubrs may make a Type 1 font
program more concise. The following Subrs are examples of subroutines
which may be used to call OtherSubrs entries 14 through 18. These are only
selected examples; additional subroutines must be appropriately configured
for the number of master designs in the font. The number of arguments
expected by the charstring command determines which OtherSubrs is called.

For example, if a font has four master designs, and it is necessary to
interpolate arguments for an hlineto command which expects a single
argument on the stack, OtherSubrs entry 14 would be called in a Subrs
entry with the following code:

4 14 callothersubr pop return

In this example, the first argument indicates that there are four arguments (as
shown in section 3.12) being passed to OtherSubrs entry 14. If there were
eight masters, the code would be:

8 14 callothersubr pop return

To interpolate multiple master charstring arguments, in a font with four
master designs, for an rrcurveto command which expects six arguments, it
might be guessed that the Subrs would use the following code:

24 18 callothersubr pop pop pop pop pop pop return

32 (15 May 94)

However, the result of this code would exceed the stack limit of 24 elements
since there are 24 arguments being put on the stack in addition to the two
given as arguments to the callothersubr command. The solution is to make
two calls to OtherSubrs entry 16, each of which produces 3 results.

Recall that the arguments for entry 18 (as originally planned) would be set up
as follows:

a1 b1 c1 d1 e1 f1 (a2-a1) (a3-a1) (a4-a1) (b2-b1) (b3-b1) (b4-b1) (c2-c1)

(c3-c1) (c4-c1) (d2-d1) (d3-d1) (d4-d1) (e2-e1) (e3-e1) (e4-e1) (f2-f1)

(f3-f1) (f4-f1)

These must be reorganized for the call to look like:

a1 b1 c1 (a2-a1) (a3-a1) (a4-a1) (b2-b1) (b3-b1) (b4-b1) (c2-c1) (c3-c1)

(c4-c1) Subr# callsubr

d1 e1 f1 (d2-d1) (d3-d1) (d4-d1) (e2-e1) (e3-e1) (e4-e1) (f2-f1) (f3-f1)

(f4-f1) Subr# callsubr

where the Subrs procedure indicated by Subr# would contain:

12 16 callothersubr pop pop pop return

Again, the stack may never have more than 24 elements. This must be
considered when breaking up the calls, as in the above example, where the
intermediate results are left on the stack. Also, while making subroutines to
conserve space is encouraged, the cumulative effect on stack contents must
be carefully controlled.

4 Adobe Type Manager Compatibility

The following are compatibility issues related to multiple master fonts:

• The Blend dictionary must come after everything in the font dictionary for
which blended values can be calculated.

• The keywords BlendDesignPositions, BlendDesignMap, and
BlendAxisTypes must be defined before the Blend dictionary.

• The Private blend dictionary must appear after all elements of the Private
dictionary for which blended values can be calculated.

5 Font Program Testing

Over time, several Type 1 font program interpreters have been developed,
including those in PostScript printers, Adobe Type Manager software, and the
Type 1 Coprocessor (an ASIC chip). All of these accept any Type 1 font
program which conforms to the Type 1 specification, but they differ in how

6 Errata 33

they handle non-conforming font programs. In particular, ATM software is
stricter than the PostScript interpreter, and the Type 1 Coprocessor is stricter
still. When developing Type 1 font programs, it is wise to test with the
following: a Level 1 PostScript printer, a Level 2 PostScript printer with and
without a Type 1 Coprocessor, and a later version of ATM software
(preferably one shipped with the SuperATM or Adobe Acrobat
software). For East Asian fonts, testing should include the above plus a Level
1 Japanese-enabled printer.

Note An example of the range of charstring character space coordinates allowed
in different implementations is that the Type 1 specification limit is ±2000,
but the Type 1 Coprocessor chip supports ±4095, while ATM software
supports ±8191.

6 Errata

The following errors occur in versions 1.0 and 1.1 of the Type 1 Font Format
book:

• There is an error in the sample Type 1 font program code shown in
Example 1 on page 11. The hex code which follows the eexec operator
cannot be decrypted into a meaningful Private dictionary, and hence
should not be used as a test case for developing a decryption procedure.
The correct eexec hex code for the beginning of the Symbol font is:

a8686bfddf470dd119f86e1b8e5b290ae7d910e9317a36f6768d8de89e7ed5b8

45166db0e18e3fca77c6e789f2ac61e3ba2248c0c4ccdb4c503448893c2a909c

36546b763088822eb34d1051d0ac662d8098db11f0a527a679e4ac03347df431

9a689d7d65239e8502b5db9aef94cd6cebd07cee5af22db4c8c628a982cdd10

• The description of the seac operator in paragraph 6.4 of versions 1.0 and
1.1 contains an error in the description of the adx and ady arguments. The
existing text describes the offset as being the distance between the origin
points of the base and accent character; it should read the offset of the left
sidebearing points.

