_MOTA
A4 R VAW

Q

Universal Disk
Format®
Specification

Revision 2.01

March 15, 2000

a Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000
Optical Storage Technology Association
ALL RIGHTSRESERVED

REVISION HISTORY

1.00 October 24, 1995 Original Release

101 November 3, 1995 DVD appendix added

1.02 August 30, 1996 Incorporates Document Change Notices DCN 2-001
through DCN 2-024

150 February 4, 1997 Integrated support for CD-R and CD-RW media (DCN 2-
025 through DCN 2-032)

2.00 April 3, 1998 Integrated support for ECMA 167 3" Edition which

included the support for named streams.
(DCN 2-033 through DCN 2-064)

2.01 March 15, 2000 Incorporates DCNs 5000, 5002, 5004, 5006-5009, 5013-
5015, 5018-5021, 5024-5027, 5029-5032, 5034-5042,
5044-5048, 5050

POINTS OF CONTACT

Optical Storage Technology Association OSTA UDF E-Mail Reflector

David Bunzel To subscribe: addressreguest@list.osta.org with
19925 Stevens Creek Blvd. “subscribe udf” in the subject.

Cupertino, CA 95014 To unsubscribe: addressrequest@list.osta.org with
Tel: +1 408 253-3695 “unsubscribe udf” in the subject.

Fax: +1 408 253-9938 Send messages to:_udf @list.osta.org

Email: dbunzel @osta.org
http://www.osta.org

Technical Editor
editor.udf @osta.org

Important Notices

This document is a specification adopted by Optical Storage Technology Association (OSTA). Thisdocument may berevised by OSTA. Itisintended
solely asaguide for companiesinterested in devel oping products which can be compatible with other products devel oped using thisdocument. OSTA
makes no representation or warranty regarding this document, and any company using this document shall do so at its solerisk, including specifically
therisksthat a product developed will not be compatible with any other product or that any particular performance will not be achieved. OSTA shall
not be liable for any exemplary, incidental, proximate or consequential damages or expenses arising from the use of this document. Thisdocument
defines only one approach to compatibility, and other approaches may be availablein the industry.

This document is an authorized and approved publication of OSTA. The underlying information and materials contained herein are the exclusive
property of OSTA but may be referred to and utilized by the general public for any legitimate purpose, particularly in the design and devel opment of
writable optical systems and subsystems. This document may be copied in whole or in part provided that no revisions, alterations, or changes of any
kind are made to the materials contained herein. Only OSTA hasthe right and authority to revise or change the material contained in this document,
and any revisions by any party other than OSTA are totally unauthorized and specifically prohibited.

Compliance with this document may require use of one or more features covered by proprietary rights (such as features which are the subject of a patent,
patent application, copyright, mask work right or trade secret right). By publication of this document, no position istaken by OSTA with respect to
the validity or infringement of any patent or other proprietary right, whether owned by aMember or Associate of OSTA or otherwise. OSTA hereby
expressly disclaims any liability for infringement of intellectual property rights of others by virtue of the use of this document. OSTA has not and does
not investigate any notices or allegations of infringement prompted by publication of any OSTA document, nor does OSTA undertake aduty to advise
usersor potential users of OSTA documents of such notices or allegations. OSTA hereby expressly advises all users or potential users of this document
to investigate and analyze any potential infringement situation, seek the advice of intellectual property counsel, and, if indicated, obtain alicense
under any applicableintellectual property right or take the necessary stepsto avoid infringement of any intellectual property right. OSTA expressly
disclaims any intent to promote infringement of any intellectual property right by virtue of the evolution, adoption, or publication of this OSTA
document.

Universal Disk Format® and UDF® are registered marks of the Optical Storage Technology Association.

CONTENTS

L. INTRODUCTION e s e s e s e s e s e s e s e s e s e s e s e e s s e s e sesnns 1
11 DOCUMENT LBYOUL.........cociiiiriiiricei it 2
12 COMPIIANCE......ceeeteeetreee ettt s et 3
13 (1 (S = R 1 = 110 4

131 REFEIENCES ...ttt st b e st b e se b e st e e b e se e bt b ese s b et ebesbesssbs b ebesbasna 4
132 DIEFINITIONS ...ttt e bt b e st e e b e e be st e e e b e seebe b eseebe b ebesbesssbsstebesbaseas 4
133

134

21
211
212
213
214
215
216
217
22 Part 3- VOIUME SEFUCTUN €.ttt st
221 DESCIIPLON TAY ceoveeeeerererreseesresisssessesssssessessssssssssesssssesssssssssssesssssessssssssesssssssssssssssssesesssnssnsessssssssesssssnses
222 Primary VOIUME DESCIHIPLOL.......cceurueeeerreresseetsssessssssssessssssssesssssessssssssessssssssssssssssssssssssssssesssssssesssssnses
223 Anchor Volume Descriptor Pointer.
224 LOQIiCal VOIUME DESCIIPLON......ceuieeeeeererersietsisessssesssesssssssesssssessesssssesssssssssssssssssessssssssssessssssssssssnssnses
225 Unalocated SPace DESCIIPLONcicccurerereeiririssesisssessssssssesssstesesesssesssssssssssssssssessssesssssesssssssssssssnses
226 Logica VolumeIntegrity DesCriptor.......ccooverereresenenns
227 Implemention Use Volume Descriptor
228 Virtua Partition Map......cccovveeeeveneseerressesesesssseseseesens
229 Sparable Partition Mapccccoevvecrevirencsenenensesseseseenens
2210 Virtual Allocation Table ..o
2211 SPAiNG TaDIE ..o
2212 PartitiON DESCIIPLON......cueveeceetriricieiresee ettt s s st s e s st es s ans s e s sesaen
23 Part 4 - FIlE SYSLEM ...ttt sttt b s s ne e nnsesnssnns
231 DESCIIPLON TAY ceveeeeerererreseesresesssessesssssessessssssssssesssssessesssssssesssssessssssssesssssssssssssssssesesssnssssesssssssesssnssnsas
232 Fil@ SOt DESCIIPLONucveureceetiesissieireesse ettt sesssssssesssssssessste s e sssessassssssssssssssesessesssnsesssnssnsessnssnses
233 Partition Header Descriptor.
234 Fileldentifier DESCIIPION. ...iiirerereeereseeeets s asesss s st sesessse e s ssssse st ssessnsessssssnssssnssnsns
235
236
237
238
239
2310 WA 1 ToTor= o T 1= o] o] o =TT

2311 Allocation Extent Descriptor
2312 PAINGIMEceeect st
24 Part 5- RECONT SEEUCLUN E......uceieeieirieeseeereee ettt sttt 55
3. SYSTEM DEPENDENT REQUIREMENTS ... 56
31 PArT L= GENEN Al ...ttt bbbt R bbb bbbt b et 56
3L TIMESAIMID c.oeeeeeieeesee et b bbb 56
3.2 Part 3- VOIUME SEFUCTUT €.ttt bbbt 57
321 Logical Volume HEBdEr DESCIIPLONcccierrieerriereierescesessisessrssse s s ssssssssssssseens 57
33 PArt 4 - FIIE SYSIEM ...ttt e s 58
331 File ldentifier DESCITPIONot 58
332
333
334
335
336
33.7 UDF Defined System SIreams........ccveerveeerneeerrerseneereseeneeenes
338 UDF Defined Non-System Streams
4. USER INTERFACE REQUIREMENTS......oiiie e 88
41 Part 3— VOIUME SEEUCLUI ...ttt s 88
4.2 Part 4 — File SYSLEM ...ttt sttt s ettt esnnns 88
21 ICB TAY ccereeeriereriieeiieisisess et sess b rease st s bbb bbbt 83
422 e ldentifier DESCIIPION. ..cociccecieseceeeeeresee st sssssessesss s ssss s ssssssssesssssessesssnsesesnssnsesssnssnsns 89
5. INFORMATIVE ...ttt sttt sra e snaeeen 98
51 DESCrIPLOr LENGENS. ..ot 98
52 UsiNg IMplementation USE AT EBS. ...t sessssss st sssesssesaees 98
521 Entity Identifiers
522 Orphan Space
53 BOOE DESCIIPLON ..euvuveeeceerreee e ese st e b bbb 99
54 Clarification of UNreCorded SECLONS...... ..ot esesesas st ssas st sessses 99
55 TECHNICAI CONTACES ...ttt sttt 100
6. APPENDICES...... ..o 101
6.1 UDF Entity ldentifier DEfINITIONSc.ccoceeiricrieriressseseste st ssssss st ssssssssssssssssssssssssssseenes 101
6.2 UDF Entity [Aentifier VAIUES.......c.oieeirecree et 102

6.3 Operating SYyStEM [AENLITIEr S ...t en 103

6.4 OSTA Compressed Unicode AlQOrithM.........cccreceesesesseee st ssssssesssssssesnes 105
6.5 CRC CAlCUIBLION ...ttt e bbbttt 108
6.6 Algorithm for Strategy TYPEA0DBccceeuvrerreriererieieesessste s ssesssssssssssssessssessssssssssssssssssssnss 111
6.7 Identifier Trangation AIQOrItNMS ... senaeees 112

L2725 RN 1@ 1S 37N [To 4o o VPR 112

6.7.2 0S2, Macintosh,Windows 95, Windows NT and UNIX Algorithm..........cccceveeenneiecnnennens 122
6.8 Extended Attribute Checksum AlQOrithMm........covccecccescee e sees 128
6.9 RequirementSfor DVD-ROM ...t ssssssssssssssssessssssssssssssssssssssssssssesnen

6.9.1 Constraintsimposed on UDF by DVD-Video

6.92 Howtoread aUDF DVD-Video diSC......ccconeurereereeereerenieeenienens

6.93 ObtainNiNg DV D DOCUMENLSccvuieeeirereisietresisssssessssssssssessssssssssssssssssssssssssssssssesssssssssssssssssesssssnssns
6.10 RecommendationSfor CD MEdIaL........ccvuiiririieineisec et

6.10.1 Use of UDF on CD-R media

6.10.2 Use Of UDF ON CD-RW MEIAL.........creuereeireeeieieieiseeisee ettt ssss st ssssssenes 135

6.10.3 Multisession and MiXed MOUE. ...t eb e seaes 138
6.11 REBI-TIME FIIES ...ttt bbb 140
6.12 UDF Media Format ReVISION HISLOMY......ccviieirerescresesiessesestessssssssssessssessesssssssssssssssssssssssssesnes 141
6.13 Developer REGISIIationN FOMM......cccceceeirescsie st sssss st sss et sssssssssssssssnssnen 142

This page |eft intentionally blank

1. Introduction

The OSTA Universd Disk Forma (UDF®) specification defines a subset of the standard
ECMA 167 39 edition The primary god of the OSTA UDF is to maximize data interchange
and minimize the cost and complexity of implementing ECMA 167.

To accomplish this task this document defines a Domain. A doman defines rules and
regtrictions on the use of ECMA 167. The domain defined in this specification is known asthe
“OSTA UDF Compliant” domain.

This document attempts to answer the following questions for the structures of ECMA 167 on a
per operating system basis:

Given some ECMA 167 structure X, for each field in structure X answer the
following questions for a given operating system:

1) When reading thisfield: If the operating system supports the data in this
field then what should it map to in the operating system?

2) When reading thisfield: If the operating system supports the data in this
field with certain limitations then how should the field be interpreted
under this operating system?

3) When reading this field: If the operating system does NOT support the
data in this field then how should the field be interpreted under this
operating system?

4) When writing this field: If the operating system supports the data for
this field then what should it map fromin the operating system?

5) When writing this field: If the operating system does NOT support the
data for thisfield then to what value should the field be set?

For some structures of ECMA 167 the answers to the above questions were sdlf-explanatory
and therefore those structures are not included in this document.

In some cases additiond information is provided for each structure to help clarify the standard.

This document should help make the task of implementing the ECMA 167 standard esser.

UDF 2.01 1 March 15, 2000

To be informed of changes to this document please fill out and return the OSTA UDF
Developers Registration Form located in appendix 6.13.

1.1 Document L ayout

This document presents information on the trestment of structures defined under standard
ECMA 167.

This document is separated into the following 4 basic sections:

Basic Restrictions and Requirements - defines the redtrictions and requirements
that are operating system independent.

System Dependent Requirements - defines the restrictions and requirements that
are operating system dependent.

User Interface Requirements - defines the restrictions and requirements which are
related to the user interface.

Informative Annex - Additiona useful information.

This document presents information on the trestment of structures defined under standard
ECMA 167. The following areas are covered:

& Interpretation of a structureffidd upon reading from media.

& Contents of a structureffield upon writing to media. Unless specified otherwise writing
refers only to cregting a new structure on the media. When it applies © updating an
exiging structure on the mediait will be specificaly noted as such.

The fidlds of each structure are listed first, followed by a description of each field with respect to
the categories listed above. In certain cases, one or more fields of a structure are not described
if the semantics associated with the field are obvious.

A word on terminology: in common with ECMA 167, this document will use shall to indicate a
mandatory action or requirement, may to indicate an optiond action or requirement, and
should to indicate a preferred, but till optiona action or requirement.

Also, specid comments associated with fields and/or structures are prefaced by the notification:
"NOTE:"

UDF 2.01 2 March 15, 2000

1.2 Compliance

This document requires conformance to parts 1, 2, 3 and 4 of ECMA 167. Compliance to part
5 of ECMA 167 is not supported by this document. Part 5 may be supported in alater revison
of this document.

For an implementation to claim compliance to this document the implementation shal meet dl
the requirements (indicated by the word shall) specified in this document.

The following are afew points of clarification in regards to compliance:

UDF 2.01

Multi-Volume support is optional. An implementation can claim compliance and
only support sngle volumes.

Multi-Partition support is optional. An implementation can dlaim compliance
without supporting the specid multi-partition case on a sngle volume defined in this
Specification.

Media support. Animplementation can clam compliance and support asingle
media type or any combination. All implementations should be able to read any
mediathat is physcaly accessble.

Multisession support. Any implementation that supports reading of CD-R media
shdl support reading of CD-R Multisessons as defined in 6.10.3.

File Name Trandlation - Any time an implementation has the need to trandform a
filename to meet operaing system redtrictions it shal use the dgorithms specified in
this document.

Extended Attributes - All compliant implementations shal preserve exiging
extended attributes encountered on the media. Implementations shall create and
maintain the extended attributes for the operating systems they support. For
example, an implementation that supports Macintosh shal preserve any OS2
extended attributes encountered on the media. An implementation that supports
Macintosh shall aso create and maintain al Macintosh extended attributes specified
in this document.

Backwards Read Compatibility — An implementation compliant to this version of
the UDF specification shall be able to read dl media written under previous
versions of the UDF specificetion.

Backwards Write Compatibility — UDF 2.0x structures shall not be written to
media that contain UDF 1.50 or UDF 1.02 structures. UDF 1.50 and UDF 1.02
gructures shall not be written to media that contain UDF 2.0x structures. These
two requirements prevent media from containing different versons of the UDF
structures.

3 March 15, 2000

1.3 General References
1.3.1 References

SO 9660:1988

IEC 908:1987
ISO/IEC 10149:1993

Orange Book part-Il
Orange Book part-Il|
I SO/IEC 13346:1995

ECMA 167

Information Processing - Volume and File Structure of CD-ROM for Information
Interchange

Compact disc digital audio system

Information technology - Data I nterchange on read-only 120mm optical data discs
(CD-ROM based on the Philips/Sony “Y ellow Book™)

Recordable Compact Disc System Part-I1, N.V. Philips and Sony Corporation
Recordable Compact Disc System Part-I11, N.V. Philips and Sony Corporation

Volume and file structure of write-once and rewritable media using non-sequential
recording for information interchange. This|1SO standard is equivalent to ECMA
167 2" edition..

ECMA 167 3“ edition is an update to ECMA 167 2™ edition that adds the support
for multiple data streamfiles, and is available from http://www.ecma.ch. The
previous edition of ECMA 167 (2™) wasis equivalent to | SO/IEC 13346:1995.
References enclosed in [] in thisdocument are referencesto ECMA 167 3
edition. Thereferencesareintheform [x/a.b.c], where x is the section number and
a.b.c isthe paragraph or figure number.

1.3.2 Definitions

Audio session

Audio track

CD-R
CD-RW
Clean File System

Data track

Dirty File System
Fixed Packet

ICB
Logical Block Address

UDF 2.01

Audio session contains one or more audio tracks, and no data track.

Audio tracks are tracks that are designated to contain audio sectors specified in
ISO/IEC 908.

CD-Recordable. A write once CD defined in Orange Book, part-II.
CD-Rewritable. An overwritable CD defined in Orange Book, part-I1l.
Thefile system on the media conforms to this specification.

Datatracks are tracks that are designated to contain data sectors specified in
ISO/IEC 10149.

A file system that is not a clean file system.

Anincremental recording method in which all packetsin agiven track are of a
length specified in the Track Descriptor Block. Addresses presented to a CD
drive are translated according to the Method 2 addressing specified in Orange
Book parts-11 and-IlI.

A control nodein ECMA 167.
A logical block number [3/8.8.1].

NOTE 1: Thisis not to be confused with alogical block address [4/7.1], givenby
the Ib_addr structure which contains both alogical block number [3/8.8.1] and a
partition reference number [3/8.8], the latter identifying the partition [3/8.7] which
contains the addressed logical block [3/8.8.1].

NOTE 2: A logical block number [3/8.8.1] translatesto alogical sector number
[3/8.1.2] according to the scheme indicated by the partition map [3/10.7] of the
partition [3/8.7], which contains the addressed logical block [3/8.8.1]

4 March 15, 2000

Media Block Address A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] isequivaent to alogical sector number [3/8.1.2].

Packet A recordable unit, which is an integer number of contiguous sectors [1/5.9], which
consist of user data sectors, and may include additional sectors[1/5.9] which are
recorded as overhead of the Packet-writing operation and are addressable
according to the relevant standard for recording [1/5.10].

Physical Address A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] isequivalent to alogical sector nunber [3/8.1.2].

Physical Block Address A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] isequivalent to alogical sector number [3/8.1.2].

physical sector A sector [1/5.9] given by arelevant standard for recording [1/5.10]. Inthis
specification, asector [1/5.9] isequivalent to aalogical sector [3/8.1.2].

Random Access File System A file system for randomly writable media, either write once or rewritable
Sequential File System A file system for sequentially written media (e.g. CD-R)

Session Thetracks of avolume shall be organized into one or more sessions as specified
by the Orange Book part-11. A session shall be a sequence of one or more tracks,
the track numbers of which form a contiguous ascending sequence.

Track The sectors of avolume shall be organized into one or moretracks. A track shall
be a sequence of sectors, the sector numbers of which form a contiguous
ascending sequence. No sector shall belong to more than one track.

Note: There may be gaps between tracks; that is, the last sector of atrack need
not be adjacent to the first sector of the next track.

UDF OSTA Universa Disk Format

user data blocks Thelogical blocks[3/8.8.1] which were recorded in the sectors[1/5.9] (equivalent
in this specification to logical sectors[3/8.1.2]) of a Packet and which contain the
dataintentionally recorded by the user of the drive. This specifically does not
include the logical blocks[3/8.8.1], if any, whose constituent sectors[1/5.9] were
used for the overhead of recording the Packet, even though those sectors[1/5.9]
are addressable according to the relevant standard for recording [1/5.10]. Like any
logical blocks[3/8.8.1], user data blocks are identified by logical block numbers
[3/8.8.1].

UDF 2.01 5 March 15, 2000

user data sectors

Variable Packet

Virtual Address

virtual partition

virtual sector

VAT

VAT ICB

1.3.3 Terms
May

Optional
Shall

Should

UDF 2.01

The sectors [1/5.9] of a Packet which contain the dataintentionally recorded by
the user of the drive, specifically not including those sectors[1/5.9] used for the
overhead of recording the Packet, even though those sectors[1/5.9] may be
addressable according to the relevant standard for recording [1/5.10]. Like any
sectors [1/5.9], user data sectors are identified by sector numbers[3/8.1.1]. Inthis
specification, a sector number [3/8.1.1] is equivalent to aalogical sector number
[3/8.1.2).

Anincremental recording method in which each packet in agiven track is of a host
determined length. Addresses presented to a CD drive are as specified in Method
1 addressing in Orange Book parts 1l and I11.

A logical block number [3/8.8.1] of alogical block [3/8.8.1] inavirtua partition.
Such alogical block [3/8.8.1] is recorded using the space of alogical block [3/8.8.1]
of acorresponding non-virtual partition. The Nth Uint32 inthe VAT represents
the logical block number [3/8.8.1] in anon-virtual partition used to record logical
block number N of its corresponding virtual partition. Thefirst virtual addressisO.

A partition of alogical volume [3/8.8] identified in alogical volume descriptor
[3/10.6] by a Type 2 partition map [3/10.7.3] recorded according section 2.2.8 of
this specification. Thevirtual partition map contains a partition number that is the
same as the partition number [3/10.7.2.4] in aType 1 partition map [3/10.7.2] in the
same logical volume descriptor [3/10.6]. Each logical block [3/8.8.1] in the virtual
partition is recorded using the space of alogical block [3/8.8.1] of that
corresponding non-virtual partition. A VAT liststhelogical blocks[3/8.8.1] of the
non-virtual partition, which have been used to record the logical blocks[3/8.8.1] of
its corresponding virtual partition.

