
USB2 Debug Device
A Functional Device Specification

Date: March 25, 2003

Revision: 0.9

The information is this document is under review and is subject to change.

USB2 Revision 0.9 3/25/2003

Scope of this Revision

The 0.9 revision of the specification is intended for review purposes only.

Revision History

Revision Issue Date Comments

0.5 4/04/2002 Initial Revision

0.9 3/25/2003 for public review

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE. Intel disclaims all liability, including liability for infringement of any proprietary
rights, relating to use of information in this specification.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is
granted herein.

This document is subject to change without notice.

Copyright © Intel Corporation 2002-2003.

* Third-party brands and names are the property of their respective owners.

Significant Contributors:

John Keys (Author) Intel Corporation

Brad Hosler Intel Corporation

John S. Howard Intel Corporation

Rahman Ismail Intel Corporation

Please send comments via electronic mail to: USBDebug@intel.com

 USB2 Debug Device

Table of Contents Revision 0.9 3/25/2003

Table of Contents

1. INTRODUCTION .. 1

2. OVERVIEW... 1

3. DEVICE REQUIREMENTS... 2

4. DEVICE FRAMEWORK.. 2

4.1 Debug Descriptor..2
4.1.1 Get Descriptor – Debug Descriptor ..3

4.2 Debug Mode Feature Selector ...4
4.2.1 Set Feature – Debug Mode ...4

USB2 Debug Device i

Introduction Revision 0.9 3/25/2003

1. Introduction
This document provides the definition and requirements for a device that operates as a debugging
device for use with the Enhanced Host Controller Interface Debug Port. This type of device is intended
to replace the serial port and null-modem cables currently used, providing a significant increase in
debugger throughput and a migration path for legacy-free platforms. This document is intended to be
useful for two purposes:

• A hardware device vendor or firmware engineer intending to build and program debug
devices which adhere to this specification, and

• A software driver developer programming to use the debug device.

This specification is organized as follows:

• Section 2 Overview

2. Overview

• Section 3 Device Requirements

• Section 4: Dev ice

The Enhanced Host Controller Interface Specification for Universal Serial Bus includes the definition
of an optional debug port. This port is intended to replace legacy COM ports for debugging use as
platforms move towards legacy-free configurations. A second benefit of USB debugger connection is
the significant increase in bandwidth that USB provides over industry-standard serial ports. To be
useful, the debug port requires a second component, the Debug Device.

A Debug Device provides a USB communication channel between a target machine and a remote
machine. It is two logical USB devices connected with a private communications channel. Each
logical device consists of an OUT Bulk endpoint and an IN Bulk endpoint. These endpoints each
represent a Stream Pipe between the device and its respective host. Data received from Host X on the
OUT pipe of one device is forwarded to the IN pipe of the other device for transmission to Host Y.

Device B
In

Out
Device A

In

Out

Figure 1: Logical USB Debug Device

The Debug Pipe is the combination of four individual Stream Pipes. It consists of two logical Stream
Pipes, representing a bi-directional pipe between two hosts.

Some general restrictions and operational differences result from the use of the debug port rather than
the standard host controller interface. The main operational difference is packet/transfer size. The
debug port has a maximum packet size of eight bytes. Since this is smaller than the USB2 High Speed
control endpoint packet size of sixty-four bytes, this also means that control transfers have a maximum
transfer size of eight bytes as well. Because of this limitation, the debug port driver cannot use
standard means to enumerate and configure debug devices.

USB2 Debug Device 1

Device Requirements Revision 0.9 3/25/2003

This maximum packet size restriction also means that the end of the Debug Pipe that is connected to
the Debug Port has to operate with a maximum packet size of eight (8) bytes. This limitation does not
apply to end of the Debug Pipe connected to the remote machine. However, if a packet larger than
eight bytes is received from the remote computer, the device must break the larger packet into eight-
byte packets before sending the data to the Debug Port.

Dedicated Debug Devices (Debug Device functionality only) may support a single fixed device
address of 127. These devices must have clearly differentiated ‘ends’, with one ‘end’ or device always
connected to the Debug Port and the other end always connected to the remote computer. Only the
Debug Port end of the device is allowed to contain a fixed address. The Remote end must follow
standard USB semantics.

A device end that contains a fixed address never exists in default state. It always exits USB reset in the
addressed state. Because it never responds to address 0, this type of device cannot be enumerated by
the standard host driver stack. It can only be enumerated correctly by dedicated debug-port drivers.

3. Device Requirements
This section provides an overview of the requirements of a Debug Device. These feature requirements
may be implemented utilizing any method (firmware, dedicated hardware, or combination).