34 (15 May 94)

35

Appendix A: The
makeblendedfont Operator

The following code is the definition of the makeblendedfont operator. It has
been updated since it was published in Adobe Technical Note #5086,
“Multiple Master Extensions to the Adobe Type 1 Font Format.”

Note This code, as well as the code in the following appendices, is copyrighted by
Adobe Systems Incorporated, and may not be reproduced except by
permission of Adobe Systems Incorporated. Adobe Systems Incorporated
grants permission to use this code in Type 1 font programs, as long as the
code is used as it appears in this document, the copyright notice remains
intact, and the character outline code included in such a font program is
neither copied nor derived from character outline code in any Adobe Systems
font program.

% Copyright (c) 1990-1994 Adobe Systems Incorporated.

% All Rights Reserved.

% This code to be used for Flex and hint replacement.

% Version 11

/shareddict where
{ pop currentshared { setshared } true setshared

shareddict }
{ {} userdict } ifelse dup
/makeblendedfont where {/makeblendedfont get dup type /

operatortype eq {
pop false} { 0 get dup type /integertype ne
{pop false} {11 lt} ifelse} ifelse } {true}ifelse
{/makeblendedfont {
11 pop
2 copy length exch /WeightVector get length eq
{ dup 0 exch {add} forall 1 sub abs .001 gt }
{ true } ifelse
{ /makeblendedfont cvx errordict /rangecheck get exec }

if
exch dup dup maxlength dict begin {
false {/FID /UniqueID /XUID } { 3 index eq or } forall
 { pop pop } { def } ifelse
} forall
/XUID 2 copy known{

36 Appendix A: The makeblendedfont Operator (15 May 94)

get dup length 2 index length sub dup 0 gt{
exch dup length array copy
exch 2 index{65536 mul cvi 3 copy put pop 1 add}forall

pop/XUID exch def
}{pop pop}ifelse
}{pop pop}ifelse
{ /Private /FontInfo } {
dup load dup maxlength dict begin {
false { /UniqueID /XUID } { 3 index eq or } forall
{ pop pop }{ def } ifelse } forall currentdict end def
} forall
dup /WeightVector exch def
dup /$Blend exch [
exch false exch
dup length 1 sub -1 1 {
1 index dup length 3 -1 roll sub get
dup 0 eq {
pop 1 index {/exch load 3 1 roll} if
/pop load 3 1 roll
} {dup 1 eq {pop}
{2 index {/exch load 4 1 roll} if
3 1 roll /mul load 3 1 roll } ifelse
1 index {/add load 3 1 roll} if
exch pop true exch} ifelse
} for
pop { /add load } if
] cvx def
{2 copy length exch length ne {/makeblendedfont cvx er-

rordict /typecheck get exec}if
0 0 1 3 index length 1 sub {
dup 4 index exch get exch 3 index exch get mul add
} for
exch pop exch pop}
{{dup type dup dup /arraytype eq exch /packedarraytype

eq or {
 pop 1 index /ForceBold eq {
 5 index 0 0 1 3 index length 1 sub {
 dup 4 index exch get {2 index exch get add } {pop} if-

else
 } for exch pop exch pop
 2 index /ForceBoldThreshold get gt 3 copy} {
{length 1 index length ne { pop false } {
true exch { type dup /integertype eq exch /realtype eq

exch or and } forall
} ifelse }
2 copy 8 index exch exec {pop 5 index 5 index exec}
{exch dup length array 1 index xcheck { cvx } if
dup length 1 sub 0 exch 1 exch {
dup 3 index exch get dup type dup /arraytype eq exch /

packedarraytype eq or {
dup 10 index 6 index exec {

 37

9 index exch 9 index exec} if } if 2 index 3 1 roll put
} for exch pop exch pop
} ifelse 3 copy
1 index dup /StemSnapH eq exch /StemSnapV eq or {
dup length 1 sub {dup 0 le { exit } if
dup dup 1 sub 3 index exch get exch 3 index exch get 2