A logical block [3/8.8.1] in avirtual partition. Such alogical block [3/8.8.1] is
recorded using the space of alogical block [3/8.8.1] of a corresponding non-virtual
partition. A virtual sector should not be confused with a sector [1/5.9] or alogical
sector [3/8.1.2].

A file[4/8.8] recorded in the space of anon-virtual partition which hasa
corresponding virtual partition, and whose data space [4/8.8.2] is structured
according to section 2.2.10 of this specification. Thisfile provides an ordered list
of Uint32s, where the Nth Uint32 represents the logical block number [3/8.8.1] of a
non-virtual partition used to record logical block number N of its corresponding
virtual partition. Thisfile[4/8.8] isnot necessarily referenced by afileidentifier
descriptor [4/14.4] of adirectory [4/8.6] in thefile set [4/8.5] of the logical volume
[3/8.8].

A File Entry ICB that describes afile containing a Virtual Allocation Table.

Indicates an action or feature that is optional.

Describes afeature that may or may not be implemented. If implemented, the
feature shall be implemented as described.

Indicates an action or feature that is mandatory and must be implemented to claim
compliance to this standard.

Indicates an action or feature that is optional, but itsimplementationis strongly
recommended.

6 March 15, 2000

Reserved

A reserved field isreserved for future use and shall be set to zero. A reserved

valueisreserved for future use and shall not be used.

1.3.4 Acronyms

Acronym Definition
AD Allocation Descriptor
AVDP Anchor Volume Descriptor Pointer
EA Extended Attribute
EFE Extended File Entry
FE File Entry
FID File Identifier Descriptor
FSD File Set Descriptor
ICB Information Control Block
IUVD Implementation Use V olume Descriptor
LV Logicd Volume
LVD Logicd Volume Descriptor
LVID Logica Volume Integrity Descriptor
PD Partition Descriptor
PVD Primary VVolume Descriptor
USD Unallocated Space Descriptor
VAT Virtud Allocaion Table
VDS Volume Descriptor Sequence
VRS Volume Recognition Sequence
UDF 2.01 March 15, 2000

2. Basic Restrictions & Requirements

The following table summarizes severd of the badc redtrictions and requirements defined in this
specification. These redtrictions & requirements as well as additiona ones are described in
detal in the following sections of this specification.

[tem

Restrictions & Requirements

Logical Sector Size

The Logical Sector Size for aspecific volume shall bethe
same as the physical sector size of the specific volume.

Logica Block Size The Logical Block Size for aLogica Volume shall be set to
the logical sector size of the volume or volume set on which
the specific logical volume resides.

Volume Sets All mediawithin the same Volume Set shall have the same

physical sector size. Rewritable/Overwritable media and
WORM mediashall not be mixed in/ be present in the same
volume set.

First 32K of Volume Space

Thefirst 32768 bytes of the Volume space shall not be used
for the recording of ECMA 167 structures. Thisarea shall
not be referenced by the Unallocated Space Descriptor or
any other ECMA 167 descriptor. Thisisintended for use by
the native operating system.

Volume Recognition Sequence

The Volume Recognition Sequence as described in part 2 of
ECMA 167 shall be recorded.

Timestamp

All timestamps shall berecorded in local time. Time zones
shall be recorded on operating systems that support the
concept of atime zone.

Entity Identifiers

Entity I dentifiers shall be recorded in accordance with this
document. Unless otherwise specified in this specification
the Entity Identifiers shall contain a value that uniquely
identifies the implementation.

Descriptor CRCs

CRCs shall be supported and calculated for all Descriptors,
except for the Space Bitmap Descriptor.

File Name Length

Maximum of 255 bytes

Extent Length

Maximum Extent Length shall be 2° — 1 rounded down to the
nearest integral multiple of the Logical Block Size. Maximum
Extent Length for extentsin virtual space shall be the Logical
Block Size.

Primary V olume Descriptor

There shall be exactly one prevailing Primary Volume
Descriptor recorded per volume. The mediawherethe
VolumeSequenceNumber of this descriptor isequal to 1
(one) must be part of the logical volume defined by the
prevailing Logical Volume Descriptor.

Anchor Volume Descriptor Pointer

Shall be recorded in at least 2 of the following 3 locations:
256, N-256, or N, where N is the last addressabl e sector of a
volume. Seedso 2.2.3.

Partition Descriptor

A Partition Descriptor Access Type of Read-Only,
Rewritable, Overwritable and WORM shall be supported.
There shall be exactly one prevailing Partition Descriptor
recorded per volume, with one exception. For Volume Sets
that consist of single volume, the volume may contain 2

UDF 2.01

8 March 15, 2000

Partitions with 2 prevailing Partition Descriptors only if one
has an access type of read only and the other has an access
type of Rewritable, Overwritable, or WORM. The Logical
Volume for this volume would consist of the contents of
both partitions.

Logical Volume Descriptor

There shall be exactly one prevailing Logical Volume
Descriptor recorded per Volume Set.

The Logical Volumel dentifier field shall not be null and
should contain an identifier that aids in the identification of
thelogical volume. Specifically, software generating
volumes conforming to this specification shall not set this
fieldto afixed or trivial value. Duplicate disks, which are
intended to be identical, may contain the sasme valuein this
field. Thisfield is extremely important in logical volume
identification when multiple media are present within a
jukebox. Thisnameistypically what is displayed to the user.

The Logical VolumeDescriptor recorded on the volume
where the PrimaryVolumeDescriptor’'s
VolumeSequenceNumber field isequal to 1 (one) must have
a Number ofPartitionMaps value and PartitionMaps
structure(s) that represent the entire logical volume. For
example, if avolume set is extended by adding partitions,
then the updated Logical VolumeDescriptor written to the
last volumein the set must also be written (or rewritten) to
the first volume of the set.

Logica Volume Integrity Descriptor

Shall berecorded. The extent of LVIDs may be terminated
by the extent length.

Unallocated Space Descriptor

A single prevailing Unallocated Space Descriptor shall be
recorded per volume.

File Set Descriptor

There shall be exactly one File Set Descriptor recorded per
Logical Volume on Rewritable/Overwritable media. For
WORM mediamultiple File Set Descriptors may be recorded
based upon certain restrictions defined in this document.
The FSD extent may be terminated by the extent length.

ICB Tag

Only strategy types 4 or 4096 shall be recorded.

File Identifier Descriptor

Thetotal length of aFile Identifier Descriptor shall not
exceed the size of one Logical Block.

File Entry

Thetotal length of aFile Entry shall not exceed the size of
one Logical Block.

Allocation Descriptors

Only Short and Long Allocation Descriptors shall be
recorded.

Allocation Extent Descriptors

The length of any single extent of allocation descriptors
shall not exceed the Logical Block Size.

Unallocated Space Entry

Thetotal length of an Unallocated Space Entry shall not
exceed the size of one Logical Block.

Space Bitmap Descriptor

CRC not required.

Partition Integrity Entry

Shall not be recorded.

Volume Descriptor Sequence Extent

Both the main and reserve volume descriptor sequence
extents shall each have a minimum length of 16 logical
sectors. The VDS Extent may be terminated by the extent
length.

UDF 2.01

9 March 15, 2000

Record Structure Record structure files, as defined in part 5 of ECMA 167,
shall not be created.

UDF 2.01 10 March 15, 2000

2.1 Part 1 - General

2.1.1 Character Sets
The character set used by UDF for the structures defined in this document isthe CSO
character set. The OSTA CS0 character set is defined asfollows:

OSTA CS0 shdl consgt of the d-characters specified in The Unicode Standard,
Version 2.0 (ISBN 0-201-48345-9 from Addison-Wedey Publishing Company
http:/Aww.awl.comv , see a so http://www.unicode.org), excluding #FEFF and FFFE,

gtored in the OSTA Compressed Unicode format which is defined asfollows

OSTA Compressed Unicode for mat

RBP | Length Name Contents
0 1 Compression ID Uint8
1 s Compressed Bit Stream Byte

The Compressionl D shall identify the compression agorithm used to compressthe
CompressedBitSream fiedd. The following dgorithms are currently supported:

Compression Algorithm

Value Description
0-7 Reserved
8 Vaueindicatesthere are 8 hits per character in
the Compr essedBitStream.
9-15 Reserved
16 Vaueindicatesthere are 16 hits per character in
the Compr essedBitSiream.
17-253 | Reserved
254 Vaueindicates the CS0 expansion is empty and
unique. Compression Algorithm 8 is used for
compresson.
255 Vaueindicates the CS0 expanson is empty and

unique. Compression Algorithm 16 is used for
compression.

For a CompressionID of 8 or 16, the vaue of the CompressionlD shdl specify the
number of BitsPerCharacter for the d-characters defined in the Character BitStream
field. Each sequence of CompressioniD hitsin the Character BitStream fidd shdl
represent an OSTA Compressed Unicode d-character. The bits of the character being
encoded shall be added to the CharacterBitStream from most- to least-Sgnificant-bit.
The bits shdl be added to the CharacterBitStream starting from the most significant bit
of the current byte being encoded into.

UDF 2.01

11

March 15, 2000

2.1.2

2.1.3

NOTE: Thisencoding causes characters written with a Compressioni D of 16 to be
effectively written in big endian format.

The vdue of the OSTA Compressed Unicode d-character interpreted as a Uint16
defines the value of the corresponding d-character in the Unicode 2.0 standard. Refer
to appendix on OSTA Compressed Unicode for sample C source code to convert
between OSTA Compressed Unicode and standard Unicode 2.0.

The Unicode byte-order marks, #FEFF and #FFFE, shall not be used.

Compression IDs 254 and 255 shdl only be used in FIDs where the deleted bit is set to
ONE.

When uncompressing file identifiers with Compression IDs 254 and 255, the resulting
name isto be consdered empty and unique.

OSTA CS0 Char spec

struct charspec { [* ECMA 167 1/7.2.1*/
uint8 Character SetType;
byte Char acter Setlnfo[63];

}

The Character SetType fidd shdl have the vaue of 0 to indicate the CS0 coded
character set.

The Character Setlnfo fidd shdl contain the following byte vaues with the remainder of
thefidd set to avaueof 0.

H#AF, #53, #54, #41, #20, #43, #OF, #6D, #70, #72, #65, #13, #13, #65,
#64, #20, #55, #6E, #0609, #63, #6F, #64, #65

The above byte va ues represent the following ASCII string:
“OSTA Compressed Unicode”

Dstrings

The ECMA 167 standard, as well as this document, has normdly defined byte positions rdaive
t0 0. Insection 7.2.12 of ECMA 167, dstrings are defined in terms of being rlative to 1.

Since this offers an opportunity for confusion, the following shows whet the definition would be
if described rdlativeto O,

UDF 2.01

7.2.12 Fixed-length character fields

12 March 15, 2000

A dstring of length nisafield of n bytes where d-characters (1/7.2) are recorded. The number of
bytes used to record the characters shall be recorded asaUint8 (1/7.1.1) in byte n-1, wheren isthe
length of the field. The characters shall be recorded starting with the first byte of the field, and any
remaining byte positions after the characters up until byte n-2 inclusive shall be set to #00.

If the number of d-characters to be encoded is zero, the length of the dstring shall be zero.
NOTE: The length of a dstring includes the compression code byte (2.1.1) except for the case
of azero length string. A zero length string shall be recorded by setting the entire dstring field to
al zeros.

2.1.4 Timestamp

sruct timestamp { [* ECMA 167 1/7.3*/
uint16 TypeAndTimezone;
Uintl6 Year;
uUint8 Month;
Uint8 Day;
uUint8 Hour;
uUint8 Minute
uUint8 Second;
uUint8 Centiseconds,
uUint8 HundredsofMicroseconds,
uUint8 Microseconds;
}

2.1.4.1 Uint1l6 TypeAndTimezone;
For the following descriptions Type refers to the most Sgnificant 4 bits of thisfied, and
TimeZone refersto the least Sgnificant 12 bits of thisfield, which isinterpreted asa
sgned 12-bit number in two's complement form.

&~ Thetimewithin the structure shall be interpreted as Locd Time since Type shdl
be equa to ONE for OSTA UDF compliant media

& Type shdl be set to ONE to indicate Loca Time.

¢~ TimeZone shdl beinterpreted as specifying the time zone for the location when
thisfidd was last modified. If thisfidd contains - 2047 then the time zone has
not been specified.

& For operating systems that support the concept of atime zone, the offset of the

time zone (in 1 minute increments), from Coordinated Universd Time, shdl be
inserted in the TimeZone fidd. Otherwise the TimeZone shal be set to —2047.

UDF 2.01 13 March 15, 2000

Note: Time zones West of Coordinated Universd Time have negative offsets. For
example, Eastern Standard Time is - 300 minutes, Eastern Daylight Time is-240
minutes.

Note: Implementations on systems that support time zones should interpret unspecified
time zones as Coordinated Universd Time. Although not a requirement, this
interpretation has the advantage that files generated on systems that do not
support time zones will aways appear to have the same time stamps on systems
that do support time zones, irrespective of the interpreting syslem's local time
zone.

2.1.5 Entity Identifier

struct EntitylD { [* ECMA 167 1/7.4*/
uint8 Flags;
char | dentifier[23];
char | dentifier Suffix[8];

}

UDF classfies Entity Identifiers into 4 separate types as follows:

Domain Entity Identifiers

UDF Entity Identifiers

I mplementation Entity Identifiers
Application Entity Identifiers

The following sections describe the format and use of Entity Identifiers based upon the
different types mentioned above.

2.1.5.1 Uint8 Flags
s~ Sdf-explanatory.

& Shall be st to ZERO.

2.1.5.2 char ldentifier
Unless gated otherwise in this document thisfield shall be set to an identifier that
uniquely identifies the implementation. This methodology will alow for identification of
the implementation respongible for creating structures recorded on media interchanged
between different implementations.

UDF 2.01 14 March 15, 2000

If an implementation updates existing dructures on the media written by other
implementations the updating implementation shal set the Identifier field to avaue that
uniquely identifies the updating implementation.

The following table summarizes the Entity Identifier fields defined in the ECMA 167
gtandard and this document and shows to what values they shal be set.

Entity Identifiers

Descriptor Field ID Value Suffix Type
Primary Volume Implementation 1D “*Developer ID” Implementation
Descriptor Identifier Suffix
Primary Volume Application ID “*Application ID” | Application Identifier
Descriptor Suffix
Implementation Use Implementation “*UDF LV Info” UDF Identifier Suffix
Volume Descriptor Identifier
Implementation Use Implementation ID (in | “*Developer ID” Implementation
V olume Descriptor Implementation Use Identifier Suffix

field)
Partition Descriptor Implementation ID “*Developer ID” Implementation
I dentifier Suffix
Partition Descriptor Partition Contents “+NSR03" Application Identifier
Suffix
Logica Volume Implementation ID “*Developer ID” Implementation
Descriptor Identifier Suffix
Logicd Volume Domain ID "*OSTA UDF DOMAIN Identifier
Descriptor Compliant” Suffix
File Set Descriptor Domain ID "*OSTA UDF DOMAIN Identifier
Compliant" Suffix
File Identifier Implementation Use “*Developer ID” Implementation
Descriptor Identifier Suffix
(optional)
File Entry Implementation 1D “*Developer ID” Implementation
Identifier Suffix
Device Specification | Implementation ID “*Developer ID” Implementation
Extended Attribute I dentifier Suffix
UDF Implementation | Implementation ID See3.34.5 UDF I dentifier Suffix
Use Extended
Attribute
Non-UDF Implementation ID “*Developer ID” Implementation
Implementation Use Identifier Suffix
Extended Attribute
UDF Application Use | Application ID See 3.3.4.6 UDF Identifier Suffix
Extended Attribute
Non-UDF Application | Application 1D “*Application ID” | Application Identifier
Use Extended Suffix
Attribute
UDF Unique D Implementation 1D “*Developer ID” Implementation
Mapping Data I dentifier Suffix
Power Calibration Implementation 1D “*Developer ID” Implementation
Table Stream Identifier Suffix

15

March 15, 2000

Logica Volume Implementation ID “*Developer ID” Implementation

Integrity Descriptor (in Implementation Identifier Suffix
Usefield)

Partition Integrity Implementation ID N/A N/A

Entry

Virtual Partition Map | Partition Type “*UDF Virtual UDF Identifier Suffix
Identifier Partition”

Virtua Allocation Implementation Use “*Developer ID” Implementation

Table Identifier Suffix

(optional)

Sparable Partition Partition Type “*UDF Sparable UDF Identifier Suffix

Map Identifier Partition”

Sparing Table Sparing ldentifier “*UDF Sparing UDF Identifier Suffix

Table”

NOTE: The vdue of the Entity Identifier field is interpreted as a sequence of
bytes, and not as a dstring specified in CS0. For ease of use the values used by
UDF for this field are specified in terms of ASCII character strings. The actual
sequence of bytes used for the Entity Identifiers defined by UDF are specified in

section 6.2.

NOTE: In the ID Value column in the above table “* Application ID” refersto

an identifier that uniquely identifies the writer’ s gpplication.

Inthe ID Value column in the above table “ * Developer ID” refersto an Entity Identifier that
uniquely identifies the current implementation. The value pecified should be used when anew
descriptor is created. Also, the value specified should be used for an existing descriptor when
anything within the scope of the specified Entityl D field is modified.

NOTE: The vaue chosen for a“ * Developer ID” should contain enough information
to identify the company and product name for an implementation. For example, a
company caled XYZ with a UDF product caled DataOne might choose* * XYZ
DataOne” asther developer ID. Also in the suffix of their developer 1D they may
choose to record the current version number of their DataOne product. This

information is extremely helpful when trying to determine which implementation wrote a

bad structure on a piece of media when multiple products from different companies
have been recording on the media.

The Suffix Type column in the above table defines the format of the suffix to be used with the
corresponding Entity Identifier. These different suffix types are defined in the following

paragraphs.

UDF 2.01

NOTE: All Identifiers defined in this document (appendix 6.1) shal be registered by

OSTA as UDF ldentifiers.

16

March 15, 2000

2.1.5.3 ldentifier Suffix
The format of the Identifier Suffix field is dependent on the type of the Identifier.

In regard to OSTA Domain Entity Identifiers specified in this document (appendix
6.1) the Identifier Suffix field shal be congtructed as follows:

Domain | dentifier Suffix fidd format

RBP | Length Name Contents
0 2 UDF Revision Uint16 (= #0201)
2 1 Domain Flags Uint8
3 5 Reserved bytes (= #00)

The UDFRevision fidd shdl contain #0201 to indicate revison 2.01 of this document.
Thisfidd will dlow an implementation to detect changes made in newer revisons of this
document. The OSTA Domain Identifiers are only used in the Logicd Volume
Descriptor and the File Set Descriptor. The DomainFlags fidd defines the following

bit flags

Domain Hags
Bit Description
0 Hard Write-Protect

1 Soft Write-Protect
2-7 Reserved

The SoftWriteProtect flag is a user settable flag that indicates thet the volume or file
system sStructures within the scope of the descriptor in which it resides are write
protected. A SoftWriteProtect flag vaue of ONE shal indicate user write protected
dructures. Thisflag may be set or reset by the user. The HardWriteProtect flagisan
implementation settable flag that indicates that the scope of the descriptor in which it
resdes is permanently write protected. A HardWriteProtect flag vaue of ONE shal
indicate a permanently write protected structure. Once set this flag shdl not be reset.
The HardWriteProtect flag overrides the SoftWriteProtect flag.

The write protect flags gppear in the Logica Volume Descriptor and in the File Set
Descriptor. They shdl beinterpreted asfollows:

is fileset_write protected = LV D.HardWriteProtect || LV D.SoftWriteProtect ||
FSD.HardWriteProtect || FSD.SoftWriteProtect

is fileset_hard protected = LVD.HardWriteProtect || FSD.HardWriteProtect

is fileset_soft protected = (LVD.SoftWriteProtect || FSD.SoftWriteProtect) & & (!
is vol_hard_protected)

is vol_write protected = LVD.HardWriteProtect || LV D.SoftWriteProtect

UDF 2.01 17 March 15, 2000

is vol_hard_protected = LVD.HardWriteProtect
is vol_soft_protected = LVD.SoftWriteProtect && 'L VD.HardWriteProtect

Implementation use Entity Identifiers defined by UDF (gppendix 6.1) the

| dentifier Quffix fidd shdl be congtructed as follows:

UDF | dentifi er Suffix

RBP | Length Name Contents
0 2 UDF Revision Uint16 (= #0201)
2 1 OSClass Uint8
3 1 OS Identifier Uint8
4 4 Reserved bytes (= #00)

The contents of the OS Class and OS Identifier fields are described in the Appendix
on Operating System I dentifiers.
For implementation use Entity Identifiers not defined by UDF the | dentifier Suffix
field shal be constructed as follows:

I mplementation | dentifier Suffix

RBP | Length Name Contents
0 1 OS Class Uint8
1 1 OS Identifier Uint8
2 6 Implementation Use Area bytes

NOTE: It isimportant to understand the intended use and importance of the OS Class and OS
Identifier fidds. The main purpose of these fidldsisto aid in debugging when problems are
found on aUDF volume. Thefidds aso provide useful information that could be provided to
the end user. When set correctly these two fields provide an implementation with information

auch asthef

ollowing:

Identify under which operating system a particular structure was last modified.
Identify under which operating system a specific file or directory was last modified.
If adeveloper supports multiple operating systems with their implementation, it helps
to determine under which operating system a problem may have occurred.