• Implement the descriptors, features, and requests described in Section 4: . Device Framework

4. Device Framework

• USB 2.0 High Speed signaling compliant.

• One Bulk-type IN endpoint that supports 8-byte maximum packet size.

• One Bulk-type OUT endpoint that supports 8-byte maximum packet size.

• If a dedicated Debug Device has a fixed address, the address must be 127.

• The Control Endpoint must correctly handle short transfer requests of 8 bytes.

• NYET responses from the OUT endpoints must be equivalent to an ACK response.

All Debug Devices, with the exception of fixed address devices, must implement all required standard
commands in the core device framework. In addition, all debug devices must support the following set
of framework extensions.

4.1 Debug Descriptor
This descriptor is used to describe certain characteristics of the device that the host debug port driver
needs to know to communicate with the device. Specifically, the debug descriptor lists the addresses
of the endpoints that comprise the Debug Pipe. The endpoints are identified by endpoint number. This
number is identical to bits 3-0 of the bEndpointAddress field in an Endpoint descriptor.

2 USB2 Debug Device

Device Framework Revision 0.9 3/25/2003

Table 4–1. Debug Descriptor Type

Offset Field Size Value Description

0 bLength 1 Number Length of this descriptor in bytes: 4

1 bDescriptorType 1 Constant DEBUG Descriptor type

2 bDebugInEndpoint 1 Number Endpoint number of the Debug Data IN
endpoint. This is a Bulk-type endpoint with a
maximum packet size of 8 bytes.

3 bDebugOutEndpoint 1 Number Endpoint number of the Debug Data OUT
endpoint. This is a Bulk-type endpoint with a
maximum packet size of 8 bytes.

Table 4–2. Descriptor Types

Descriptor Type Value

DEVICE 1

CONFIGURATION 2

STRING 3

INTERFACE 4

ENDPOINT 5

DEVICE_QUALIFIER 6

OTHER_SPEED_CONFIGURATION 7

INTERFACE_POWER 8

OTG 9

DEBUG 10

4.1.1 Get Descriptor – Debug Descriptor
bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_DESCRIPTOR DEBUG
type

0 4 Debug
Descriptor

Host software uses the GET_DESCRIPTOR request to get a device’s debug descriptor. This
command is sent with device as the recipient and a wValue equal to DEBUG descriptor type. If a
device supports Debug Device operation, it should return a valid Debug descriptor to the host. Devices
that do not support Debug Device operation should give a Request Error response.

Debug Port host drivers use this request to determine if a connected device supports Debug Device
operation.

Default state: This is a valid request when the device is in the Default state.

Address state: This is a valid request when the device is in the Address state.

Configured state: This is a valid request when the device is in the Configured state.

USB2 Debug Device 3

Device Framework Revision 0.9 3/25/2003

4 USB2 Debug Device

4.2 Debug Mode Feature Selector
Because of the 8-byte packet limit, debug port drivers cannot retrieve any more than the first eight
bytes of a configuration descriptor (and the subsequent interface and endpoint descriptors that follow
it). This prevents the driver from being able to parse configuration information in order to determine
how to configure a debug device. The DEBUG_MODE feature selector provides a means for a debug
port driver to enable a debug device connected to the debug port. When the feature is enabled, the
device prepares for Debug Device operation and enables its Debug Pipe.

Table 4–3. Standard Feature Selectors

Feature Selector Recipient Value

DEVICE_REMOTE_WAKEUP Device 1

ENDPOINT_HALT Endpoint 0

TEST_MODE Device 2

OTG b_hnp_enable Device 3

OTG a_hnp_support Device 4

OTG a_alt_hnp_support Device 5

DEBUG_MODE Device 6

4.2.1 Set Feature – Debug Mode
bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_FEATURE DEBUG
MODE

0 0 none

Host software uses the SET_FEATURE request to enable Debug Device operation. This command is
sent with device as the recipient and a wValue equal to DEBUG_MODE feature selector. If a device
supports Debug Device operation, it should enable that operation before providing a Success Response
to the host. This command is equivalent to issuing a Set Configuration request, specifying the
configuration that contains the Debug Device data endpoints. Devices that do not support Debug
Device operation should give a Request Error response.

Default state: This is a valid request when the device is in the Default state.

Address state: This is a valid request when the device is in the Address state.

Configured state: The device responds with a Request Error.

	Introduction
	Overview
	Device Requirements
	Device Framework
	Debug Descriptor
	Get Descriptor – Debug Descriptor

	Debug Mode Feature Selector
	Set Feature – Debug Mode