copy eq {
pop 2 index 2 index 0 put 0 } if le {1 sub}
{dup dup 1 sub 3 index exch get exch 3 index exch get
3 index exch 3 index 1 sub exch put
3 copy put pop
2 copy exch length 1 sub lt {1 add} if} ifelse} loop

pop
dup 0 get 0 le {
dup 0 exch {0 gt { exit } if 1 add} forall
dup 2 index length exch sub getinterval} if } if } ife-

lse put }
{/dicttype eq {6 copy 3 1 roll get exch 2 index exec}
{/makeblendedfont cvx errordict /typecheck get exec}

ifelse
} ifelse pop pop } forall pop pop pop pop }
currentdict Blend 2 index exec
currentdict end
} bind put
/$fbf {FontDirectory counttomark 3 add -1 roll known {
cleartomark pop findfont}{
] exch findfont exch makeblendedfont
dup /Encoding currentfont /Encoding get put definefont
} ifelse currentfont /ScaleMatrix get makefont setfont
} bind put } { pop pop } ifelse exec

38 Appendix A: The makeblendedfont Operator (15 May 94)

39

Appendix B: Updated
OtherSubrs Code for Flex
and Hint Substitution

The code in this appendix is the updated code for flex and hint substitution;
this code appeared in Version 1.1 of the Adobe Type 1 Font Format Book, but
is included here for readers having only Version 1.0.

% Copyright (c) 1987-1990 Adobe Systems Incorporated.

% All Rights Reserved.

% This code to be used for Flex and hint replacement.