For an Application Entity Identifier not defined by UDF, the Identifier Suffix fidd

shall be congtructed as follows, unless specified otherwise.

Application | dentifier Suffix

RBP

Length

Name

Contents

8

Implementation Use Area

bytes

UDF 2.01

18

March 15, 2000

2.1.6 Descriptor Tag Serial Number at Formatting Time

In order to support disaster recovery, the TagSerial Number vaue of al UDF descriptors that
will be recorded at formatting time, shal be set to avaue that differs from ones previoudy
recorded, upon volume re-initidization.

If no disaster recovery will be supported, a vaue zero (#0000) shdl be used for the
TagSerialNumber fidld of dl UDF descriptors that will be recorded at formatting time, see
ECMA 3/7.2.5and 4/7.2.5.

If disaster recovery is supported, the value to be used depends on the state of the volume prior
to formatting. There are only two states in which avolume can be formatted such that disaster
recovery will be possblein the future. These States are:

1) Thevolumeiscompletdly erased. Only after this action, and where disaster recovery isto
be supported then a value of one (#0001) shal be used asthe TagSerialNumber vaue.

2) Thevolumeisaclean UDF volume that supports disaster recovery for TagSerial Number
vaues, and the TagSerial Number vaues of at least two Anchor V olume Descriptor
Pointers are both equa to X, where X is not equa to zero. If disaster recovery isto be
supported then avaue X+1 shdl be used as the TagSerialNumber vadue. If X+1 wrapsto
zero then keep it as zero to indicate that disaster recovery is not supported.

NOTE: Thereason for thisisthat if X+1 wrgpsto zero then the uniqueness of any
TagSeria Number vaue unegua to zero can no longer be guaranteed on the volume.

NOTE: By ‘erased’ in the above paragraphs, we mean that the sectors are made non-vaid for
UDF — for example by writing zeroes to the sectors.

2.1.7 Volume Recognition Sequence
Thefollowing rules shal goply when writing the volume recognition sequence:

& The Volume Recognition Sequence (VRYS) as described in part 2 and part 3 of ECMA
167 shall be recorded. There shall be exactly one NSR descriptor inthe VRS. The
NSR and BOOT2 descriptors shdl be in the Extended Area. There shdl be only one
Extended Areawith one BEAOL and one TEAOQL. All other VSDs are only alowed
before the Extended Area. The block after the VRS shal be unrecorded or contain all
#00.

¢~ Implementers should expect that disks recorded by UDF 2.00 and earlier did not have
this congraint, and should handle these cases accordingly.

UDF 2.01 19 March 15, 2000

UDF 2.01 20 March 15, 2000

2.2 Part 3- Volume Structure
2.2.1 Descriptor Tag

struct tag { I* ECMA 167 3/7.2*/
uint16 Tagldentifier;
uint16 DescriptorVerson;
Uint8 TagChecksum,
byte Reserved;
Uint16 TagSerialNumber;
uint16 DescriptorCRC;
Uintl6 Descriptor CRCLength;
uint32 TaglLoceation;

}

2.2.1.1 Uint16 TagSerialNumber
&~ Ignored. Intended for disaster recovery.

& Shdl be et to the TagSerialNumber vaue of the Anchor Volume Descriptor
Pointers on this volume.

In order to preserve disaster recovery support, the TagSerial Number must be set to a
vaue that differs from ones previoudy recorded, upon volume re-initidizetion. This
vaue is determined at volume formatting time and may depend on the state of the
volume prior to formatting. See 2.1.6 for further detalls.

2.2.1.2 Uint16 Descriptor CRCLength
CRCs shdl be supported and calculated for each descriptor. The vaue of thisfield
shall be st to (Size of the Descriptor) - (Length of Descriptor Tag). When reading a
descriptor the CRC should be vaidated.

NOTE: The Descriptor CRCLength field must not be used to determine the actua
length of the descriptor or the number of bytes to read. These lengths do not match in dl
cases, there are exceptions in the standard where the Descriptor CRC Length need not
meatch the length of the descriptor.

UDF 2.01 21 March 15, 2000

2.2.2 Primary Volume Descriptor

sruct PrimaryV olumeDescriptor { [* ECMA 167 3/10.1*/
struct tag DescriptorTag,;
uint32 V olumeDescriptorSequenceNumber;
Uint32 PrimaryV olumeDescriptorNumber;
dstring Volumeldentifier[32];
Uint16 V olumeSequenceNumber;
uint16 MaximumV olumeSequenceNumber;
Uint16 I nterchangel evel;
uint16 Maximuml nter changeleve,
Uint32 Character SetList;
uint32 MaximumChar acter SetList;
dgtring VolumeSet! dentifier[128];
gruct charspec Descriptor Char acter Set;
sruct charspec ExplanatoryChar acter Set;
druct extent ad VolumeAbstract;
sruct extent ad VolumeCopyrightNotice;
druct EntitylD Applicationl dentifier;
druct timestamp RecordingDateandTime;
Sruct EntitylD I mplementationl dentifier;
byte ImplementationUse 64];
uint32 PredecessorV olumeDescriptor Sequencel_ocation;
Uint16 Flags,
byte Reserved[22];

}

2.2.2.1 Uintl6 Interchangel evel
&~ Interpreted as pecifying the current interchange level (as specified in ECMA
167 3/11), of the contents of the associated volume and the redtrictions implied
by the specified levd.

& If thisvolumeis part of amulti-volume Volume Set then the level shdll be set to
3, otherwise the level shdll be st to 2.

ECMA 167 requires an implementation to enforce the retrictions associated with the
specified current Interchange Level. The implementation may change the vadue of this
field aslong as it does not exceed the value of the Maximum Interchange Level fidd.

2.2.2.2 Uint16 Maximuml nter changel evel
&~ Interpreted as oecifying the maximum interchange leve (as specified in ECMA
167 3/11), of the contents of the associated volume.

UDF 2.01 22 March 15, 2000

& Thisfied shadl be set to leved 3 (No Redtrictions Apply), unless specificdly given
adifferent value by the user.

NOTE: Thisfidd is used to determine the intent of the originator of the volume. If this
field has been st to 2 then the originator does not wish the volume to be included in a
muiti-volume sat (interchange level 3). The receiver may override thisfidd and st it to
a 3 but the implementation should give the receiver a srict warning explaining the intent
of the originator of the volume.

2.2.2.3 Uint32 Character SetL ist
&~ Interpreted as specifying the character set(s) in use by any of the structures
defined in Part 3 of ECMA 167 (3/10.1.9).

& Shall be st to indicate support for CS0 only as defined in 2.1.2.

2.2.2.4 Uint32 MaximumChar acter SetL ist
&~ Interpreted as specifying the maximum supported character sets (as specified in
ECMA 167) which may be specified in the Character SetList fidd.

& Shall be st to indicate support for CS0 only as defined in 2.1.2.

2.2.2.5 dstring VolumeSetl dentifier
&~ Interpreted as specifying the identifier for the volume st .

& The firgt 16 characters of this fidd should be st to a unique vdue. The
remainder of the field may be set to any alowed vaue. Specificaly, software
generding volumes conforming to this specification shal not st this fidd to a
fixed or trivid vaue. Duplicate disks which are intended to be identical may
contain the same vduein thisfidd.

NOTE: The intended purpose of this is to guarantee Volume Sets with unique
identifiers. The first 8 characters of the unique part should come from a CSO
hexadecimal representation of a 32-bit time vdue. The remaining 8 characters
are free for implementation use.

2.2.2.6 struct charspec Descriptor Character Set
é~ Interpreted as specifying the character sets dlowed in the Volume Identifier
and Volume Set Identifier fidds.

& Shdll be st to indicate support for CS0 as defined in 2.1.2.

UDF 2.01 23 March 15, 2000

2.2.2.7 struct charspec ExplanatoryCharacter Set
¢~ Interpreted as specifying the character sets used to interpret the contents of the
VolumeAbstract and VolumeCopyrightNotice extents.

& Shdll be st to indicate support for CS0 as defined in 2.1.2.

2.2.2.8 struct EntitylD Implementationldentifier
For more information on the proper handling of thisfield see section 2.1.5.

2.2.2.9 struct Entityl D Applicationldentifier
&~ Thisfidd dther specifies a valid Entity Identifier (section 2.1.5) identifying the
goplication that lagt wrote this field, or the fidd is filled with al #00 bytes,

meaning that no gpplication isidentified.

& Either al #00 bytes or a valid Entity Identifier (section 2.1.5) shall be recorded
inthisfield.

2.2.3 Anchor Volume Descriptor Pointer
struct AnchorV olumeDescriptorPointer { /* ECMA 167 3/10.2 */
struct tag DescriptorTag;
druct extent ad MainVolumeDescriptor SequenceExtent;
druct extent ad ReserveVolumeDescriptor SequenceExtent ;
byte Reserved[480];
}

NOTE: An AnchorVolumeDescriptorPointer structure shal be recorded in at least 2
of thefollowing 3 locations on the media

Logica Sector 256.
Logicd Sector (N - 256).
N

NOTE: As specified in section 6.10, unclosed CD-R media may have a sngle AVDP
present at either sector 256 or 512. If on an unclosed disc a sngle AVDP is recorded
on sector 256, any AVDP recorded on sector 512 must be ignored. Closed CD-R
media shdl conform to the above rules.

2.2.3.1 struct Mai nVolumeDescriptor SequenceExtent

Themain VolumeDescriptor SequenceExtent shal have aminimum length of 16 logicdl
sectors.

UDF 2.01 24 March 15, 2000

2.2.3.2 struct ReserveVolumeDescriptor SequenceExtent
The reserve VolumeDescriptor SequenceExtent shdl have a minimum length of 16
logicd sectors.

2.2.4 Logical Volume Descriptor

struct LogicaVolumeDescriptor { /* ECMA 167 3/10.6 */
struct tag DescriptorTag;
uint32 V olumeDescriptor SequenceNumbe;
gruct charspec Descriptor Char acter Set;
dstring LogicdVolumel dentifier[128];
uint32 L ogicalBlockSize,
druct EntitylD Domainldentifier;
byte L ogicalVolumeContentsUse[16];
Uint32 MapTableLength;
uint32 Numberof PartitionM aps;
druct EntitylD I mplementationl dentifier;
byte | mplementationUse] 128];
extent_ad I ntegritySequenceExtent,
byte PartitionM apg];

}

2.2.4.1 struct charspec Descriptor Character Set
& Interpreted as ecifying the chaacter set dlowed in the
Logical Volumel dentifier fied.

& Shall be st to indicate support for CSO as defined in 2.1.2.

2.2.4.2 Uint32 LogicalBlockSize
¢~ Interpreted as specifying the Logical Block Sze for the logicd volume identified
by this Logical VolumeDescriptor.

& This field shal be st to the largest logica sector Size encountered amongst all
the partitions on media that condiitute the logcd volume identified by this
LogicalVolumeDescriptor. Since UDF requires that al Volumes within a
VolumeSet have the same logical sector Size, the Logical Block Sze will bethe
same asthelogica sector Sze of the Volume.

2.2.4.3 struct EntitylD Domainldentifier
& Interpreted as specifying a domain specifying rules on the use of, and
regtrictions on, certain fidlds in the descriptors. If thisfidd is dl zero then it is
ignored, otherwise the Entity Identifier rules arefollowed. NOTE: If thefidd

UDF 2.01 25 March 15, 2000

does not contain “*OSTA UDF Compliant” then an implementation may deny
the user accessto the logica volume.

& Thisfidd shal indicate that the contents of thislogica volume conformsto the
domain defined in this document, therefore the Domainldentifier shall be set
to:

"*OSTA UDF Compliant”

As described in the section on Entity Identifier the Identifier Suffix fied of this
EntitylD shdl contain the revison of this document for which the contents of

the Logicd Volume is compatible. For more information on the proper handling
of thisfield see section 2.1.5.

NOTE: The Identifier Suffix fidd of this EntitylD contains Soft\WriteProtect
and HardWriteProtect flags. Refer to 2.1.5.3.

2.2.4.4 bytelL ogicalVolumeContentUse[16]

Thisfidd contains the extent location of the FileSet Descriptor. Thisis described in 4/3.1 of
ECMA 167 asfollows:

“If the volume is recorded according to Part 3, the extent in which the first File Set Descriptor
Sequence of the logical volume is recorded shall be identified by along_ad (4/14.14.2) recorded
in the Logical Volume Contents Use field (see 3/10.6.7) of the Logica Volume Descriptor
describing the logical volume in which the File Set Descriptors are recorded.”

Thisfiled can be used to find the FileSet descriptor, and from the FileSet descriptor the root
volume can be found.

2.2.4.5 struct EntitylD Implementationldentifier;
For more information on the proper handling of thisfield see section 2.1.5.

2.2.4.6 struct extent_ad IntegritySequenceExtent
A vdueinthisfied isrequired for the Logica Volume Integrity Descriptor. For
Rewritegble or Overwritegble mediathis shdl be set to aminimum of 8K bytes.

WARNING: For WORM media this field should be set to an extent of some
substantial length. Once the WORM volume on which the Logicd Volume Integrity
Descriptor resdesis full anew volume must be added to the volume st Snce the
Logicd Volume Integrity Descriptor must reside on the same volume as the prevailing
Logicd Volume Decriptor.

UDF 2.01 26 March 15, 2000

2.2.4.7 byte PartitionM aps

2.2.5

2.2.6

UDF 2.01

For the purpose of interchange partition maps shdl be limited to Partition Map type 1,
except type 2 maps as described in this document (2.2.8 and 2.2.9).

Unallocated Space Descriptor
struct UnallocatedSpaceDesc { /* ECMA 167 3/10.8 */
struct tag DescriptorTag,;
uint32 V olumeDescri ptorSequenceNumber;
uint32 Numberof AllocationDescriptors,
extent_ad AllocationDescriptord];
}

This descriptor shal be recorded, even if there is no free volume space. The firgt
32768 bytes of the Volume space shdl not be used for the recording of ECMA 167
sructures. This area shall not be referenced by the Unallocated Space Descriptor or
any other ECMA 167 descriptor.

Logical Volume Integrity Descriptor

gtruct LogicaVolumel ntegrityDesc { /* ECMA 167 3/10.10 */
struct tag DescriptorTag,
Timestamp RecordingDateAndTime,
Uint32 Integrity Type,
sruct extend ad NextlntegrityExtent,
byte L ogicalVolumeContentsUse[32],
Uint32 NumberOf Partitions,
Uint32 LengthOfmplementationUse,
uint32 FreeSpaceT able [],
Uint32 SizeTable[],
byte I mplementationUsg[]

}

TheLogical Volume Integrity Descriptor isa sructure thet shal be written any time
the contents of the associated Logica Volume is modified. Through the contents of the
Logical Volume Integrity Descriptor an implementation can essly answer the
following useful questions:

1) Arethe contents of the Logica Volume in aconsstent sate?

2) When was the last date and time that anything within the Logica Volume was
modified?

3) What isthetotd Logica Volume free spaceinlogica blocks?

27 March 15, 2000

4) What isthe total size of the Logica Volumein logica blocks?
5) What is the next available Uniquel D for use within the Logica Volume?
6) Has some other implementation modified the contents of the logica volume

gnce the lagt time that the original implementation, which crested the logica
volume, accessed it.

2.2.6.1 bytelL ogicalVolumeContentsUse

See section 3.2.1 for information on the contents of thisfidd.

2.2.6.2 Uint32 FreeSpaceTable

Since mogt operating systems require that an implementation provide the true free space
of aLogicd Volume at mount timeit isimportant that these vaues be maintained for dl
non-virtua partitions. The optiona va ue of #FFFFFFFF, which indicates that the
amount of available free space is not known, shdl not be used for non-virtud partitions.
For virtual partitions the FreeSpaceT able shall be set to #FFFFFFFF.

NOTE: The FreeSpaceTable is guaranteed to be correct only when the Logical
Volume Integrity Descriptor is closed.

2.2.6.3 Uint32 SizeTable

Since most operating systems require that an implementation provide the totdl sze of a
Logicd Volume a mount time it isimportant that these vaues be maintained for al non-
virtud partitions. The optiona vaue of #FFFFFFFF, which indicates that the partition
gzeisnot known, shdl not be used for non-virtud partitions. For virtud partitions the
SizeTable shal be set to #FFFFFFFF.

2.2.6.4 byte ImplementationUse

UDF 2.01

The ImplementationUse areafor the Logical Volume Integrity Descriptor shal be
structured asfollows:.

| mplementationUse format

RBP | Length Name Contents

0 32 Implementationl D EntitylD

32 4 Number of Files Uint32

36 4 Number of Directories Uint32

40 2 Minimum UDF Read Revision Uint16

42 2 Minimum UDF Write Revision Uint16

4 2 Maximum UDF Write Revision Uint16

46 ?? Implementation Use byte

28 March 15, 2000

UDF 2.01

Implementation ID - The implementation identifier Entityl D of the
implementation which last modified anything within the scope of this EntitylD.
The scope of this Entityl D isthe Logica Volume Descriptor, and the contents
of the associated Logicd Volume. Thisfied adlows an implementation to identify
which implementation last modified the contents of aLogica Volume.

Number of Files - The current number of files in the associated Logicd
Volume. This information is needed by the Macintosh OS. All implementations
ghdl maintain this information. NOTE: This vaue does not include Extended
Attributes or streams as part of the file count.

Number of Directories - The current number of directories in the associated
Logicd Volume This information is needed by the Macintosh OS. All
implementations shdl maintain this information.

NOTE: The root directory shdl be included in the directory count. The
directory count does not include stream directories.

Minimum UDF Read Revison - Shdl indicate the minimum recommended
revigon of the UDF specification that an implementation is required to support
to successfully be able to read dl potentid sructures on the media. This
number shal be stored in binary coded decimd format, for example #0150
would indicate revision 1.50 of the UDF specification.

Minimum UDF Write Revision - Shdl indicate the minimum revison of the
UDF specification that an implementation is required to support to successtully
be able to modify dl structures on the media. This number shal be stored in
binary coded decima format, for example #0150 would indicate revison 1.50
of the UDF specification.

Maximum UDF Write Revision - Shdl indicate the maximum revison of the
UDF specification that an implementation that has modified the media has
supported. An implementation shdl update this fidd only if it has modified the
media and the level of the UDF specification it supports is higher than the
current value of thisfidd. This number shal be stored in binary coded decimd
format, for example #0150 would indicate revison 150 of the UDF
specification.

Implementation Use - Contains implementation specific information unique to
the implementation identified by the Implementation ID.

29 March 15, 2000

2.2.7 Implemention Use Volume Descriptor

struct ImpUseV olumeDescriptor { [* ECMA 167 3/10.4 */
struct tag DescriptorTag;
uint32 V olumeDescriptor SequenceNumbe;
druct EntitylD I mplementationl dentifier;
byte I mplementationUseg[460];
}

This section defines an UDF Implementation Use Volume Descriptor. This descriptor
shall be recorded on every Volume of aVolume Set. The Volume may aso contain
additiond Implementation Use Volume Descriptors that are implementation specific.
The intended purpose of this descriptor isto aid in the identification of aVVolume within
aVolume Set that belongs to a specific Logica Volume.

NOTE: Animplementation may il record an additiond Implementation Use Volume
Descriptor in its own format on the media. The UDF Implementation Use VVolume
Descriptor does not preclude an additiona descriptor.

2.2.7.1 EntitylD Implementationldentifier
The Identifier fidld of this EntitylD shall specify “*UDF LV Info”. Refer to section
2.1.5 on Entity Identifier.

2.2.7.2 bytesImplementationUse
The implementation use area shdl contain the following Structure:

gruct LVInformation {
gruct charspec LVICharst,

dstring L ogicalVolumel dentifier[128],
dstring LVInfol[36],

dgtring LVInfo2[36],

dstring LVInfo3[36],

druct EntitylD Implementationl D,

bytes I mplementationUsg[128];

}

2.2.7.2.1 charspecLVIChar set
& Interpreted as goecifying the chaacter sets dlowed in the
Logical Volumel dentifier and LVInfo fidds.

& Shall be st to indicate support for CSO only as defined in 2.1.2.

UDF 2.01 30 March 15, 2000

2.2.7.2.2 dstring LogicalVolumel dentifier
Identifies the Logica Volume referenced by this descriptor.

2.2.7.2.3 dsgring LVInfol, LVInfo2 and LVInfo3
ThefiddsLVInfol, LVInfo2 and LVInfo3 should contain additiond information to aid
in the identification of the media. For example the LVInfo fields could contain
information such as Owner Name, Organization Name, and Contact | nformation.

2.2.7.2.4 gruct Entityl D Implementationl D
Refer to section 2.1.5 on Entity Identifier.

2.2.7.2.5 bytesImplementationUsg[128]

Thisareamay be usad by the implementation to store any additiond implementation
gpecific information.

UDF 2.01 31 March 15, 2000

2.2.8 Virtual Partition Map
Thisisan extenson of ECMA 167 to expand its scope to include sequentidly written media
(eg. CD-R). Thisextenson isfor a partition map entry to describe a virtua space.

The Logicd Volume Descriptor contains alist of partitions that make up agiven volume. Asthe
virtua partition cannot be described in the same manner as a physica partition, a Type 2
partition map defined below shal be used.

If aVirtua Partition Map is recorded, then the Logica Volume Descriptor shdl contain at least
two partition maps. One partition map shdl be recorded as a Type 1 partition map. One
partition map shall be recorded as a Type 2 partition map. The format of this Type 2 partition
map shdl be as pecified in the following table.

Layout of Type 2 partition map for virtual partition

RBP | Length Name Contents
0 1 Partition Map Type Uint8=2

1 1 Partition Map Length uint8 =64

2 2 Reserved #00 bytes

4 32 Partition Type Identifier EntitylD

36 2 V olume Sequence Number uintl16

38 2 Partition Number uint16

40 24 Reserved #00 bytes

Partition Type Identifier:
Flags=0
Identifier =*UDF Virtual Partition
IdentifierSuffix is recorded asin section 2.1.5.3
V olume Sequence Number = volume upon which the VAT and Partition is recorded

Partition Number = the partition number in the Type 1 partition map in the samelogical volume
descriptor.

2.2.9 Sparable Partition Map

Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide an
apparent defect-free space for these systems, a partition of type 2 isused. The partition map
defines the partition number, packet size (see section 1.3.2), and Size and locations of the
gparing tables. Thistype 2 map isintended to replace the type 1 map normdly found on the
media. There should not be atype 1 map recorded if a Sparable Partition Map is recorded.
The Sparable Partition Map identifies not only the partition number and the volume sequence

UDF 2.01 32 March 15, 2000

number, but dso identifies the packet length and the sparing tables. A Sparable Partition Map
shdl not be recorded on disk/drive systems that perform defect management.

L ayout of Type 2 partition map for sparable partition

RBP Length Name Contents
0 1 Partition Map Type Uint8=2
1 1 Partition Map L ength Uint8 = 64
2 2 Reserved #00 bytes
4 32 Partition Type Identifier EntitylD
36 2 V olume Sequence Number Uint16
38 2 Partition Number Uint16
40 2 Packet Length Uintl6
12 1 Number of Sparing Tables (=N_ST) Uint8
43 1 Reserved #00 byte
4 4 Size of each sparing table Uint32
48 4* N_ST L ocations of sparing tables Uint32
48+4* N ST | 16-4* N_ST Pad #00 bytes

Partition Type Identifier:
Flags=0
Identifier =* UDF Sparabl e Partition
IdentifierSuffix is recorded as in section 2.1.5.3.

Partition Number = the number of this partition. Shall identify a Partition Descriptor associated
with this partition.

Packet L ength = the number of user data blocks per fixed packet. Thisvalueis specified inthe
medium specific section of Appendix 6.

Number of Sparing Tables = the number of redundant tables recorded. Thisshall beavaluein
the range of 1to 4.

Size of each sparing table = Length, in bytes, allocated for each sparing table.

L ocations of sparing tables = the start |ocations of each sparing table specified asamedia
block address. Implementations should align the start of each sparing table with the beginning
of apacket. Implementations should record at |east two sparing tables in physically distant
locations.

2.2.10 Virtual Allocation Table

The Virtud Allocation Table (VAT) is used on sequentidly written media (eg. CD-R) to give
the appearance of randomly writable media to the system. The existence of this partition is
identified in the partition maps. The VAT shdl only be recorded on sequentialy written media
(eg. CD-R).

The VAT isamap that trandates Virtuad Addressesto logical addresses. It shdl be recorded as
afileidentified by aFile Entry ICB (VAT ICB) that dlows greet flexibility in building the table.
The VAT ICB isthe last sector recorded in any transaction. The VAT itsaf may be recorded at
any location.

UDF 2.01 33 March 15, 2000

The VAT shdl beidentified by aFile Entry ICB with afile type of 248. This|CB shdl be the
last vaid data sector recorded. Error recovery schemes can find the last valid VAT by finding
ICBs with file type 248.

Thisfile, when samdl, can be embedded in the ICB that describesit. If it islarger, it can be
recorded in a sector or sectors preceding the ICB. The sectors do not have to be contiguous,
which dlows writing only new parts of the table if desired. This dlows smdl incrementd
updates, even on disks with many directories.

When the VAT issmadl (asmal number of directories on the disk), the VAT is updated by
writing anew file ICB with the VAT embedded. When the VAT becomes too large to fit in the
ICB, writing asingle sector with the VAT and a second sector with the ICB isrequired.
Beyond this point, more than one sector isrequired for the VAT. However, as multiple extents
are supported, updating the VAT may condst of writing only the sector or sectors that need
updating and writing the ICB with pointersto al of the pieces of the VAT.

The Virtud Allocation Tableis used to redirect requests for certain information to the proper
logica location. The indirection provided by this table provides the gppearance of direct
overwrite capability. For example, the ICB describing the root directory could be referenced as
virtua sector 1. A virtua sector is contained in a partition identified by avirtud partition map
entry. Over the course of updating the disk, the root directory may change. When it changes, a
new sector describing the root directory iswritten, and its Logica Block Addressis recorded
asthe Logica Block Address corresponding to virtua sector 1. Nothing that references virtua
sector 1 needsto change, asit ill points to the most current virtual sector 1 that exigts, even
though it exists at anew Logica Block Address.

The use of virtual addressing dlows any desired structure to become effectively rewritable. The
gructure is rewritable when every pointer that references it does so only by its Virtual Address.
When a replacement structure is written, the virtua reference does not need to change. The
proper entry in the VAT is changed to reflect the new Logica Block Address of the
corresponding Virtua Address and al virtud references then indirectly point to the new
structure. All structures that require updating, such as directory ICBs, shdl be referenced by a
Virtual Address. As each structure is updated, its corresponding entry in the VAT ICB shdl be
updated.

The VAT shdl be recorded as a sequence of Uint32 entriesin afile. Each entry shal be the
offsat, in sectors, into the physicd partition in which the VAT islocated. Thefirgt entry shal be
for the virtud partition sector O, the second entry for virtual partition sector 1, etc. The Uint32
entries shal follow the VAT header. The entry for the previous VAT ICB alows for viewing
the file systlem asiit appeared in an earlier sate. If thisfidd is #FFFFFFFF, then no such ICB is

specified.

UDF 2.01 34 March 15, 2000

Virtual Allocation Table structure

Offset Length Name Contents
0 2 Length of Header (=L_HD) Uintl6
2 2 Length of Implementation Use (=L_IU) Uint16
4 128 Logicd Volume Identifier dstring
132 4 Previous VAT ICB location uUint32
136 4 Number of Files uint32
140 4 Number of Directories uUint32
144 2 Minimum UDF Read Version Uintl6
146 2 Minimum UDF Write Verson Uintl6
148 2 Maximum UDF Write Version Uintl6
150 2 Reserved #00 bytes
152 L 1U Implementation Use bytes
152+L 1U |4 VAT entry O uint32
156+L IU |4 VAT entry 1 Uint32
Information | 4 VAT entry n uint32
Length- 4

Length of Header - Indicates the amount of data preceding the VAT entries. Thisvaue shdl
bel152+L_IU.

Length of Implementation Use - Shdl specify the number of bytes in the Implementation Use
field. If thisfidd isnonzero, the vaue shal be at least 32 and be an integrd multiple of 4.

Logical Volume Identifier - Shal identify thelogicd volume. Thisfied shal be used by
implementations instead of the corresponding field in the Logica Volume Descriptor. The vaue
of thisfield should be the same as the field in the LV D until changed by the user.

Previous VAT ICB Location - Shdl specify the logicd block number of an earlier VAT ICB in
the partition identified by the partition map entry. If thisfied is #FFFFFFFF, no such ICB is

specified.

Number of Files — The current number of filesin the associated Logical Volume. This
information is needed by the Macintosh OS. All implementations shal maintain this information.
The contents of thisfield shal be used by implementations instead of the corresponding fidd in
the LVID.
NOTE: Thisvaue does not include Extended Attributes or streams as part of thefile
count.

UDF 2.01 35 March 15, 2000

Number of Directories - The current number of directories in the associated Logica Volume.
This information is needed by the Macintosh OS. All implementations shdl maintain this
information. The contents of this fidld shdl be used by implementations indead of the
corresponding field in the LVID.
NOTE: Theroot directory shdl be included in the directory count. The directory count
does not include stream directories.

Minimum UDF Read Version - Defined in 2.2.6. The contents of this field shdl be used by
implementations instead of the corresponding field in the Logical Volume Integrity Descriptor
(LVID).

Minimum UDF Write Version - Defined in 2.2.6. The contents of thisfield shal be used by
implementations insteed of the corresponding field in the LVID.

Maximum UDF Wkite Version - Definedin 2.2.6. The contents of thisfield shal be used by
implementations ingteed of the corresponding field in the LVID.

Implementation Use - If nonzero in length, shdl begin with an EntitylD identifying the usage of
the remainder of the Implementation Use area.

VAT Entry - VAT entry n shdl identify the logica block number of the virtud block n. An
entry of #FFFFFFFF indicates that the virtua sector is currently unused. The LBN specified is
located in the partition identified by the partition map entry. The number of entriesin the table
can be determined from the VAT fileszein the ICB:

Number of entries (N) = (Information Length- L_HD) / 4.

2.2.11 Sparing Table

Certain disk/drive systems do not perform defect management (eg. CD-RW). A Sparing Table
is used to provide an apparent defect-free space for these systems. Certain media can only be
written in groups of sectors (“packets’), further complicating relocation: awhole packet must be
relocated rather than only the sectors being written. To address thisissue a sparable partition is
identified in the partition map, which further identifies the location of the sparing tables. The
sparing table identifies relocated areas on the media. Sparing tables are identified by a sparable
partition map. Sparing tables shdl not be recorded on disk/drive systems that perform defect

management.
Sparing Tables point to space alocated for sparing and contains alist of mappings of defective

sectorsto their replacements. Separate copies of the sparing tables shdl be recorded in
separate packets. All instances of the sparing table shall be kept up to date.

UDF 2.01 36 March 15, 2000

Partitions map logica spaceto physical space. Normally, thisisalinear mapping where an
offsat and alength are specified. A sparable partition is based on this mapping, where the offset
and length of a partition within physica spaceis specified by a Partition Descriptor (see 2.2.12).
A sparable partition shal begin and end on a packet boundary. The sparing table further
Specifies an exception ligt of logicd to physica mappings. All mappings are one packet in length.
The packet size is specified in the sparable partition map.

Available sparing areas may be anywhere on the media, either insgde or outside of a partition. If
located ingde a partition, sparable space shdl be marked as allocated and shall beincluded in
the Non-Allocatable Space Stream. The mapped locations should befilled in a format time;
the original locations are assgned dynamically as errors occur. Each sparing table shdl be
Structured as shown below.

Sparing Table layout

BP | Length Name Contents
0 16 Descriptor Tag tag=0
16 32 Sparing ldentifier EntitylD
48 2 Reallocation Table Length (=RT_L) uUintl6
50 2 Reserved #00 bytes
52 4 Sequence Number Uint32
56 8*RT_L Map Entry Map Entries

This structure may be larger than a Sngle sector if necessary.
- Descriptor Tag
Containsa Tag ldentifier of O, which indicates that the format of the Descriptor Tag is not
specified by ECMA 167. All other fields of the Descriptor Tag shall bevalid, asif the Tag
Identifier were one of the values defined by ECMA 167.
Sparing ldentifier:
Flags=0
Identifier =* UDF Spari ng Tabl e
IdentifierSuffix isrecorded asin UDF 2.1.5.3

Reallocation Table Length
Indicates the number of entriesin the Map Entry table.

Sequence Number

Contains a number that shall be incremented each time the sparing table is updated.

Map Entry

A map entry is described in the table below. Maps shall be sorted in ascending order by the
Original Location field.

UDF 2.01 37 March 15, 2000

Map Entry description

RBP Length Name Contents
0 4 Original Location Uint32
4 4 Mapped Location Uint32

Original Location

Logical Block Address of the packet to be spared. The address of a packet is the address of
thefirst user data block of apacket. If thisfield is#FFFFFFFF, then this entry is available for
sparing. If thisfield is #FFFFFFFO, then the corresponding mapped location is marked as
defective and should not be used for mapping. Original Locations of #FFFFFFF1 through
#FFFFFFFE are reserved.

Mapped Location

Physical Block Address of active data. Requeststo the original packet location are redirected
to the packet location identified here. All Mapped Location entries shall be valid, including
those entries for which the Original Location is #FFFFFFFO, #FFFFFFFF, or reserved. If the
mapped location overlaps a partition, that partition shall have that space marked as allocated
and that space shall be part of the Non-Allocatable Space Stream.

2.2.12 Partition Descriptor

struct PartitionDescriptor { /* ECMA 167 3/10.5*/
struct tag DescriptorTag,;
uint32 V olumeDescri ptorSequenceNumber;
Uintl6 PartitionFags,
Uint16 PartitionNumber;
gruct EntitylD PartitionContents;
byte PartitionContentsUse[128];
uint32 AccessType;
uint32 PartitionStartinglL ocation;
Uint32 PartitionL ength;
gruct EntitylD I mplementationl dentifier;
byte ImplementationUse[128];
byte Reserved[156];
}

2.2.12.1 Struct Entityl D PartitionContents
For more information on the proper handling of this field see the section on Entity
|dentifier.

2.2.12.2 Uint32 PartitionStartingL ocation
For a Sparable Partition, the vaue of thisfied shdl be an integrd multiple of the Packet
Length. The Packet Length is defined in the Sparable Partition Map.

UDF 2.01

38 March 15, 2000

2.2.12.3 Uint32 PartitionLength
For a Sparable Partition, the vaue of thisfield shdl be an integrd multiple of the Packet
Length. The Packet Length is defined in the Sparable Partition Map.

2.2.12.4 Struct Entityl D Implementationl dentifier

For more information on the proper handling of this field see the section on Entity
|dentifier.

UDF 2.01 39 March 15, 2000

2.3 Part 4 - File System
2.3.1 Descriptor Tag

struct tag { [* ECMA 167 4/7.2*/
uint16 Tagldentifier;
Uint16 DescriptorVersion;
uint8 TagChecksum;
byte Reserved;
uint16 TagSerialNumber;
Uint16 DescriptorCRC;
uint16 Descriptor CRCL ength;
Uint32 TagL ocation;

}

2.3.1.1 Uint16 TagSerialNumber
&~ lgnored. Intended for disaster recovery.

& Shdl be st to the TagSerialNumber vaue for the Anchor VVolume Descriptor
Pointers on this volume.

The same agpplies as for volume dructure TagSerialNumber vaues, see 2.2.1.1 and
2.1.6.

2.3.1.2 Uint16 Descriptor CRCLength
CRCs shdl be supported and calculated for each descriptor, unless otherwise noted.
Thevaue of thisfidd shdl be st to: (Size of the Destriptor) - (Length of Descriptor
Tag). When reading a descriptor the CRC should be vaidated.

NOTE: The Descriptor CRCLength field must not be used to determine the actud
length of the descriptor or the number of bytesto read. These lengths do not match in dl
cases, there are exceptions in the standard where the Descriptor CRC Length need not
match the length of the descriptor.

2.3.1.3 Uint32 TagL ocation

For structures referenced viaa virtuad address (i.e. referenced through the VAT), this
vaue shdl be the virtud address, not the physicdl or logical address.

UDF 2.01 40 March 15, 2000

2.3.2 File Set Descriptor
sruct FileSetDescriptor { /* ECMA 167 4/14.1*/

struct tag DescriptorTag,;

druct timestamp RecordingDateandTime,
Uint16 I nterchangel evel;

uint16 Maximumlnterchangel evel;
Uint32 Character SetList;

uint32 MaximumChar acter SetList;
Uint32 FileSetNumber;

uint32 FileSetDescriptorNumber;
sruct charspec L ogicalVolumel dentifier Char acter Set;
dstring LogicaVolumel dentifier[128];
sruct charspec FileSetChar acter Set;

dstring FileSetldentifer[32];

dgtring CopyrightFilel dentifier[32];
dstring AbgtractFileldentifier[32];

sruct long_ad RootDirectorylCB;
druct EntitylD Domainldentifier;
struct long_ad NextExtent;

druct long_ad StreamDirectoryl CB;

byte Reserved[32];
}
Only one FileSet descriptor shall be recorded. On WORM media, multiple FileSets
may be recorded.

The UDF provison for multiple File Setsis asfollows:

Multiple FileSets are only alowed on WORM media

The default FileSet shdl be the one with the highest FileSetNumber .

Only the default FileSet may be flagged as writable. All other FileSetsin
the sequence shdll be flagged HardWriteProtect (see 2.1.5.3).

No writable FileSet shdl reference any metadata Structures which are
referenced (directly or indirectly) by any other FileSet. Writable FileSets
may, however, reference the actud file data extents.

Within aFileSet on WORM, if al files and directories have been recorded with ICB
drategy type 4, then the Domaini D of the corresponding FileSet Descriptor shdl be
marked as HardWriteProtected.

Theintended purpose of multiple FileSets on WORM isto support the ability to have

multiple archive images on the media. For example one FileSet could represent a
backup of a certain st of information meade at a specific point intime. The next FileSet

UDF 2.01 11 March 15, 2000

could represent another backup of the same set of information made at alater point in
time.

2.3.2.1 Uint16 Interchangel evel
e Interpreted as specifying the current interchange leve (as specified in ECMA
167 4/15), of the contents of the associated file set and the restrictions implied
by the specified level.

= Shall be set to alevd of 3.

An implementation shal enforce the redtrictions associated with the specified current
Interchange Level.

2.3.2.2 Uint16 M aximuml nterchangel evel
&~ Interpreted as specifying the maximum interchange leve of the contents of the
asociated file set. This vaue redtricts to what the current Interchange Level
field may be sat.

& Shdl besettoleve 3.
2.3.2.3 Uint32 Character SetL ist
e Interpreted as specifying the character set(s) specified by any fied, whose
contents are specified to be a charspec, of any descriptor specified in Part 4 of
ECMA 167 and recorded in the file set described by this descriptor.
& Shall be st to indicate support for CSO only as defined in 2.1.2.
2.3.2.4 Uint32 MaximumChar acter SetL ist
s~ Interpreted as specifying the maximum supported character set in the associated
file set and the regtrictionsimplied by the specified leve.
& Shall be st to indicate support for CSO only as defined in 2.1.2.
2.3.2.5 struct charspec L ogicalVolumel dentifier Char acter Set
e Interpreted as specifying the d-characters dlowed in the Logical Volume
Identifier field.
& Shdll be st to indicate support for CS0 as defined in 2.1.2.
2.3.2.6 struct charspec FileSetChar acter Set

¢~ Interpreted as specifying the dcharacters dlowed in ddtring fields defined in
Part 4 of ECMA 167 that are within the scope of the FileSetDescriptor.

UDF 2.01 42 March 15, 2000

& Shall be st to indicate support for CS0 as defined in 2.1.2.

2.3.2.7 struct EntitylD Domainldentifier
&~ Interpreted as specifying a domain specifying rules on the use of, and
regtrictions on, certain fidds in the descriptors. If this field is NULL then it is
ignored, otherwise the Entity Identifier rules are followed.

& Thisfield shdl indicate that the scope of this File Set Descriptor conforms to
the domain defined in this document, therefore the Implementationl dentifier
ghdl be st to:

"*OSTA UDF Compliant"

As described in the section on Entity Identifier the Identifier Suffix fied of this
EntitylD shdl contain the revison of this document for which the contents of
the Logicd Volumeis compatible. For more information on the proper handling
of thisfield see section 2.1.5.3.

NOTE: The Identifier Suffix fidd of this EntitylD contains Soft\WriteProtect
and HardWriteProtect flags

2.3.3 Partition Header Descriptor

struct PartitionHeaderDescriptor { [* ECMA 167 4/14.3*/
struct short_ad UndlocatedSpaceTable;
struct short_ad UnalocatedSpaceBitmap;
struct short_ad PartitionlntegrityTable;
struct short_ad FreedSpaceTable;
struct short_ad FreedSpaceBitmap;
byte Reserved[88];

}

Asapoint of clarification the logica blocks represented as Unallocated are blocks that
are ready to be written without any preprocessing. In the case of Rewritable mediathis
would be awrite without an erase pass. The logical blocks represented as Freed are
blocks that are not ready to be written, and require some form of preprocessing. Inthe
case of Rewritable media this would be awrite with an erase pass.