% Version 1.1

/OtherSubrs

[systemdict /internaldict known

{1183615869 systemdict /internaldict get exec

/FlxProc known {save true} {false} ifelse}

{userdict /internaldict known not {

userdict /internaldict

{count 0 eq

{/internaldict errordict /invalidaccess get exec} if

dup type /integertype ne

{/internaldict errordict /invalidaccess get exec} if

dup 1183615869 eq

{pop 0}

{/internaldict errordict /invalidaccess get exec}

ifelse

}

dup 14 get 1 25 dict put

bind executeonly put

} if

1183615869 userdict /internaldict get exec

/FlxProc known {save true} {false} ifelse}

ifelse

[

systemdict /internaldict known not

{ 100 dict /begin cvx /mtx matrix /def cvx } if

systemdict /currentpacking known {currentpacking true setpacking} if

{

systemdict /internaldict known {

1183615869 systemdict /internaldict get exec

dup /$FlxDict known not {

dup dup length exch maxlength eq

{ pop userdict dup /$FlxDict known not

{ 100 dict begin /mtx matrix def

dup /$FlxDict currentdict put end } if }

{ 100 dict begin /mtx matrix def

40 Appendix B: Updated OtherSubrs Code for Flex and Hint Substitution (15 May 94)

dup /$FlxDict currentdict put end }

ifelse

} if

/$FlxDict get begin

} if

grestore

/exdef {exch def} def

/dmin exch abs 100 div def

/epX exdef /epY exdef

/c4y2 exdef /c4x2 exdef /c4y1 exdef /c4x1 exdef /c4y0 exdef /c4x0

exdef

/c3y2 exdef /c3x2 exdef /c3y1 exdef /c3x1 exdef /c3y0 exdef /c3x0

exdef

/c1y2 exdef /c1x2 exdef /c2x2 c4x2 def /c2y2 c4y2 def

/yflag c1y2 c3y2 sub abs c1x2 c3x2 sub abs gt def

/PickCoords {

{c1x0 c1y0 c1x1 c1y1 c1x2 c1y2 c2x0 c2y0 c2x1 c2y1 c2x2 c2y2 }

{c3x0 c3y0 c3x1 c3y1 c3x2 c3y2 c4x0 c4y0 c4x1 c4y1 c4x2 c4y2 }

ifelse

/y5 exdef /x5 exdef /y4 exdef /x4 exdef /y3 exdef /x3 exdef

/y2 exdef /x2 exdef /y1 exdef /x1 exdef /y0 exdef /x0 exdef

} def

mtx currentmatrix pop

mtx 0 get abs .00001 lt mtx 3 get abs .00001 lt or

{/flipXY -1 def }

{mtx 1 get abs .00001 lt mtx 2 get abs .00001 lt or

{/flipXY 1 def }

{/flipXY 0 def }

ifelse }

ifelse

/erosion 1 def

systemdict /internaldict known {

1183615869 systemdict /internaldict get exec dup

/erosion known

{/erosion get /erosion exch def}

{pop}

ifelse

} if

yflag

{flipXY 0 eq c3y2 c4y2 eq or

{false PickCoords }

{/shrink c3y2 c4y2 eq

{0}{c1y2 c4y2 sub c3y2 c4y2 sub div abs} ifelse def

/yshrink {c4y2 sub shrink mul c4y2 add} def

/c1y0 c3y0 yshrink def /c1y1 c3y1 yshrink def

/c2y0 c4y0 yshrink def /c2y1 c4y1 yshrink def

/c1x0 c3x0 def /c1x1 c3x1 def /c2x0 c4x0 def /c2x1 c4x1 def

/dY 0 c3y2 c1y2 sub round

dtransform flipXY 1 eq {exch} if pop abs def

dY dmin lt PickCoords

y2 c1y2 sub abs 0.001 gt {

c1x2 c1y2 transform flipXY 1 eq {exch} if

/cx exch def /cy exch def

/dY 0 y2 c1y2 sub round dtransform flipXY 1 eq {exch}

if pop def

dY round dup 0 ne

{/dY exdef }

{pop dY 0 lt {-1}{1} ifelse /dY exdef }

 41

ifelse

/erode PaintType 2 ne erosion 0.5 ge and def

erode {/cy cy 0.5 sub def} if

/ey cy dY add def

/ey ey ceiling ey sub ey floor add def

erode {/ey ey 0.5 add def} if

ey cx flipXY 1 eq {exch} if itransform exch pop

y2 sub /eShift exch def

/y1 y1 eShift add def /y2 y2 eShift add def /y3 y3

eShift add def

} if

} ifelse

}

{flipXY 0 eq c3x2 c4x2 eq or

{false PickCoords }

{/shrink c3x2 c4x2 eq

{0}{c1x2 c4x2 sub c3x2 c4x2 sub div abs} ifelse def

/xshrink {c4x2 sub shrink mul c4x2 add} def

/c1x0 c3x0 xshrink def /c1x1 c3x1 xshrink def

/c2x0 c4x0 xshrink def /c2x1 c4x1 xshrink def

/c1y0 c3y0 def /c1y1 c3y1 def /c2y0 c4y0 def /c2y1 c4y1 def

/dX c3x2 c1x2 sub round 0 dtransform

flipXY -1 eq {exch} if pop abs def

dX dmin lt PickCoords

x2 c1x2 sub abs 0.001 gt {

c1x2 c1y2 transform flipXY -1 eq {exch} if

/cy exch def /cx exch def

/dX x2 c1x2 sub round 0 dtransform flipXY -1 eq {exch} if pop def

dX round dup 0 ne

{/dX exdef }

{pop dX 0 lt {-1}{1} ifelse /dX exdef }

ifelse

/erode PaintType 2 ne erosion .5 ge and def

erode {/cx cx .5 sub def} if

/ex cx dX add def

/ex ex ceiling ex sub ex floor add def

erode {/ex ex .5 add def} if

ex cy flipXY -1 eq {exch} if itransform pop

x2 sub /eShift exch def

/x1 x1 eShift add def /x2 x2 eShift add def /x3 x3 eShift add def
} if

} ifelse

} ifelse

x2 x5 eq y2 y5 eq or

{ x5 y5 lineto }

{ x0 y0 x1 y1 x2 y2 curveto

x3 y3 x4 y4 x5 y5 curveto }

ifelse

epY epX

}

systemdict /currentpacking known {exch setpacking} if

/exec cvx /end cvx] cvx

executeonly

exch

{pop true exch restore}

{

systemdict /internaldict known not

{1183615869 userdict /internaldict get exec

42 Appendix B: Updated OtherSubrs Code for Flex and Hint Substitution (15 May 94)

exch /FlxProc exch put true}

{1183615869 systemdict /internaldict get exec

dup length exch maxlength eq

{false}

{1183615869 systemdict /internaldict get exec

exch /FlxProc exch put true}

ifelse}