NOTE: The use of Space Tables or Space Bitmaps shal be consstent across a Logica

Volume. Space Tables and Space Bitmaps shdl not both be used at the same time
within aLogicd Volume.

UDF 2.01 43 March 15, 2000

2.3.3.1 struct short_ad PartitionlntegrityTable
Shall be st to dl zeros since PartitionlntegrityEntrys are not used.

2.3.4 Fileldentifier Descriptor

struct FileldentifierDescriptor { [* ECMA 167 4/14.4*/
struct tag DescriptorTag;
Uint16 FileVersonNumber;
uUint8 FileCharacterigtics;
Uint8 LengthofFHlel dentifier;
druct long_ad ICB;
Uint16 L engthOfl mplementationUsg;
byte I mplementationUse]];
char Fileldentifier[];
byte Pedding(];
}
The File Identifier Descriptor shal be redtricted to the length of a most one Logica
Block.

NOTE: All UDF directories shdl include a File Identifier Descriptor thet indicates the
location of the parent drectory. The File Identifier Descriptor describing the parent
directory shdl be the first File Identifier Descriptor recorded in the directory. The
parent directory of the Root directory shal be Root, as stated in ECMA 167 4/8.6

2.3.4.1 Uintl16 FileVersionNumber
&~ Thereshdl be only one verson of afile as specified below with the vdue being
setto 1.

& Shall besetto 1.

2.3.4.2 FileCharacteristics
The deleted bit may be used to mark afile or directory as deleted instead of removing
the FID from the directory, which requires rewriting the directory from that point to the
end. If the space for thefile or directory is dedlocated, the implementation shdl set the
ICB field to zero, asdl fiddsin aFID must be vaid even if the deleted bit isset. See
[4/14.4.3], note 21 and [4/14.4.5].

ECMA 167 4/8.6 requires that the File Identifiers (and File Verson Numbers, which
shdl dways be 1) of dl FIDsin adirectory shal be unique. While the sandard is slent
on whether FIDs with the deleted bit set are subject to this requirement, the intent is that
they are not. FIDs with the deleted bit set are not subject to the uniqueness requirement,
asinterpreted by UDF

UDF 2.01 44 March 15, 2000

In order to assst a UDF implementation that may have read the stlandard without this
interpretation, implementations shall follow these ruleswhen aFID’s deleted bit is set:

If the compression ID of the File Identifier is 8, rewrite the compresson ID to 254. If
the compression ID of the File Identifier is 16, rewrite the compression ID to 255.
Leave the remaining bytes of the File Identifier unchanged

In this way a utility wishing to undelete afile or directory can recover the origind name
by reverang the rewrite of the compresson ID.

NOTE: Implementations should re-use FIDs that have the deleted bit set to one and
ICBs st to zero in order to avoid growing the size of the directory unnecessarily.

2.3.4.3 structlong ad ICB
The Implementation Use bytes of thelong_ad indl File Identifier Descriptors shdl
be used to store the UDF Unique ID for the file and directory namespace.

The Implementation Use bytes of along_ad hold an ADImpUse structure as defined
by 2.3.10.1. The four impUse bytes of that structure will be interpreted as a Uint32
holding the UDF Unique ID.

ADImpUse gructure holding UDF Unique ID

RBP | Length Name Contents
0 2 Hags (see2.3.10.1) Uint16
2 4 UDF Unique ID Uint32

Section 3.2.1 Logica Volume Header Descriptor describes how UDF Unique ID fidd
in Implementation Use bytes of the long_ad in the File Identifier Descriptor and the
Uniquel D fidd in the File Entry and Extended File Entry are set.

2.3.4.4 Uint16 Lengthofl mplementationUse
¢ Shadl specify the length of the ImplementationUse fidd.

& Shdl specify the length of the ImplementationUse field. Thisfidd may contain
zero, indicating that the ImplementationUse fiedld has not been used.
Otherwise, thisfield shdl contain at least 32 asrequired by 2.3.4.5.

When writing a File Identifier Descriptor to write-once media, to ensure that the
Descriptor Tag fidd of the next FID will never span ablock boundary, if there are less
than 16 bytes remaining in the current block after the FID, the length of the FID shall be
increased (using the Implementation Use field) enough to prevent this. Remember thet in
the latter case, the Implementation Use field shall be at least 32 bytes.

UDF 2.01 45 March 15, 2000

2.3.4.5 bytelmplementationUse
&~ If the Lengthofl mplementationUse fidd is non ZERO then thefirst 32 bytes of
thisfield shdl be interpreted as specifying the implementation identifier EntitylD
of the implementation which last modified the File Identifier Descriptor.

& If the Lengthofl mplementationUse field is non ZERO then the first 32 bytes of
thisfidd shal be st to the implementation identifier Entityl D of the current
implementation.

NOTE: For additiond information on the proper handling of thisfield refer to the
section on Entity Identifier.

Thisfidd alows an implementation to identify which implementation last crested and/or
modified a gpecific File Identifier Descriptor .

2.3.5 ICB Tag

struct icbtag { /* ECMA 167 4/14.6 */
Uint32 PriorRecordedNumberof DirectEntries;
uint16 StrategyType;
byte StrategyParameter[2];
Uint16 Numberof Entries,
byte Reserved;
uint8 FileType;
Lb addr Parentl CBL ocation,
uint16 Flags;

}

2.3.5.1 Uint16 StrategyType
&~ The content of this fild specifies the ICB drategy type used. For the purposes
of read access an implementation shal support strategy types 4 and 4096.

& Shall be set to 4 or 4096.

NOTE: Strategy type 4096, which is defined in the appendix, is intended for primary

use on WORM media, but may aso be used on rewritable and overwritable media
2.3.5.2 Uint8FileType

Asapoint to clarification avaue of 5 shdl be used for a sandard byte addressablefile,
not 0. The vaue of 248 shdl be used for the VAT (refer to 2.2.10). The vaue of 249

UDF 2.01 46 March 15, 2000

ghall be used to indicate a Real-Time file (see Appendix 6.11). Vaues of 250 to 255
shall not be used.

2.35.2.1 FileType 249
Fileswith FileType 249 require specid commands to access the data space of thisfile.
To avoid possible damage, if an implementation does not support these commands it
ghdl not issue any command that would access or modify the data space of thisfile. This
includes but is not limited to reading, writing and deleting thefile.

2.3.5.3 Parentl CBL ocation
The use of thisfidd is optiond.

NOTE: In ECMA 167-4/14.6.7 it Sates, “If thisfield contains O, then no such ICB is
specified.” Thisisaflaw inthe ECMA standard in that an implementation could store
an ICB at logical block address 0. Therefore, if you decide to use this field, do not
store an ICB at logica block address 0.

2.3.5.4 Uint16 Flags
Bits 0-2: These hits specify the type of alocation descriptors used. Refer to the section
on Allocation Descriptors for the guideines on choosing which type of dlocation
descriptor to use.

Bit 3 (Sorted):
¢ For OSTA UDF compliant mediathis bit shdl indicate (ZERO) that directories
may be unsorted.

& Shdll be set to ZERO.

Bit 4 (Non-relocatable):

¢ For OSTA UDF compliant media this bit shal indicate (ONE) if the file is non
rdocatable. If ONE, an implementation shal set the bit to ZERO if a
modification will contravene the definition of thishbit in ECMA 167-4/14.6.8.

& Should be sat to ZERO unless required.

NOTE: This flag is not alock on the file in any way. It is used to indicate that an
implementation has aranged the alocation of the file to satidfy specific gpplication
requirements. In these cases, any remapping of a written block (see UDF sparable

partitions) or defragmentation of the file might not be desired. If afile with thisflag set to
ONE is copied, then the new copy of the file should have this bit set to ZERO.

Bit 9 (Contiguous):

UDF 2.01 47 March 15, 2000

&~ For OSTA UDF compliant media this bit may indicate (ONE) that the file is
contiguous. An implementation may reset this bit to ZERO to indicate that the
file may ke non-contiguous if the implementation can not assure that the file is
contiguous.

& Should be set to ZERO.

Bit 11 (Transformed):

&~ For OSTA UDF compliant mediathis bit shdl indicate (ZERO) that no
transformation has taken place.

& Shall be st to ZERO.

The methods used for data compression and other forms of data transformation might
be addressed in afuture OSTA document.

Bit 12 (Multi-versions):
¢ For OSTA UDF compliant media this bit shdl indicate (ZERO) that multi-
versoned files are not present.

& Shdll be set to ZERO.

UDF 2.01 48 March 15, 2000

2.3.6 FileEntry
sruct FleEntry {
druct tag
struct icbtag
Uint32
Uint32
Uint32
Uint16
Uint8
Uint8
Uint32
Uint64
Uint64
druct timestamp
struct timestamp
druct timestamp
Uint32
struct long_ad
struct EntitylD
Uint64
Uint32
Uint32
byte
byte
}

[* ECMA 167 4/14.9 */
DescriptorTag;

ICBTag;

vid;

Gid;

Permissons,

FileLinkCount;

Recor dFor mat;

Recor dDisplayAttributes,;
RecordL ength;

I nformationL ength;

L ogicalBlocksRecor ded;
AccessTime,
ModificationTime;
AttributeTime;

Checkpoint;
ExtendedAdttributel CB;

I mplementationl dentifier;
Uniquel D,

Lengthof ExtendedAttributes,
LengthofAllocationDescriptors,
ExtendedAttributeq];
AllocationDescriptory];

NOTE: Thetotd length of aFileEntry shal not exceed the Sze of one logica block.

2.3.6.1 Uint8 RecordFor mat;
&~ For OSTA UDF compliant mediaavaue of zero shdl indicate that the structure
of the information recorded in the file is not specified by thisfied.

& Shdll be set to ZERO.

2.3.6.2 Uint8 RecordDisplayAttributes;
&~ For OSTA UDF compliant mediaavaue of zero shdl indicate that the structure
of the information recorded in the file is not specified by thisfidd.

& Shdll be set to ZERO.

UDF 2.01

49 March 15, 2000

2.3.6.3 Uint32 RecordL ength;
¢ For OSTA UDF compliant media avaue of zero shdl indicate thet the structure
of the information recorded in the file is not specified by thisfied.

& Shdll be set to ZERO.

2.3.6.4 Uint64 InformationL ength
In most cases, the InformationLength can be reconstructed during arecovery operation by
finding the sum of the lengths of each of the dlocation descriptors. However, space may be
dlocated after the end of thefile (identified asa“filetall.”). As*unrecorded and alocated”
gpaceisalegd part of afile body, usng the alocation descriptorsto determine the
information length is possible under the following conditions:

- if an dlocation descriptor exists with an extent length that is not amultiple of the block
gze

- if no such extent exigts and the extent type of the last alocation descriptor with an extent
length unequd to O is not equd to “unrecorded and dlocated” .

Only the last extent of the file body may have an extent length thet is not a multiple of the
block size, see ECMA 167 4/12.1 and 4/14.14.1.1.

2.3.6.5 Uint64 L ogicalBlocksRecorded
For files and directories with embedded data the vaue of thisfidd shall be ZERO.

2.3.6.6 struct EntitylD Implementationldentifier;
Refer to the section on Entity Identifier.

2.3.6.7 Uint64 Uniquel D
For the root directory of afile set this value shdl be set to ZERO.

Section 3.2.1 Logicd Volume Header Descriptor describes how the UDF Unique ID

field in the Implementation Use bytes of thelong_ad in the File Identifier Descriptor and
the Uniquel D filein the File Entry and Extended File Entry are set.

UDF 2.01 50 March 15, 2000

2.3.7 Unallocated Space Entry

struct UndlocatedSpaceEntry { /* ECMA 167 4/14.11 */
struct tag DescriptorTag,;
struct ichtag ICBTag;
Uint32 LengthofAllocationDescriptors,
byte AllocationDescriptors|[];
}

NOTE: The maximum length of an UndlocatedSpaceEntry shal be one Logica Block.

2.3.7.1 byteAllocationDescriptors
Only Short Allocation Descriptors shdl be used.

NOTE: The upper 2 bits of the extent length field in alocation descriptors specify an
extent type (ECMA 167 4/14.14.1.1). For the alocation descriptors specified for the
UndlocatedSpaceEntry the type shal be set to avalue of 1 to indicate extent allocated
but not recorded, or shdl be st to a value of 3 to indicate the extent is the next
extent of allocation descriptors. This next extent of alocation descriptors shal be
limited to the length of one Logica Block.

AllocationDescriptors shal be ordered sequentialy in ascending location order. No
overlgpping AllocationDescriptors shdl exist in the table. For example, ad.location =
2, ad.length = 2048 (logica block sze = 1024) then nextad.location = 3 isnot
alowed. Adjacent AllocationDescriptors shal not be contiguous. For example
ad.location = 2, ad.length = 1024 (logica block size = 1024), nextad.location = 3 is not
alowed and would instead be a Sngle AllocationDescriptor, ad.location = 2, ad.length
=2048. The only case where adjacent AllocationDescriptors may be contiguousis
when the ad.length of one of the adjacent AllocationDescriptorsis equd to the
maximum AllocationDescriptor s length.

UDF 2.01 51 March 15, 2000

2.3.8 Space Bitmap Descriptor

struct SpaceBitmap { [* ECMA 167 4/14.12*/

sruct Tag Descriptor Tag;
uint32 NumberOfBits;
Uint32 NumberOfBytes,
byte Bitmapl];

}

2.3.8.1 struct Tag Descriptor Tag

The cdculation and maintenance of the Descriptor CRC fidd of the Descriptor Tag for
the SpaceBitmap descriptor is optiond. If the CRC is not maintained then both the
Descriptor CRC and Descriptor CRCLength fidlds shdl be ZERO.

2.3.9 Partition Integrity Entry

gruct Partitionl ntegrityEntry { /* ECMA 167 4/14.13*/
struct tag DescriptorTag,;
struct icbtag ICBTag;
druct timesamp RecordingTime;
Uint8 Integrity Type;
byte Reserved[175];
gruct EntitylD Implementationl dentifier;
byte ImplementationUse[256 ;
}

With the functiondity of the Logical Volume Integrity Descriptor this descriptor is not
needed, therefore this descriptor shall not be recorded.

2.3.10 Allocation Descriptors

When congtructing the data area of afile an implementation has severd types of
alocation descriptors from which to choose. The following guideines shal be followed
in choosing the proper alocation descriptor to be used:

Short Allocation Descriptor - For aLogicd Volumetha resdes on asingle Volume
with no intent to expand the Logica Volume beyond the sngle volume Short
Allocation Descriptors should be used. For example aLogica Volume created for a
sandalone drive.

NOTE: Refer to section 2.2.2.2 on the Maximumi nter changelLevel.

Long Allocation Descriptor - For aLogica Volumethat resdeson asingle Logca
Volume with intent to later expand the Logica Volume beyond the single volume, or a

52 March 15, 2000

Logicd Volume that resdes on multiple Volumes Long Allocation Descriptors should
be used. For exampleaLogica Volume created for a jukebox.

NOTE: Thereisabenefit of usng Long Allocation Descriptors even on asingle
volume, which is the support of tracking erased extents on rewritable media. See
section 2.3.10.1 for additiona information.

For both Short and Long Allocation Descriptors, if the 30 least Significant bits of the
ExtentLength fidd is O, then the 2 most Sgnificant bits shdl be O.

Allocation Descriptors identifying virtual space shdl have an extent length of the block
gzeor less. Allocation descriptors identifying file deta, directories, or stream data shdl
identify physical space. 1CBsrecorded in virtud space shdl uselong_ad dlocation
descriptors to identify physica space. The use of short_ad alocation descriptors would
identify file datain virtud space if the ICB werein virtua space.

Descriptors recorded in virtud space shdl have the virtud logica block number
recorded in the Tag Location field.

2.3.10.1 LongAllocation Descriptor

struct long_ad { [* ECMA 167 4/14.14.2 %/
Uint32 ExtentLength;
Lb_addr ExtentLocetion;
byte I mplementationUseg[6];

}

To dlow use of the ImplementationUse fid by UDF and dso by implementations the
following structure shdl be recorded within the 6-byte I mplementation Use fidd.

struct AD mpUse

{
U nt16 fl ags;

byte inmpUse[4];
}
/*
* ADI npUse Flags (NOTE: bits 1-15 reserved for future use by UDF)
*/
#def i ne EXTENTEr ased (0x01)

In theinterests of efficiency on Rewritable mediathat benefits from preprocessng, the
EXTENTErased flag shdl be set to ONE to indicate an erased extent. Thisapplies
only to extents of type not recorded but allocated.

UDF 2.01 53 March 15, 2000

2.3.11 Allocation Extent Descriptor

struct AllocationExtentDescriptor { [* ECMA 167 4/14.5*/
sruct tag Descriptor Tag;
Uint32 PreviousAllocationExtentL ocation;
uint32 LengthOfAllocationDescriptors,

}

The Allocation Extent Descriptor does not contain the Allocation Descriptors itself.
UDF will interpret ECMA 167, 4/14.5 in such a way that the Allocation Descriptors
will gart on the firs byte following the LengthOfAllocationDescriptors fidd of the
Allocation Extent Descriptor. The Allocation Extent Descriptor together with its
Allocation Descriptors congtitutes an extent of alocation descriptors. The length of an
extent of dlocation descriptors shdl not exceed the logical block size. Unused bytes
following the Allocation Descriptors till the end of the logicd block shdl have avaue of
#00.

2.3.11.1 Struct tag Descriptor Tag
The DescriptorCRCL ength of the DescriptorTag should include the Allocation
Descriptors following the Allocation Extent Descriptor. The Descriptor CRCLength
shdl be either 8 or 8 + LengthOfAllocationDescriptors.

2.3.11.2 Uint32 PreviousAllocationExtentL ocation
&~ The previous dlocation extent location shdl not be used.

& Shall beset to 0.

UDF 2.01 54 March 15, 2000

2.3.12 Pathname
2.3.12.1 Path Component
struct PathComponent{ /* ECMA 167 4/14.16.1 */

uint8 ComponentType;

Uint8 LengthofComponentl dentifier;
Uintl6 ComponentFileVersonNumber;
char Componentldentifier|];

}
2.3.12.1.1 Uint16 ComponentFileVersonNumber
& Thereshdl be only one verson of afile as specified below with the vaue being
set to ZERO.

& Shdl be set to ZERO.

2.4 Part 5- Record Structure
Record structure files shal not be created. If they are encountered on the mediaand they are
not supported by the implementation they shdl be treated as an uninterpreted stream of bytes.

UDF 2.01 55 March 15, 2000

3. System Dependent Requirements
3.1 Part 1- General

3.1.1 Timestamp

Sruct timestamp { [* ECMA 167 1/7.3*/
Uint16 TypeAndTimezone,
Uint16 Year,
Uint8 Month;
Uint8 Day;
Uint8 Hour;
uUint8 Minute
Uint8 Second;
uUint8 Centiseconds;
Uint8 HundredsofMicr oseconds;
uUint8 Microseconds;

}

3.1.1.1 Uint8 Centiseconds;

&

3.1.1.2 Uint8
&

3.1.1.3 Uint8
&

UDF 2.01

For operating systems that do not support the concept of centiseconds
the implementation shdl ignore thisfield.

For operating systems that do not support the concept of centiseconds
the implementation shall st thisfied to ZERO.

HundredsofMicroseconds;
For operating systems that do not support the concept of hundreds of
Microseconds the implementation shdl ignore thisfield.

For operating systems that do not support the concept of a hundreds
of Microseconds the implementation shal set thisfidd to ZERO.

Micr oseconds;
For operating systems that do not support the concept of
microseconds the implementation shdl ignore this fidd.

For operating systems that do not support the concept of
mi croseconds the implementation shal st thisfidd to ZERO.

56 March 15, 2000

3.2 Part 3- Volume Structure
3.2.1 Logical Volume Header Descriptor

gruct LogicaVolumeHeaderDesc { [* ECMA 167 4/14.15*/
Uinté4 Uniquel D,
bytes reserved[24]

}

3.2.1.1 Uint64 UniquelD
Thisfidd contains the next Uniquel D vaue thet should be used. The fidd isinitidized to
16, and it monotonicaly increases with each assignment described below. Whenever
the lower 32-hits of this vaue reach #FFFFFFFF, the upper 32-bits are incremented
by 1, aswould be expected for a 64-hit vaue, but the lower 32-bits“wrap” to 16 (the
initidization vaue). This behavior supports Mac™ OS which uses an ID number space
of 16 through 2* - 1 indlusive, and will not cause problems for other platforms.

Uniquel D is used whenever anew file or directory is cregted, or another nameislinked
to an exiding file or directory. The File Identifier Descriptors and File Entries/Extended
File Entries used for a stream directory and named streams associated with afile or
directory do not use Uniquel D; rather, the unique ID fields in these Structures take their
vaue from the Uniquel D of the File Entry/Extended File Entry of the file/directory they
are asociated with. The same counts for File Entries/Extended File Entries used to
define an Extended Attributes Space.