ifelse}

ifelse

{systemdict /internaldict known

{{1183615869 systemdict /internaldict get exec /FlxProc get exec}}

{{1183615869 userdict /internaldict get exec /FlxProc get exec}}

ifelse executeonly

} if

{gsave currentpoint newpath moveto} executeonly

{currentpoint grestore gsave currentpoint newpath moveto}

executeonly

{systemdict /internaldict known not

{pop 3}

{1183615869 systemdict /internaldict get exec

dup /startlock known

{/startlock get exec}

{dup /strtlck known

{/strtlck get exec}

{pop 3}

ifelse}

ifelse}

ifelse

} executeonly

] noaccess def

43

Appendix C:
NormalizeDesignVector
Example

The NormalizeDesignVector procedure is used by the findfont procedure
defined in a multiple master font to convert the design coordinates in a font
name to normalized values. The results are left on the stack for use by the
ConvertDesignVector procedure. The NormalizeDesignVector procedure
must be configured for the number of axes and master designs contained in
the specific font it is used in.

The following sample procedure is from the Minion multiple master font
and is configured for Minion’s 3 axes and 8 master designs:

/NormalizeDesignVector {

3 2 roll 345 sub 275 div

3 2 roll 450 sub 150 div

3 2 roll dup 11 le { dup 8 le { 6 sub 5.71429 div }

{ 1 sub 20 div } ifelse }

{ dup 18 le { -3 sub 28 div } { -144 sub 216 div } ifelse } ifelse }

bind def

This procedure expects the design coordinates for a font instance to be on the
stack (as shown in section 3.8) and calculates the normalized value of the
coordinate. For example, a weight axis value of 530 design coordinate units
is 185/275 = 0.6727 units when normalized for an axis ranging from 345 to
620 units (total dynamic range is 275 units).

The third axis, Optical Size, has a BlendDesignMap value of

[6 0][8 0.35][11 0.50][18 0.75][72 1]

which specifies four piecewise linear segments which define the mapping
from design to blend coordinates. The above code checks which segment the
design coordinate corresponds to and calculates the normalized coordinate
from the equation for the appropriate line segment.

44 Appendix C: NormalizeDesignVector Example (15 May 94)

45

Appendix D:
ConvertDesignVector
Example

The ConvertDesignVector procedure is used by the findfont procedure
defined in a multiple master font to convert the normalized coordinates (left
on the stack by the NormalizeDesignVector procedure) to WeightVector
array values. The WeightVector values are left on the stack for use by the
makeblendedfont procedure. The ConvertDesignVector procedure must be
configured for the number of axes and master designs contained in the spe-
cific font it is used in.

For example, the ConvertDesignVector procedure, as configured for the
MyriadMM font’s 2 axes and 4 master designs, is:

/ConvertDesignVector {

 1 2 index sub 1 2 index sub mul 3 1 roll

 1 index 1 2 index sub mul 3 1 roll

 1 2 index sub 1 index mul 3 1 roll

 1 index 1 index mul 3 1 roll

 pop pop

} bind def

This code expects the normalized blend coordinates on the stack and calcu-
lates the WeightVector values which specify the weighting for each master
design for the particular font instance. This calculation obeys the rules for the
simple linear weighting expressed in section 3.9. For the Myriad multilple
master font, the calculations are:

V1 = (1–BCA1) (1–BCA2)
V2 = (BCA1)(1–BCA2)
V3 = (1–BCA1) (BCA2)
V4 = (BCA1) (BCA2)

where Vi is the ith value of the WeightVector array, and BCj is the normalized
blend coordinate for the jth axis.

46 Appendix D: ConvertDesignVector Example (15 May 94)

47

Appendix E: Changes Since
Version 1.0 of the Type 1
Font Format Specification

The Type 1 font format was originally published as version 1.0 by Adobe
Systems, in 1990. Version 1.1 was subsequently published by Addison
Wesley in 1991. Initial additions to the specification were published as Adobe
Technical Specification #5047, “Updates to the Type 1 Font Format,” which
is superseded by this document. The following information, along with the
contents of the main section of this document, identifies all information
added since the original version 1.0 specification.

Changes Made Since 15 January 1994 Version of this Supplement

Section 2.2: a statement was added that Counter Control hints must immedi-
ately follow the hsbw or sbw operator.

Changes Made in Adobe Type 1 Font Format, Version 1.1 (published
by Addison Wesley, 1991)

• The default values are clearly documented for the following entries in the
Private dictionary: BlueScale (0.039625, equivalent to 10 points at 300
dpi; in section 5.6 of version 1.0), BlueShift (7 character space units; in
section 5.7 of version 1.0), BlueFuzz (1 character space unit; in section
5.8 of version 1.0), and ExpansionFactor (0.06, see section 2.5 in this
document).