When afile or directory is cregted, this Uniquel D is assigned to the Uniquel D fidld of
the File Entry/Extended File Entry, the lower 32-bits of UniquelD are assigned to
UDFUniquel D in the Implementation Use bytes of the ICB field in the File Identifier
Descriptor (see 2.3.4.3), and Uniquel D is incremented by the policy described above.

When anameis linked to an exiging file or directory, the lower 32-bits of

NextUniquel D are assgned to UDFUniquel D in the Implementation Use bytes of the
ICB fidd in the File Identifier Descriptor (see 2.3.4.3), and Uniquel D is incremented by
the policy described above.

The lower 32-bits shdl be the samein the File Entry/Extended File Entry and itsfirst
File Identifier Descriptor, but they shall differ in subsequent FIDs.

All UDF implementations shal maintain the UDFUniquel D inthe FID and UniquelD in

the FE/EFE as described in this section. The LVHD inacdosed Logica Volume
Integrity Descriptor shal have avaid UniquelD.

UDF 2.01 57 March 15, 2000

3.3 Part 4 - File System
3.3.1 Fileldentifier Descriptor

sruct FileldentifierDescriptor { [* ECMA 167 4/14.4*/
struct tag DescriptorTag;
Uintl6 FileVersonNumber;
Uint8 FileCharacterigtics;
uint8 LengthofFlel dentifier;
sruct long_ad ICB;
uint16 LengthofimplementationUse;
byte ImplementationUsd]];
char Fileldentifier[];
byte Padding[];
}

3.3.1.1 Uint8FileCharacteristics
The following sections describe the usage of the FileCharacteristics under various
operating systems.

3.3.1.1.1 MSDOS, 052, Windows 95, Windows NT, Macintosh
&~ |f Bit Oissat to ONE, thefile shadl be consdered a"hidden’ file.
If Bit 1 isset to ONE, thefile shdl be consdered a"directory.”
If Bit 2 isset to ONE, thefile shal be consdered "deleted.”
If Bit 3 is set to ONE, the ICB fidd within the associated Fileldentifier
dructure shdl be condgdered as identifying the "parent” directory of the
directory that this descriptor isrecorded in

& If thefileis desgnated as a"hidden” file, Bit O shal be set to ONE.
If the fileis desgnated as a"directory,” Bit 1 shdl be set to ONE.
If thefileis desgnated as "deleted,” Bit 2 shall be set to ONE.

3.3.1.1.2 UNIX and OS400
Under UNIX and OS/400 these bits shall be processed the same as specified in
3.3.1.1.1., except for hidden files which will be processed as norma non-
hidden files

UDF 2.01 58 March 15, 2000

3.3.2 ICB Tag

struct icbtag { /* ECMA 167 4/14.6 */
Uint32 PriorRecordedNumberof DirectEntries;
uint16 Strategy Type;
byte StrategyParameter[2];
uint16 Numberof Entries,
byte Reserved;
uint8 FleType
Lb addr ParentlCBL ocetion,
uint16 Flags;
}

3.3.2.1 Uintl6 Flags

3.3.2.1.1 MSDOS, 052, Windows 95, Windows NT
Bits6 & 7 (Setuid & Setgid):
&~ lgnored.

& In the interests of maintaining security under environments which do support
these bits; bits 6 and 7 shal be set to ZERO f any one of the following
conditions are true :

Bit 8 (Sticky):

A fileis created.
The attributes/permissions associated with afile, are modified .

A fileis written to (the contents of the data associated with afile are
modified).

An Extended Attribute associated with the fileis modified.

A stream associated with afileis modified.

&~ lgnored.

& Shdll be set to ZERO.

Bit 10 (System):
&~ Mapped to the MS-DOS/ OS2 system hit.

UDF 2.01

59 March 15, 2000

& Mapped from the MS-DOS/ OS/2 system hit.

3.3.2.1.2 Macintosh

Bits6 & 7 (Setuid & Setgid):

¢~ lgnored.

& In the interests of maintaining security under environments, which do support
these bits; bits 6 and 7 shdl be set to ZERO if any one of the following
conditions are true:

A fileis crested.
The attributes/permissons associated with afile, are modified.

A fileis written to (the contents of the data associated with afile are
modified).

An Extended Attribute associated with the fileis modified.
A stream associated with afile is modified.

Bit 8 (Sticky):
&~ lgnored.

& Shdll be st to ZERO.

Bit 10 (System):
&~ lgnored.

& Shall be set to ZERO.
3.3.2.1.3 UNIX
Bits 6, 7 & 8 (Setuid, Setgid, Sticky):
These bits are mapped to/from the corresponding standard UNIX file sysem bits.

Bit 10 (System):
¢~ lgnored.

& Shall be set to ZERO upon file creation only, otherwise maintained.

UDF 2.01 60 March 15, 2000

3.3.2.1.4 0S/400

Bits6 & 7 (Setuid & Setgid):

&~ lgnored.

& In the interests of maintaining security under environments, which do support
these bits; bits 6 and 7 shdl be set to ZERO if any one of the following
conditions are true:

A fileiscreated.
The attributes/permissions associated with afile, are modified.

A fileis written to (the contents of the data associated with afile are
modified).

An Extended Attribute associated with the file is modified.
A stream associated with afile is modified.

Bit 8 (Sticky):
&~ lgnored.

& Shdll be set to ZERO.

Bit 10 (System):
&~ lgnored.

& Shdl be st to ZERO upon file creetion only, otherwise maintained.

UDF 2.01 61 March 15, 2000

3.3.3 FileEntry

sruct FleEntry {
druct tag
struct ichtag
Uint32
Uint32
Uint32
Uint16
Uint8
Uint8
Uint32
Uinte4
Uinté4
druct timestamp
druct timestamp
druct timestamp
Uint32
druct long_ad
druct EntitylD
Uinte4
Uint32
Uint32
byte
byte
}

[* ECMA 167 4/14.9 */
DescriptorTag,;

ICBTag;

uid;

Gid;

Permissons;
FleLinkCount;
RecordFormat;
RecordDisplayAttributes,
RecordLength;
InformationLength;

L ogica BlocksRecorded,;
AccessTime,;
ModificaionTime
AttributeTime;
Checkpoint;
ExtendedAttributel CB;
Implementationl dentifier;
Uniquel D,

Lengthof ExtendedAttributes;
Lengthof AllocationDescriptors;

ExtendedAttributed];
AllocationDescriptord];

NOTE: Thetotd length of aFileEntry shal not exceed the Size of onelogica block.

3.3.3.1 Uint32 Uid

&~ For operating systems that do not support the concept of a user identifier the
implementation shal ignore thisfiedd. For operating systems that do support this
fieddd avaue of 22 - 1 shdl indicate an invaid UID, otherwise the field contains
avaid user identifier.

& For operating systems that do not support the concept of auser identifier the
implementation shal set thisfield to 22 - 1 to indicate an invalid UID, unless
otherwise specified by the user.

3.3.3.2 Uint32 Gid

¢~ For operating systems that do not support the concept of agroup identifier the
implementation shal ignore thisfield. For operating systems that do support this

62

March 15, 2000

fidd avdueof 22 - 1 shdl indicate an invadid GID, otherwise the fidd contains
avdid group identifier.

For operating systems that do not support the concept of a group identifier the
implementation shal set thisfidd to 22 - 1 to indicate an invaid GID, unless
otherwise specified by the user.

3.3.3.3 Uint32 Permissions

/* Definitions: */

UDF 2.01

/* Bit for a File for a Directory */
/* ___ */
/* Execute May execute file May search directory */
/* Wite May change file contents May create and delete files */
/* Read May examine file contents My list files in directory */
/* ChAttr May change file attributes May change dir attributes */
/* Delete My delete file May del ete directory */
#defi ne OTHER Execut e 0x00000001
#define OTHER Wite 0x00000002
#defi ne OTHER Read 0x00000004
#defi ne OTHER ChAttr 0x00000008
#defi ne OTHER Del ete 0x00000010
#def i ne GROUP_Execut e 0x00000020
#define GROUP_Wite 0x00000040
#defi ne GROUP_Read 0x00000080
#define GROUP_ChAttr 0x00000100
#defi ne GROUP_Del ete 0x00000200
#defi ne OMNER_Execut e 0x00000400
#define OANER Wite 0x00000800
#defi ne OMNER_Read 0x00001000
#defi ne OMER_ChAttr 0x00002000
#defi ne ONNER Del ete 0x00004000

The concept of permissions that deals with security is not completely portable between
operating systems. This document attempts to maintain consgstency among
implementations in processing the permission bits by addressing the following basic
iSsues:

1. How should an implementation handle Owner, Group and Other
permissions when the operating system has no concept of User and Group
|ds?

2. How should an implementation process permission bits when encountered,
specificaly permission bits that do not directly map to an operating system
supported permisson bit?

3. What default values should be used for permission bits that do not directly
map to an operating system supported permisson bit when cregting a new
file?

63 March 15, 2000

Owner, Group and Other
In generd, for operating systems that do not support User and Group |ds the following
agorithm should be used when processing permission bits:

When reading a specific permission, thelogicad OR of al three (owner, group,
other) permissions should be the value checked. For example afile would be
considered writable if the logical OR of OWNER_Write, GROUP_Write and
OTHER_Write was equd to one.

When setting a specific permisson the implementation should st dl three
(owner, group, other) sets of permission bits. For exampleto mark afile as

writable the OWNER_Write, GROUP_Write and OTHER Write should dl be
set to one.

Default Permission Values
For the operating systems covered by this document the following table describes what
default vaues should be used for permission bits that do not directly map to an
operating system supported permission bit when creating anew file.

Permissi | File/Directo Description DOS | OS/2 | Win | Win Mac [UNIX &
on ry 95 NT OS | 0S/400
Read file The file may be read 1 1 1 1 1 U
Read directory The directory may be read, only if the 1 1 1 1 1 U
directory is also marked as Execute.
Write file The file’'s contents may be modified U U U U U U
Write directory Files or subdirectories may be renamed, U U U U U U
added, or deleted, only if the directory is
also marked as Execute.
Execute |file The file may be executed. 0 0 0 0 0 U
Execute [directory The directory may be searched for a 1 1 1 1 1 U
specific file or subdirectory.
Attribute | file Thefile's permissions may be changed. 1 1 1 1 1 Note 1
Attribute | directory The directory’s permissions may be 1 1 1 1 1 Note 1
changed.
Delete file The file may be deleted. Note2 [Note2 | Note [Note2 | Note2 | Note 2
2
Delete directory The directory may be deleted. Note2 [Note 2 | Note [Note 2 | Note 2| Note 2
2

U - User Specified, 1 - Set, 0 - Clear

UDF 2.01

NOTE 1. Under UNIX only the owner of afile/directory may change its attributes.

Under OS/400 if afile or directory is marked as writable (Write permission set) then
the Attribute permisson bit should be set.

NOTE 2: The Delete permission bit should be set based upon the status of the Write
permisson bit. Under DOS, OS/2 and Macintosh, if afile or directory is marked as

writable (Write permisson set) then the file is considered deletable and the Delete

64

March 15, 2000

permission bit should be set. If afileisread only then the Delete permission bit should
not be set. This gppliesto file create as well as changing attributes of afile,

Processing Permissions

Implementation shall process the permission bits according to the following table that
describes how to process the permission bits under the operating systems covered by
this document. The table addresses the issues associated with permission bits that do
not directly map to an operating system supported permission bit.

Permissio | File/Director Description DOS | OS/2 | Win Wi Mac | UNIX | OS/40
n y 95 n OS 0
NT

Read file The file may be read E E E E E E E

Read directory T he directory may be read E E E E [E E

Write file The file's contents may be E E E E E E E
modified

Write directory Files or subdirectories may be E E E E E E E
created, deleted or renamed

Execute file The file may be executed. [| | | [E |

Execute directory The directory may be searched for E E E E E E E
a specific file or subdirectory.

Attribute file The file's permissions may be E E E E E | |
changed.

Attribute directory The directory’s permissions may be E E E E E | |
changed.

Delete file The file may be deleted. E E E E E | |

Delete directory The directory may be deleted. E E E E E | |

E- Enforce, | - Ignore

UDF 2.01

The Execute bit for adirectory, sometimes referred to as the search bit, has specid
meaning. This bit enables a directory to be searched, but not have its contents listed.
For example assume adirectory caled PRIVATE exigts which only has the Execute
permission and does not have the Read permission bit set. The contents of the
directory PRIVATE can not belisted. Assume thereisafile within the PRIVATE
directory caled README. The user can get access to the README file since the
PRIVATE directory is searchable.

To be ableto list the contents of a directory both the Read and Execute permisson bits
must be set for the directory. To be able to create, delete and rename afile or
subdirectory both the Write and Execute permission bits must be set for the directory.
To get a better understanding of the Execute bit for adirectory reference any UNIX
book that coversfile and directory permissions. The rules defined by the Execute bit
for adirectory shdl be enforced by dl implementations. The exception to thisrule
aopliesto Macintosh implementations. A Macintosh implementation may ignore the
gtatus of the Read hit in determining the accessibility of a directory

65 March 15, 2000

NOTE: To be aleto delete afile or subdirectory the Delete permisson hit for thefile
or subdirectory must be set, and both the Write and Execute permission bits must be
et for the directory it occupies.

3.3.3.4 Uint64 Uniquel D
NOTE: For some operating systems (i.e. Macintosh) this value needs to be less than
the max vdue of alnt32 (2** - 1). Under the Macintosh operating sysem thisvdueis
used to represent the Macintosh directory/file ID. Therefore an implementation should
attempt to keep this value less than the max vaue of aInt32 (2 - 1). The vaues 1-15
shdl be reserved for the use of Macintosh implementations.

3.3.3.5 byte Extended Attributes
Certain extended attributes should be recorded in thisfield of the FileEntry for
performance reasons. Other extended attributes should be recorded in an ICB pointed
to by the field ExtendedAttributel CB. In the section on Extended Attributes it will be
specified which extended attributes should be recorded in thisfield.

3.3.4 Extended Attributes
In order to handle some of the longer Extended Attributes (EAS) that may vary in
length, the following rules gpply to the EA space.

1. All EAswith an attribute length greeter than or equa to alogical block shal be
block digned by starting and ending on alogicd block boundary.

2. Smdler EAsshdl be congrained to an atribute length that is a multiple of 4 bytes.

3. Each Extended Attributes Space shall gppear as a single contiguous logical space
congructed asfollows.

ECMA 167 EAs

Non block aigned Implementation Use EAs
Block digned Implementation Use EAs
Application Use EAs

NOTE: There may exist 2 Extended Attributes Spaces per file, one embeded in the
File Entry or Extended File Entry and the other as a separate space referenced by
the Extended Attribute ICB addressin the File Entry or Extended File Entry. Each
Extended Attributes Space, if present, must have its own Extended Attribute Header
Descriptor (see the next section).

UDF 2.01 66 March 15, 2000

3.3.4.1 Extended Attribute Header Descriptor

struct ExtendedA ttributeHeaderDescriptor { [* ECMA 167 4/14.10.1 */
struct tag DescriptorTag;
uint32 I mplementationAttributesL ocation;
uint32 ApplicationAttributesL ocation;

}

¢~ Avdueinone of thelocation fields highlighted above equa to or
greater than the length of the EA space shdl be interpreted as an indication that
the corresponding attribute does not exist.

& If an attribute associated with one of the location fidds
highlighted above does not exit, then the vaue of the corresponding location
field shall be set to #FFFFFFFF.

3.3.4.2 Alternate Permissions
druct AlternatePermissonsExtendedAttribute{ /* ECMA 167 4/14.10.4 */

uint32 AttributeType;
uUint8 AttributeSubtype;
byte Reserved[3];
uint32 Attributel_ength;
Uint16 Ownerldentification;
Uint16 Groupldentification;
Uint16 Permisson;

}

This structure shall not be recorded.

3.3.4.3 FileTimes Extended Attribute

gruct FleTimesExtendedAttribute { [* ECMA 167 4/14.10.5*/
uint32 AttributeType;
uUint8 AttributeSubtype;
byte Reserved[3];
uint32 Attributel_ength;
Uint32 Datal_ength;
uint32 FleTimeExigence;
byte FileTimes;
}

3.34.3.1 byte FileTimes
e If thisfidd contains afile creation time it shal be interpreted asthe
cregtion time of the associated file. If themain File Entryisan

UDF 2.01 67 March 15, 2000

Extended File Entry, the file cregtion time in this structure shdl be
ignored and thefile cregtion time from the main File Entry shal be
used.

& If the main Fle Entry is an Extended File Entry, this structure shal not
be recorded with afile creation time.

If themain File Entry isnot an Extended File Entry and the File Times
Extended Attribute does not exist or does not contain the file crestion time then
an implementation shal use the Modification Timefied of the File Entry to
represent the file crestion time.

3.3.4.4 Device Specification Extended Attribute
struct DeviceSpecificationExtendedAdttribute { [* ECMA 167 4/14.10.7 */

UDF 2.01

}

uint32 AttributeType;

uint8 AttributeSubtype;

byte Reserved[3];

uint32 Attributel_ength;

uint32 ImplementationUselength; /* (=IU_L) */
uint32 M aj or Devicel dentification;

Uint32 Minor Devicel dentification;

byte I mplementationUse{IU_L];

The following paradigm shal be followed by an implementation that creates a Device
Specification Extended Attribute associated with afile :

If and only if afile has a DeviceSpecificationExtendedAttribute associated
with it, the contents of the FileType fidd in theicbtag structure shal be set to 6
(indicating ablock specid devicefile), OR 7 (indicating a character specid
devicefile).

If the contents of the FileType fidd in theicbtag structure do not equal 6 or 7,
the DeviceSpecificationExtendedAttribute associated with afile shdl be
ignored.

In the event that the contents of the FileType fidd in theicbtag structure equas
6 or 7, and the file does not have a DeviceSpecifi cationExtendedAttribute
associated with it, access to the file shall be denied.

For operating system environments that do not provide for the semantics
associated with ablock specid device file, requests to open/read/write/close a

68 March 15, 2000

file that has the DeviceSpecificationExtendedAttribute associated with it shal
be denied.

All implementations shdl record a developer 1D in the ImplementationUse
field that uniquely identifies the current implementation.

3.3.4.5 Implementation Use Extended Attribute
gtruct ImplementationUseExtendedAdttribute { [* ECMA 167 4/14.10.8 */

uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

uint32 Attributelength;

uint32 ImplementationUselength; /* (=IU_L) */
druct EntitylD I mplementationl dentifier;

byte I mplementationUse{IU_L];

}

The AttributeLength fidd specifies the length of the entire extended attribute. For
vaiable length extended attributes defined using the Implementation Use Extended
Attribute the Attribute Length field should be large enough to leave padding space
between the end of the Implementation Use field and the end of the Implementation
Use Extended Attribute.

The following sections describe how the Implementation Use Extended Attributeis
used under various operating systems to store operating system specific extended
attributes.

The gtructures defined in the following sections contain a header checksum fidd. This
field represents a 16-bit checksum of the Implementation Use Extended Attribute
header. Thefidds AttributeType through Implementationldentifier indusvey
represent the data covered by the checksum. The header checksum field is used to ad
in disaster recovery of the extended attributes space. C source code for the header
checksum may be found in the gppendix.

NOTE: All compliant implementations shdl preserve existing extended attributes
encountered on the media. Implementations shall create and support the extended
attributes for the operating system they currently support. For example, aMacintosh
implementation shdl preserve any OS/2 extended attributes encountered on the media.
It shdl aso create and support al Macintosh extended attributes specified in this
document.

UDF 2.01 69 March 15, 2000

3.3.45.1 All Operating Systems
3.345.1.1 FreeEASpace
This extended attribute shdl be used to indicate unused space within the
Extended Attributes Space. This extended attributes shal be stored as an
Implementation Use Extended Attribute whose I mplementationl dentifier
shall be =t to:
"*UDF FreeEASpace"

The ImplementationUse areafor this extended attribute shall be structured as

follows
FreeEASpace format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 U L-2 Free EA Space bytes

This extended attribute alows an implementation to shrink/grow the totd sze of
other extended attributes without rewriting the complete Extended Attributes
Space. The FreeEASpace extended attribute may be overwritten and the
space re-used by any implementation that sees a need to overwrite it.

3.3.4.5.1.2 DVD Copyright Management Information
This extended attribute shall be used to store DVD Copyright Management
Information. This extended attribute shall be stored as an Implementation Use
Extended Attribute whose I mplementationldentifier shal be st to:
"*UDF DVD CGMSInfo"

The ImplementationUse areafor this extended attribute shal be structured as

follows
DVD CGMS Info format
RBP Length Name Contents
0 2 Header Checksum Uint16
2 1 CGMS Information byte
3 1 Data Structure Type Uint8
4 4 Protection System Information bytes

This extended atribute dlows DVD Copyright Management Informationto be
gored. Theinterpretation of thisformat shdl be defined inthe DVD
specification published by the DVD Consortium (see 6.9.3). Support for this
extended attribute is optiond.

UDF 2.01 70 March 15, 2000

3.3.4.5.2 M SDOS, Windows 95, Windows NT
&~ lgnored.

& Not supported. Extended attributes for existing files on the media shal be
preserved.