• ExpansionFactor is a new (optional) entry to the Private dictionary,
which provides a font level hint useful for intelligent rendering of complex
glyphs with more stems than the usual Latin font. Examples would include
Chinese and Japanese language fonts, as well as bar code and logo fonts.
See section 2.5 in this document.

• A warning was added to the description of the closepath operator (section
6.4 of version 1.1) about using closepath to form a subpath section
intended to be zero length. If the subpath section is intended to be zero
length but is not, the closepath operator might cause a “spike” (if the sub-
path doubles back onto itself) in the path, of zero width, that might pro-
duce unexpected results.

48 Appendix E: Changes Since Version 1.0 of the Type 1 Font Format Specification (15 May 94)

• Regarding compatibility with Adobe Type Manager software (in section
10.3 of version 1.0), version 1.1 explains that the parser skips to the first
dup token after Encoding to find the first character encoding assignment.

• The PostScript language program defining the Flex procedure has been
modified to protect against trying to put the $FlxDict into internaldict if
internaldict is full. The old code could lead to dictfull errors out of show
in certain unlikely circumstances. The new code puts the $FlxDict in
userdict if internaldict is full. (The new code is given in Appendix C).

49

Index

B

Blend dictionary 32
BlendAxisTypes 23
BlendDesignMap 24, 27
BlendDesignPositions 23

C

ConvertDesignVector procedure
27

Counter Control
example 13
ExpansionFactor 12
groups 8
groups, definition 12
OtherSubrs 9
prioritizing 12

Counter Control hint mechanism 7

E

ExpansionFactor 12

F

FontBBox 22
FontInfo 15, 18, 21
FontMatrix 22

H

hex code error 33

L

LanguageGroup 8, 9

M

multiple master 14–32
ATM compatibility 32
blend coordinates 16
Blend dictionary

FontInfo 19
Private 18

design axes 14
design coordinates 15
design space 15–17
findfont procedure 26
font dictionaries 18
font instance specification 15
keywords 23–27
makeblendedfont 25, 35–37
master designs 14
OtherSubrs 28–31
Private dictionary 18
sample font program explanation

19–23
Subrs 28–29

N

NormalizeDesignVector
procedure 27

O

OtherSubrs
code listing for Flex and Hint

Substitution 39

P

Private dictionary 8, 32

50 Index (15 May 94)

R

RndStemUp 8, 9

S

seac 33
stack limit considerations for Counter

Control 11

T

Type 1 font format
changes

BlueFuzz 47
BlueScale 47
BlueShift 47
closepath 47
compatibility with ATM 48
ExpansionFactor 47
Flex 48

W

WeightVector 18

	List of Figures
	1 Introduction
	2 Counter Control Hints
	2.1 Performance and Quality Benefits of Counter Control Hinting
	2.2 OtherSubrs for Counter Control
	2.3 Stack Limit Considerations for Counter Control
	2.4 Counter Control Groups
	2.5 Private Dictionary Extensions for Counter Control: ExpansionFactor
	2.6 Counter Control Example

	3 Multiple Master Font Extensions
	3.1 Multiple Master Design
	3.2 Multiple Master Font Programs
	3.3 Multiple Master Font Dictionaries
	3.4 Explanation of a Typical Multiple Master Font Program
	3.5 Multiple Master Keywords and Procedures
	3.6 The makeblendedfont Procedure
	3.7 The Multiple Master findfont Procedure
	3.8 The NormalizeDesignVector Procedure
	3.9 The ConvertDesignVector Procedure
	3.10 Multiple Master Font Names
	3.11 Multiple Master Charstring Representation
	3.12 OtherSubrs for Multiple Master Font Programs
	3.13 Sample Subrs Code for Calling OtherSubrs Procedures

	4 Adobe Type Manager Compatibility
	5 Font Program Testing
	6 Errata
	Appendix A: The makeblendedfont Operator
	Appendix B: Updated OtherSubrs�Code for Flex and Hint Substitution
	Appendix C: NormalizeDesignVector Example
	Appendix D: ConvertDesignVector Example
	Appendix E: Changes Since Version 1.0 of the Type�1 Font Format Specification
	Index