33453 0952
0OS/2 supports an unlimited number of extended attributes, which shal be stored asa
named stream as defined in 3.3.8.2. To enhance performance the following
Implementation Use Extended Attributewill be created.

334531 OS2EALength
This attribute specifies the OS2 Extended Attribute Stream (3.3.8.2)
information length. Since this value needs to be reported back to OS2 under
certain directory operations, for performance reasons it should be recorded in
the ExtendedAttributes fidd of the FileEntry. This extended attribute shdl be
stored as an I mplementation Use Extended Attribute whose
Implementationldentifier shal be st to:

"*UDF OS2 EALength"
The ImplementationUse areafor this extended attribute shall be structured as
follows
OS2EAL ength format
RBP | Length Name Contents
0 2 Header Checksum Uintl6
2 4 0S/2 Extended Attribute L ength Uint32

The vaue recorded in the OS2ExtendedAttributelength field shall be equd to
the InformationLength field of the file entry for the OS2EA stream.

3.34.5.4 Macintosh OS
The Macintosh OS requires the use of the following extended attributes.

3.34.5.4.1 MacVolumelnfo
This extended attribute contains Macintosh volume information which shal be
stored as an I mplementation Use Extended Attribute whose
I mplementationldentifier shall be st to:
"*UDF Mac Volumel nfo"

The ImplementationUse areafor this extended attribute shal be structured as
folows

UDF 2.01 71 March 15, 2000

MacVolumel nfo format

RBP | Length Name Contents
0 2 Header Checksum Uint16
2 12 Last Modification Date timestamp
14 12 Last Backup Date timestamp
26 32 Volume Finder Information Uint32

The MacVolumel nfo extended attribute shall be recorded as an extended

attribute of theroot directory FileEntry.

3.3.4.5.4.2 MacFinderlnfo
This extended attribute contains Macintosh Finder information for the

associated file or directory. Since this information is accessed frequently, for
performance reasons it should be recorded in the ExtendedAttributes fied of

UDF 2.01

the FileEntry.

The MacFinderInfo extended attribute shall be stored as an Implementation
Use Extended Attribute whose |mplementationl dentifier shall be st to:

"*UDF M ac FinderInfo"

The ImplementationUse areafor this extended attribute shall be structured as

follows
MacFinder|nfo format for a directory
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 2 Reserved for padding Uint16=0
4 4 Parent Directory ID Uint32
8 16 Directory Information UDFDInfo
24 16 Directory Extended Information UDFDXInfo
MacFinderInfo format for afile
RBP | Length Name Contents
0 2 Header Checksum Uintl6
2 2 Reserved for padding Uintl6=0
4 4 Parent Directory ID Uint32
16 File Information UDFFInfo
24 16 File Extended Information UDFFXInfo
40 4 Resource Fork Data L ength Uint32
44 4 Resource Fork Allocated Length Uint32

The MacFinder|nfo extended attribute shall be recorded as an extended

atribute of every file and directory within the Logica Volume.

72

March 15, 2000

The following structures used within the MacFinder Info Structure are listed
below for clarity. For complete information on these structures refer to the
Macintosh books caled “Inside Macintosh”. The volume and page number
listed with each structure correspond to a specific “Insgde Macintosh” volume

and page.
UDFPoint format (Volume |, page 139)
RBP | Length Name Contents
0 2 v Int16
2 2 H Int16
UDFRect format (Volume |, page 141)
RBP | Length Name Contents
0 2 Top Int16
2 2 Left Int16
4 2 Bottom Int16
6 2 Right Int16
UDFDInfo format (Volume 1V, page 105)
RBP | Length Name Contents
0 8 FrRect UDFRect
8 2 FrFlags Int16
10 4 FrLocation UDFPoint
14 2 FrView Int16
UDFDXInfo format (VolumelV, page 106)
RBP | Length Name Contents
0 4 FrScroll UDFPoint
4 4 FrOpenChain Int32
8 1 FrScript Uint8
9 1 FrXflags Uint8
10 2 FrComment Int16
12 4 FrPutAway Int32
UDFFInfo format (Volume ll, page 84)
RBP | Length Name Contents
0 4 FdType uint32
4 4 FdCreator Uint32
8 2 FdFlags Uint16
10 4 FdL ocation UDFPoint
14 2 FdFIdr Int16

UDF 2.01

73

March 15, 2000

UDFF XInfo format (Volume IV, page 105)

RBP | Length Name Contents
0 2 FdiconlD Int16
2 6 FdUnused bytes
8 1 FdScript Int8
9 1 FdXFlags Int8
10 2 FdComment Int16
12 4 FdPutAway Int32

NOTE: The above-mentioned structures have thar origind Macintosh names
preceded by “UDF’ to indicate that they are actudly different from the origind
Macintosh structures. On the mediathe UDF structures are stored little
endian as opposed to the origind Macintosh structuresthat arein big endian

format.

33455 UNIX

&~ lgnored.

&5 Not supported. Extended atiributes for existing files on the media shal
be preserved.

3.34.5.6 0OS/400

0OS/400 requires the use of the following extended attributes.

3.34.5.6.1 OSA00DirInfo
This atribute specifies the OS/400 extended directory information. Since this
vaue needs to be reported back to OS/400 for normal directory information
processing, for performance reasons it should be recorded in the
ExtendedAttributes field of the FleEntry. This extended attribute shal be stored
as an Implementation Use Extended Attribute whose Implementationl dentifier

UDF 2.01

ghall be st to:

“*UDF OS400 Dirlnfo”.

The ImplementationUse area for this extended attribute shal be structured as

follows
OA00DirInfo format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 2 Reserved for padding Uint1l6=0
4 44 Directorylnfo bytes

74

March 15, 2000

For complete information on the structure of the Directorylnfo field recorded in
the OSAOODirInfo format, refer to the following IBM document:

IBM OS/400 UDF Implementation

Optica Storage Solutions, Department HTT
IBM

Rochester, Minnesota

3.3.4.6 Application Use Extended Attribute

struct ApplicationUseExtendedAdttribute { [* ECMA 167 4/14.10.9 */
Uint32 AttributeType; /* = 65536 */
Uint8 AttributeSubtype;
byte Reserved[3];
uint32 Attributelength;
uint32 ApplicationUseLength; /* (=AU_L) */
druct EntitylD Applicationldentifier;
byte ApplicationUsgfAU_L];
}

The AttributeLength fidld specifies the length of the entire extended atribute. For
vaiable length extended atributes defined usng the Application Use Extended
Attribute the Attribute Length field should be large enough to leave padding space
between the end of the ApplicationUse field and the end of the Application Use
Extended Attribute.

The gructures defined in the following section contain aheader checksum fidd. This
field represents a 16-bit checksum of the Application Use Extended Attribute heeder.
Thefidds AttributeType through Applicationldentifier inclusively represent the data
covered by the checksum. The header checksum field is used to aid in disaster
recovery of the extended attributes space. C source code for the header checksum
may be found in the gppendix.

NOTE: All compliant implementations shall preserve existing extended attributes
encountered on the media. Implementations shall create and support the extended
attributes for the operating system they currently support. For example, aMacintosh
implementation shdl preserve any OS/2 extended attributes encountered on the media.
It shal aso create and support al Macintosh extended attributes specified in this
document.

3.34.6.1 All Operating Systems

This extended attribute shal be used to indicate unused space within the Extended
Attributes Space reserved for Application Use Extended Attributes. This extended

UDF 2.01 75 March 15, 2000

atribute shal be stored as an Application Use Extended Attribute whose
Applicationldentifier shall be set to:
“*UDF FreeAppEASpace”

The ApplicationUse areafor this extended attribute shal be structured as follows:

FreeAppEASpace format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 IU L-2 | Free EA Space bytes

This extended attribute alows an implementation to shrink/grow the totd size of other
extended attributes without rewriting the complete Extended Attributes Space. The
FreeAppEASpace extended attribute may be overwritten and the space re-used by any
implementation who sees a need to overwriteit.

3.3.5 Named Streams

Named streams provide a mechaniam for associating related deta of afile. Itissmilarin
concept to extended attributes. However, named streams have sgnificant advantages over
extended attributes. They are not as limited in length. Space management is much essier as
each stream has its own space, rather than the common space of extended attributes. Finding a
particular stream does not involve searching the entire data space, as it does for extended
attributes.

Named streams are mainly intended for user data For example, a database application may
dore the records in the default or mainstream and indices in named streams. The user would
then see only one file for the database rather than many, and the gpplication can use the various
sreams admog asif they were independent files.

Named Streams are identified by an Extended File Entry. Extended File Entries are required
for fileswith associated named streams. Files without named streams should use Extended File
Entries. Fles may have normd File Entries; norma File Entries would be used where backward
compatibility is desired, such aswriting DVD Video discs

Thereisa“System Stream Directory” which isthe stream directory identified by the File Set
Descriptor. These streams are used to describe data related to the entire medium instead of
datathat relatesto afile. UDF defines several “system streams’ that are to be identified by the
system stream directory.

The parent of the System Sream Directory shall be the system stream directory.

UDF 2.01 76 March 15, 2000

It is recommended that Named Streams be used to store metadata and gpplication datainstead
of Extended Attributesin new implementations.

3.3.5.1 Named Streams Restrictions

ECMA 167 3" edition defines anew File Entry that contains a field for identifying a stream
directory. Thisnew File Entry should be used in place of the old File Entry, and should be used
for describing the streams themselves. Old and new file entries may be fregly mixed. In
particular, compatibility with old reader implementations can be maintained for certain files.

Redtrictions:

The stream directory ICB field of ICBs describing stream directories or named streams shdl be
st to zero. [no hierarchica streams]

Each named stream shdl be identified by exactly one FID in exactly one Stream Directory. [no
hard links among named streams or files and named streams]

Each Stream Directory ICB shdl be identified by exactly one Stream Directory ICB fidld. [no
hard links to stream directories]. The sole exception isthat the parent of the system stream
directory shdl be the syslem stream directory.

Hard Links to files with named streams are alowed.

Named Streams and Stream Directories shal not have Extended Attributes.

The Unique ID field of Named Streams and Stream Directories shdl be the same asthe Unique
ID of the main data stream.

UDF 2.01 77 March 15, 2000

The UID, GID, and permissons fields of the main File Entry shal apply to dl named sreams
associated with the main sream. At the time of creation of a named stream the vaues of the
UID, GID and permissions fields of the main file entry should be used as the default vaues for
the corresponding fields of the named stream. Implementations are not required to maintain or
check these fidldsin a named stream.

Implementations should not present streams marked with the metadata bit set in the FID to the
user. Streams marked with the metadata bit are intended solely for the use of the file system
implementation.

The parent entry FID in astream directory points to the main Extended File Entry, soits
reference must be counted in the Link Count field of the Extended File Entry. The sole
exception isthat the parent of the system stream directory shdl be the system stream directory.

Note: Thereisa potential pitfall when deleting files/directories: if the link count goes to
one when a FID is deleted, implementations must check for the presence of a stream
directory. If present, there are no more FIDs pointing to this File Entry, so it and all
associated structures must be deleted.

The modification time field of the main Extended File Entry should be updated whenever any
associated named stream is modified. The Access Time field of the main Extended File Entry
should be updated whenever any associated named stream is accessed. The SETUID and
SETGID hits of the ICB Tag flags field in the main Extended File Entry should be cleared
whenever any associated named stream is modified.

The ICB for a Named Stream directory shdl have afiletype of 13. All named streams shdll
have afiletypeof 5.

All systems shdl make the main data stream available, even on implementations that do not
implement named streams.

3.3.5.2 System Named Streams (M etadata)

A st of named streams is defined by UDF for file sysem use. Some UDF named streams are
identified by the File Set Descriptor and gpply to the entire file set (System Stream Directory).
Others pertain to individud files or directories and are identified by the stream directory.

All UDF named streams shdl have the Metadata bit set in the File Identifier Descriptor in the
Stream Directory, unless otherwise specified in this document. All streams not generated by the
file sysem implementation shall have this bit st to zero.

All UDF named streams shdl have afile type of 5 in the ICB identifying the stream.

UDF 2.01 78 March 15, 2000

The four characters * UDF are the first four characters of al UDF defined named streamsin this
document. Implementations shal not use any identifier beginning with * UDF for named streams
that are not defined in this documert. All identifiers for named streams beginning with * UDF
are reserved for future definition by OSTA.

3.3.6 Extended Attributes as named streams
An extended attribute may be recorded as a named sireaminstead. The extended attribute is
converted according to the following rules

The streamis marked as a Metadata stream.

The EA header and Header Checksum are not recorded. If the EA included pad bytes
between the Header Checksum and the remaining data, these are also not recorded.

Any extended attribute of afile or directory can be converted to a stream of the samefile or
directory by the following agorithm:

1. Create astream for thefile or directory containing the extended attribute. The identifier
Specified for the Entity Identifier becomes the stream name.

2. Copy the data of the extended attribute into the stream.

3. Ddete the extended attribute.

3.3.7 UDF Defined System Streams
This section cortains the definition of UDF defined system streams.

Stream Name Stream L ocation Metadata Flag
“*UDF Unique ID Mapping Data” System Stream Directory (File Set Descriptor) 1
“*UDF Non-Allocatable Space” System Stream Directory (File Set Descriptor) 1
“*UDF Power Cal Table” System Stream Directory (File Set Descriptor) 1
“*UDF Backup” System Stream Directory (File Set Descriptor) 1

Since the streams listed above have the Metadata flag set, the implementation shal not passthe
name of the stream across the “plug-in file sysem interface’ of a platform.

3.3.7.1 Uniquel D Mapping Data Stream

The Unique ID Mapping Data alows an implementation to go directly to the ICB hierarchy for
the file/directory associated with a UDFUniquel D, or to the ICB hierarchy for the directory
which contains the file/directory associated with the UDFUniquel D. Unique ID Mapping Daais
stored as a named stream of the System Stream Directory (associated with the File Set
Descriptor). The name of this stream shdl be st to:

UDF 2.01 79 March 15, 2000

“*UDF Unique ID Mapping Data’

The Metadata bit in the File Characteristics fied of the File Identifier Descriptor shall be set
to 1 to indicate that the existence of this file should not be made known to clients of aplatform’s
file sysem interface.

Shall be created for read-only media

Shadll be created by implementations which batch write (e.g., pre-mastering tools) avolume
on write-once and rewritable media

For implementations which perform incrementa updates of volumes on write-once or
rewritable media (e.g., on-line file sysems), the following rules apply:

May be created and maintained if not present

Shdl be maintained if present and volumeis clean

Should be repaired and maintained, but may be deleted, if present and volumeis dirty

For these rules, avolume is dean if either avdid Close Logicd Volume Integrity Descriptor
or avdid Virtua Allocation Tableisrecorded

3.3.7.1.1 UDF UniquelD Mapping Data
The contents of the Unique ID Mapping stream are described by the table “UDF
Unique ID Mapping Data’ which contains some header fields before an array of “UDF
Unique ID Mapping Entry.” Thefields of these structures are described below their

corresponding table.
UDF Unique ID Mapping Data

RBP Length Name Contents
0 32 Implementation Identifier EntitylD
32 4 Hags Uint32
36 4 Mapping Entry Count (=MEC) uint32
40 8 Reserved Bytes (= #00)
48 16*MEC | Mapping Entries IDMappingEntry

Implementation Identifier is described in section 2.1.5.

Flags are defined asfollows:

Bit O, If set to ONE, shal mean UDF Unique ID, once decremented by 16 (the value
NextUniquel D isinitialized to), can be used as an index into the array Mapping Entries.
Blank entries, if present, are dl beyond the last array dement with a UDF Unique ID.
Bits1— 31, reserved, shall be set to ZERO.

Mapping Entry Count isthe sze, in entries, of the array Mapping Entries.

Mapping Entriesisan array of UDF Unique ID Mapping Entry structures. Thereis
one mapping entry for every non-stream, non-parent File Identifier Descriptor.

UDF 2.01 80 March 15, 2000

Whenever the volume is consstent, the array is adways sorted in ascending order of
UDF Unique ID. Except as limited by the flags, blank entries are alowed anywherein
the array, and entries are not required to have aUDF Unique ID vaue of one more than
the preceding entry. A blank entry hasavaue of ZERO in dl fidds.

3.3.7.1.2 UDF UniquelD Mapping Entry

UDF Unique ID Mapping Entry

RBP Length Name Contents
0 4 UDFUnique ID Uint32
4 4 Parent Logical Block Number Uint32
8 4 Object Logica Block Number Uint32
12 2 Parent Partition Reference Number Uint16
14 2 Object Partition Reference Number Uint16

UDF Unique ID isthe vauefound in aFID for thefile or directory.

Parent Logical Block Number isthelogica block number of the ICB identifying the
directory that contains the FID identifying the object.

Object Logical Block Number isthelogicd block number of the ICB identifying this
object.

Parent Partition Reference Number is the partition reference number from the
long_ad of the ICB fidld in the parent in the same directory containing the FID for this
file or directory.

Object Partition Reference Number isthe partition reference number from the
long_ad of the ICB fidld in the FID with this UDFUniquel D.

3.3.7.2 Non-Allocatable Space Stream

ECMA 167 does not provide for a mechanism to describe defective areas on media or areas
not usable due to dlocation outsde of the file sysem. The Non-Allocatable Space Stream
provides a method to describe space not usable by the file system. The Non-Allocatable
Space Stream shd| be recorded only on media systems that do not do defect management (eg.
CD-RW).

The Non-Allocatable Space Stream shdl be generated at format time. All spaceindicated by
the Non-Allocatable Space Stream shdl dso be marked as dlocated in the free space map.
The Non-Allocatable Space Stream shall be recorded as a named stream in the system stream
directory of the File Set Descriptor. The stream name shdl be:

UDF 2.01 81 March 15, 2000

“*UDF Non-Allocatable Space”

The stream shdl be marked with the attributes Metadata (bit 4 of file characteristics set to
ONE) and System (bit 10 of ICB flagsfidd set to ONE). This stream shdl have dl Non
Allocatable sectors identified by its alocation extents. The dlocation extents shdl indicate that
each extent is dlocated but not recorded. Thislist shal include both defective sectors found at
format time and space dlocated for sparing a format time.

NOTE: For packetized media al blocks of a packet containing a defect should be dlocated to
the Non-Allocatable Space Stream.

3.3.7.3 Power Calibration Stream

One of the potentid limitations on the effective use of the packet-write capabilities of CD-
Recordable drives is the limited number (100) of power cdibration areas available on current
CD-R media. These power cdlibration areas are used to establish the appropriate power
cdibration settings with which data can be successfully and reliably written to the CD-R disc
currently in the drive. The appropriate settings for a specific drive can vary significantly from
disc to disc, between two different drives of the same make and model, and even using the
same disc, drive and system configuration, but under different environmental conditions.

Because of this, most current CD-R drives recdibrate themsdves the fird time awriteis
attempted after amedia change has occurred. Thisimpaoses no restriction on recording to discs
using the disc-at-once or track- at-once modes, Snce in each of these modes the disc will fill
(either by consuming the totd available data capacity or tota number of recordable tracks) in
less than 100 separate writes. When using packet-write though, the disc could be written to
thousands of times over an extended period before the disc isfull.

Suppose, for instance, one wanted to incrementaly back-up any new and/or modified files a
the end of each work day (though the drive might aso be used intermittently to do other
projects during the day). These back-ups may require writing as little as a megabyte (or even
less) each day. If one of the power cdibration areasis used to cdibrate the drive before writing
to the disc every day, within five months the power cdibration areas will al have been used, but
only asmdl fraction of the total disc capacity will have been consumed. It islikely that such a
result would be both unexpected and unacceptable to the user of such a product.

The indudtry is attempting to provide ways to reduce the frequency with which the power
cdibration area of a CD-Recordable disc must be used. At least one current CD-R drive
modd tries to remember the power calibration vaues last used for recording data on each of a
small number of recently encountered discs. Most CD-Recordable drives provide amechanism
for the host software to retrieve from the drive the most recent power cdibration settings used
by the drive to record data on the current disc, and to restore and use such information at some
futuretime.

UDF 2.01 82 March 15, 2000

The Power Cdlibration Table described herein would be used to store on the disc the power
cdlibration information thus obtained for future use by compatible implementations. The table
conssts of aheader followed by alist of records containing power cdibration settings which
have been used by various drives and/or hogts, under various conditions, to record data on this
disc, aswedl as other rdlevant information which may be used to determine which of the
recorded cdibration settings may be appropriate for use in afuture Stuation. While every effort
has been made to anticipate and include al necessary information to make effective use of the
recorded power calibration information possible, it is up to theindividua implementation to
determine if, when and how such information will actualy be used.

The Power Cdibration Table may be recorded as a system stream of the File Set Descriptor
according to the rules of 3.3.5. The name of the stream shdl be asfollows.

“*UDF Power Cd Table’
Implementations that do not support the Power Calibration Table shall not delete this stream.
Further, any implementation which supports and/or uses the Power Cdibration Table shal not

delete or modify any records from such table which the implementation, through its use thereof,
did not clearly and specificaly obsolete or update.

UDF 2.01 83 March 15, 2000

The stream shdl be formatted as follows:

3.3.7.3.1 Power Calibration Table Stream

RBP Length Name Contents
0 32 Implementation | dentifier EntitylD [UDF 2.1.5]
32 4 Number of Records Uint32 [1/7.1.5]
36 * Power Calibration Table Records bytes

Implementation Identifier:
See UDF section 2.1.5.

Number of Records:
Shall specify the number of records contained in the power cdibrationtable

Power Calibration Table Records:
A series of power cdlibration table records for drives which have written to thisdisc. The
length of thistable is varigble, but shal be amultiple of four bytes. Recording of datain any
ungructured fidd shdl be left judtified and padded on the right with #20 bytes.

Power Calibration Table Record L ayout

RBP Length Name Contents
0 2 Record Length Uintl6[1/7.1.3]
2 2 Drive Unique AreaLength [DUA_L] uint16 [1/7.1.3]
4 32 Vendor ID bytes
36 16 Product ID bytes
52 4 Firmware Revision Level bytes
56 16 Serial Number/Device Unique ID bytes
72 8 Host ID bytes
80 12 Originating Time Stamp Timestamp [1/7.3]
92 12 Updated Time Stamp Timestamp [1/7.3]
104 2 Speed Uint16[1/7.1.3]
106 6 Power Calibration Vaues bytes
112 [DUA_L] | DriveUniqueArea bytes

Record Length — The length of this Power Calibration Table Record in bytes, including the
optiond varigble length Drive Unique Area. Shdl be amultiple of four bytes.

Drive Unique Area Length — The length of the optiond Drive Unique Arearecorded at the
end of thisrecord in bytes. Shall be amultiple of four bytes.

UDF 2.01

March 15, 2000

Vendor ID — The Vendor ID reported by the drive.

Product ID — The Product ID reported by the drive.

Firmware Revision Level — The Firmware Revison Levd reported by the drive.

Serial Number/Device Unique ID — A serid number or other unique identifier for the specific
drive, of the mode specified by the vendor and product 1ds given, which has successfully used
the power calibration values reported herein to record data on this disc.

Host ID — The host serid number, ethernet 1D, or other vaue (or combination of vaues) used
by an implementation to identify the specific host computer to which the drive was attached
when it successfully used the power calibration values reported herein to record data on this
disc. Animplementation shal atempt to provide a unique vaue for each hogt, but is not
required to guarantee the vaue' s uniqueness.

Originating Time Stamp — The date and time at which the power cdibration vaues recorded
herein wereinitidly verified to have been successfully used.

Updated Time Stamp — The date and time at which the power calibration vaues recorded
herein were most recently verified to have been successfully used.

Speed — The recording speed, as reported by the drive, a which power calibration vaues
recorded herein were successfully used. This vaueis the number of kilobytes per second
(bytes per second / 1000) that the data was written to the disc by the drive (truncating any
fractions). For example, a speed of 176 means data was written to the disc a 176
Kbytes/second, which isthe basic CD-DA (Digitd Audio) datarate (ak.a “1X” for CD-DA).
A speed of 353 means data was written to the disc at 353 Kbytes/second, or twice the basic
CD-DA datarate (ak.a “2X” for CD-DA). CD-ROM recording rates should be adjusted
upward (roughly 15%) to the corresponding CD-DA rates to determine the correct speed value
(eg. A “1X” CD-ROM datarate should be recorded asa“1X” CD-DA, which isa speed of
176). Note that these are raw data rates and do not reflect al overhead resulting from
(additiona) headers, error correction data, etc.

Power Calibration Values — The vendor-specific power cdibration values reported by the
drive.

UDF 2.01 85 March 15, 2000

Drive Unique Area — Optiona areafor recording unrestricted information unique to the drive
(such as drive operating temperature), which certain implementations may use to enhance the
use of the recorded power caibrationinformation or the operation of the associated drive. The
drive manufacturer shal define recording of datain thisfidd. Thisareashdl be an integra
multiple of four bytesin length.

3.3.7.4 UDF Backup Time
The name of this stream shdl be s to:

“*UDF Backup”

This stream shdl have the following contents, which should be embedded in the ICB:

UDF Backup Time

RBP Length Name Contents

0 12 Backup Time timestamp

Backup Time isthe latest time that a backup of this volume was performed.

3.3.8 UDF Defined Non-System Streams
This section defines the following nont system streams:

Stream Name Stream L ocation Metadata Flag
“*UDF Macintosh Resource Fork” Any file 0
“*UDF OS2 EA” Any file or directory 0
“*UDFNT ACL” Any file or directory 0
“*UDF UNIX ACL” Any file or directory 0

3.3.8.1 Macintosh Resource Fork Stream
Because the Resource Fork is referenced by an explicit interface, UDF implementations are not
provided the authoritative name for this stream. For the purpose of interchange, the name shall

be set to:

“* UDF Macintosh Resource Fork”

The Metadata bit in the File Characteristics field of the File Identifier Descriptor shdl be set
to O to indicate that the existence of this file should be made known to clients of a platform’sfile
system interface.

UDF 2.01 86 March 15, 2000

3.3.8.2 OS2 EA Stream
All OS2 definable extended attributes shal be stored as a named stream whose name shdl be
st to:

“*UDF OS/2 EA”

The OS2EA Stream contains atable of OS2 Full EAs (FEA) as shown below.

FEA forma
RBP | Length Name Contents
0 1 Flags Uint8
1 1 Length of Name (=L_N) Uint8
2 2 Length of Value (=L_V) Uint1l6
4 L N Name bytes
4+ N LV Vaue bytes

For a complete description of Full EAs (FEA) plesse reference the following IBM document:

“Installable File System for OS2 Version 2.0"
OS2 File Systems Department

PSPC Boca Raton, Florida

February 17, 1992

3.3.8.3 AccessControl Lists

Certain operating systems support the concept of Access Control Lists (ACLS) for enforcing
file access redtrictions. In order to facilitate support for ACL’s UDF has defined a set of
system level named streams, whose purpose is to store the ACL associated with agiven file
object.

ACLsunder UDF are stored as named streams, following the rules of section 3.3.5. The
contents of the named stream ACL shdl be opague and are not defined by this document.
Interpretation of the contents of the named ACL shall be l&ft to the operating system for which
the ACL isintended. Thefollowing names shdl be used to identify the ACLs and shall be
reserved. These names shdl not be used for gpplication named streams.

“*UDF NT ACL”

This name shdl identify the named stream ACL for the Windows NT operating system.

“*UDF UNIX ACL”

This name shal identify the named stream ACL for the UNIX operating system.

UDF 2.01 87 March 15, 2000

4. User Interface Requirements
4.1 Part 3—Volume Structure

Part 3 of ECMA 167 contains various | dentifiers which, depending upon the
implementation, may have to be presented to the user.

Volumel dentifier

VolumeSetldentifier

LogicalVolumel D

These identifiers, which are stored in CS0O, may have to go through some form of
trandation to be displayable to the user. Therefore when an implementation must
perform an OS specific trandation on the above listed identifiers the implementation
shall use the adgorithms described in section 4.2.2.1.

C source code for the trandation algorithms may be found in the gppendices of this
document.

4.2 Part 4—File System

4.2.1 ICB Tag

struct icbtag { [* ECMA 167 4/14.6 */
Uint32 PriorRecordedNumberof DirectEntries;
Uint16 Strategy Type;
byte StrategyParameter[2];
Uint16 Numberof Entries;
byte Reserved; /* ==#00*/
Uint8 FileType;
Lb_addr ParentlCBL ocetion,
Uint16 Hags;

}

4.2.1.1 FileType
Any oper/close'read/write requests for file(s) that have any of the following vaues in
this fidd shdl result in an Access Denied error condition under non-UNIX operating
system environments:

FileType vdues — 0 (Unknown), 6 (block device), 7 (character device), 9
(FIFO), and 10 (C_ISSOCK).

UDF 2.01 88 March 15, 2000

Any open/close/read/write requests to afile of type 12 (SymbolicLink) shall accessthe
file/directory to which the symboalic link is pointing.

4.2.2 Fileldentifier Descriptor

sruct FileldentifierDescriptor {

}

[* ECMA 167 4/14.4*/

struct tag DescriptorTag;

Uintl6 FileVersonNumber;

Uint8 FileCharacteridtics,

Uint8 LengthofFlel dentifier;

sruct long_ad ICB;

uint16 LengthofimplementationUse;
byte ImplementationUsd]];

char Filel dentifier[];

byte Padding[];

4.2.2.1 char Fileldentifier

Since most operating systems have their own specifications as to characterigtics of a
legd Fileldentifier, this becomes a problem with interchange. Therefore snce dl
implementations mugt perform someform of Fileldentifier trandation it would be to the
users advantage if dl implementations used the same dgorithm.

UDF 2.01

The problemswith Fileldentifier trandationsfal within one or more of the following
categories.

Name Length -Mogt operating systems have some fixed limit for the
length of afileidentifier.

Invalid Characters — Mogt operating systems have certain characters
congdered as being illegd within afile identifier name.

Displayable Characters — Since UDF supports the Unicode character
st dandard characters within afile identifier may be encountered which
are not displayable on the recaiving system.

Case Insensitive— Some operating systems are case insengtivein
regardsto file identifiers. For example OS2 preservesthe origind case
of the file identifier when thefileis crested, but uses a case insengtive
operations when accessing the file identifier. In OS2 “Abc” and “ABC”
would be the same file name,

89 March 15, 2000

Reserved Names — Some operating systems have certain names that
cannot be used for afile identifier name.

The following sections outline the Filel dentifier trandation agorithm for each specific
operaing system covered by this document. Thisdgorithm shdl be used by al OSTA
UDF compliant implementations. The dgorithm only applies when reading anillegd
Fileldentifier. Theorigind Fileldentifier name on the media should not be modified.
Thisdgorithm shdl be applied by any implementation that performs some form of
Fileldentifier trandation to meet operating system file identifier redtrictions.

All OSTA UDF compliant implementations shdl support the UDF trandation
agorithms, but may support additiona agorithms. If multiple agorithms are supported
the user of the implementation shdl be provided with a method to sdect the UDF
trandation agorithms. It is recommended that the default displayable agorithm be the
UDF defined dgorithm.

The primary god of these dgorithmsisto produce a unique file name that meets the
specific operating system redtrictions without having to scan the entire directory in which
thefileresdes

C source code for the following agorithms may be found in the gppendices of this
document.

NOTE: In the definition of the following agorithms anytime a d-character is specified in
quotes, the Unicode hexadecimd vaue will dso be specified. The following dgorithms
reference “ CS0 Hex representation”, which corresponds to using the Unicode vaues
#0030 - #0039, and #0041 - #0046 to represent avaue in hex. In addition, the
following dgorithms reference “ CS0O Base41 representation”, which corresponds to
augmenting the CSO Hex representation to use #0047 - #005A, #0023, #005F,
#007E, #002D and #0040 to represent digits 16-40.

Thefallowing dgorithms could il result in name-collisions being reported to the user of
an implementation. However, the rationad e includes the need for efficient accessto the
contents of a directory and consistent name trandations across logica volume mounts
and file system driver implementations, while alowing the user to obtain accessto any
filewithin the directory (through possibly renaming afile).

Some name transformations in section 4.2.2.1 result in two namespaces being visble at
oncein agiven directory — the gpace of primary names, those which are physicaly
recorded in a directory; and the space of generated names, those which are derived
from the primary names. Thisisdigtinct from transformations thet take an otherwise
illegd name and render it into alegd form, theillegad name not being considered part of
the namespace of the directory on that system. For UDF implementations using such

UDF 2.01 920 March 15, 2000

4.2.2.1.

UDF 2.01

transforms, the implementation should search adirectory in two passes. pass one should
match againgt the primary namespace and pass two should match againgt the generated
namespace. A match in the primary namespace should be preferred to a match against
the generated namespace.

Definitions:
A Fileldentifier shal be consdered as being composed of two parts, afile nameand
file extension.

The character .’ (#002E) shal be considered as the separator for the Fileldentifier of
afile; characters appearing subsequent to the last *.” (#002E) shall be considered as
condiituting thefile extension if and only if it islessthan or equd to 5 charactersin
length, otherwise the file extension shall not exist. Characters gppearing prior to the
file extension, excluding thelast . (#002E), shal be consdered as condtituting thefile
name.

NOTE: Even though OS2, Macintosh, and UNIX do not have an officid
concept of afilename extensonit is common file naming conventionsto end a
filewith “.” Followed by a1 to 5 character extensgon. Therefore the following
agorithms attempt to preserve the file extension up to amaximum of 5
characters.

1 MSDOS

Dueto the restrictions imposed by the MS DOS operating system environments on the
Fileldentifier associated with afile the following methodology shal be employed to
handle Fileldentifier(s) under the above- mentioned operating system environments.

Exception: Implementations on non-M S-DOS systems that may normally provide dud
namespaces (8.3 and non-8.3) using this transformation may omit or provide a
mechanism for disabling its use.

Restrictions: Thefile name component of the Fileldentifier shal not exceed 8
characters. The file extension component of the Fileldentifier shall not exceed 3
characters.

1. Fileldentifier Lookup: Upon request for a“ lookup” of aFileldentifier, a
case-insengtive comparison shal be performed.

2. Vdidate Fileldentifer: If the Fileldentifier isavadid MS-DOS file
identifier then do not gpply the following steps.

3. Remove Spaces: All embedded spaces within the identifier shal be
removed.

4. Invaid Characters: A Fileldentifier that contains characters considered
invaid within afile name or file extension (as defined above), or not

91 March 15, 2000

disolayable in the current environment, shdl have them trandated into “_”
(#O05F). (thefile identifier on the mediais NOT modified). Multiple
sequentid invdid or non-displayable characters shdl be trandated into a
angle“ ” (#005F) character. Reference the appendix on invalid characters
for acompletelig.

5. Leading Periods. In the event that there do not exist any characters prior to
thefirg “.” (#002E) character, leading “.” (#002E) characters shdl be
disregarded up to thefirst non “.” (#002E) character, in the gpplication of
this heuridtic.

6. Multiple Periods. In the event that the Fileldentifier contains multiple“ .”
(#002E) characters, al characters appearing subsequent to thelast *”’
(#002E) shall be considered as condtituting the file extension if and only if
it islessthan or equd to 5 charactersin length, otherwise the file extension
shall not exist. Characters appearing prior to the file extension, excluding
thelast ‘.’ (#002E), shdl be consdered as condtituting the file name. Al
embedded “.” (#002E) characters within the file name shall be removed.

7. Long Extengon: In the event that the number of characters condtituting the
file extension at this step in the process is greater than 3, the file extension
shall be regarded as having been composed of thefirst 3 characters
amongst the characters condtituting the file extension at thisstep in the
process.

8. Long Filename: In the event that the number of characters condtituting the
file name at this step in the processis greater than 8, the file name shdl be
truncated to 4 characters.

9. Filedentifier CRC: Since through the above process character information
fromtheorigind Fileldentifier islost the chance of creeting a duplicate
Fileldentifier inthe same directory increases. To greetly reduce the
chance of having aduplicate Fileldentifier the file name shal be modified
to contain aCRC of the origind Fileldentifier. Thefile nameshdl be
composed of the first 4 characters condtituting the file name at thisstep in
the process, followed by the separator ‘# (#0023), followed by the 3 digit
CS0 Base41 representation of the 16-bit CRC of the UNICODE
expanson of the origind filename.

10. The new file identifier shdl be trandated to al upper case.

4.2.2.1.2 OS2
Due to the redtrictions imposed by the OS/2 operating system environment, on the
Fileldentifier associated with afile the following methodology shal be employed to
handle Fileldentifier(s) under the above-mentioned operating system environment:

1. Fileldentifier Lookup: Upon request for a“ lookup” of aFileldentifier, a
case-sendtive comparison may be peformed. If the case-sendtive

UDF 2.01 092 March 15, 2000

comparison is not done or if it fals, a case-insengtive comparison shal be
performed.

Vdidate Fileldentifer: If the Fileldentifier isavdid OS2 file identifier
then do not apply the following steps.

Invalid Charecters: A Fileldentifier that contains characters considered
invdid within an OS2 file name, or not dislayable in the current
environment shdl have them trandated into “_" (#005F). Multiple sequentid
invaid or non-displayable characters shadl be trandated into a sngle *_”
(#005F) character. Reference the gppendix on invalid characters for a
completelig.

Trailing Periods and Spaces. All tralling “.” (#002E) and “ “ (#0020) shdl
be removed.

Fleldentifier CRC: Since through the above process character information
fromtheorigind Fileldentifier islost the chance of creating aduplicate
Fileldentifier inthe same directory increases. To greetly reduce the
chance of having aduplicate Fileldentifier the file name shdl be modified
to contain a CRC of the origind Fileldentifier.

If there is afile extension then the new Fileldentifier shal be composed of
up to thefirst (254 — (length of (new file extension) + 1 (for the*.’)) — 5
(for the #CRC)) characters condtituting the file name at this sep in the
process, followed by the separator ‘# (#0023); followed by a4 digit CS0O
Hex representation of the 16-bit CRC of the origind CS0 Fileldentifier,
followed by *. (#002E) and the file extension at this step in the process.

Otherwise if thereis no file extension the new Fileldentifier shdl be
composed of up to thefirst (254 — 5 (for the #CRC)) characters
condiituting the file name at this step in the process. Followed by the
Separator ‘# (#0023); followed by a4 digit CSO Hex representation of the
16-bit CRC of the origind CS0 Fileldentifier.

4.2.2.1.3 Macintosh

Dueto the restrictions imposed by the Macintosh operating system environment, on the
Fileldentifier associated with afile the following methodology shal be employed to
handle Fileldentifier(s) under the above-mentioned operating system environment:

UDF 2.01

1.

2.

Fileldentifier L ookup: Upon request for a* lookup” of aFileldentifier, a
case-sendtive comparison may be peformed. If the case-sengdtive
comparison is not done or if it falls, a case-insengtive comparison shal be
performed.

Vdidate Fileldentifer: If the Fileldentifier isavaid Macintoshfile
identifier then do not apply the following steps.

o3 March 15, 2000

4.2.2.1.

UDF 2.01

3. Invdid Characters A Fileldentifier that contains characters considered
invaid within a Macintosh file name, or not displayable in the current
environment, shdl have them trandaed into “ 7 (#005F). Multiple
sequentid invdid or nondisplayable characters shdl be trandated into a
gngle“_” (#005F) character. Reference the gppendix on invalid characters
for acompletelist

4. Long Fleldentifier — In the event that the number of characters condtituting
the Fileldentifier at this step in the process is greater than 31 (maximum
name length for the Macintosh operating system), the new Fileldentifier
will congg of the firg 26 characters of the Fileldentifier at this sep in the
process.

5. Hledentifier CRC Since through the above process character information
fromtheorigind Fileldentifier islost the chance of creating a duplicate
Fileldentifier in the same directory increases. To gresetly reduce the
chance of having a duplicate Fileldentifier the file name shdl be modified
to contain a CRC of the origind Fileldentifier.

If there isafile extension then the new Fileldentifier shal be composed of
up to thefirst (31 — (length of (new file extension) + 1 (for the‘.”)) — 5 (for
the #CRC)) characters congtituting the file name at this step in the process,
followed by the separator ‘# (#0023); followed by a4 digit CSO Hex
representation of the 16-bit CRC of the origind CS0 Fileldentifier,
followed by “.’ (#002E) and the file extension at this step in the process.

Otherwise if thereis no file extension the new Fileldentifier shdl be
composed of up to the firgt (31 — 5(for the #CRC)) characters congtituting
the file name at this step in the process. Followed by the separator ‘#
(#0023); followed by a4 digit CS0 Hex representation of the 16-bit CRC
of the origind CS0 Fileldentifier.

4 Windows 95 & Windows NT

Due to the redtrictions imposed by the Windows 95 and Windows NT operating system
environments, on the Fileldentifier associated with afile the following methodology
shdl be employed to handle Filel dentifier(s) under the above-mentioned operating
system environment:

1. Fileldentifier Lookup: Upon request for a“ lookup” of aFileldentifier, a
case-sendtive comparison may be peformed. If the case-sengdtive
comparison is not done or if it fals, a case-insengtive comparison shal be
performed.

2. Vdidate Fileldentifer: If the Fileldentifier isavdid fileidentifier for
Windows 95 or Windows NT then do not apply the following steps.

94 March 15, 2000

3.

4.2.2.1.5 UNIX
Dueto the restrictionsimposed by UNIX operating system environments, on the
Fileldentifier associated with afile the following methodology shal be employed to
handle Filel dentifier(s) under the above-mentioned operating system environment:

UDF 2.01

1.

2.

3.

Invalid Charecters: A Fileldentifier that contains characters considered
invaid within a file name of the supported operating sysem, or not
disolayable in the current environment shdl have them trandated into “_”
(#005F). Multiple sequentid invaid or non-displayable characters shdl be
trandated into asingle “ " (#005F) character. Reference the gppendix on
invaid charactersfor acomplete list.

Trailing Periods and Spaces. All tralling “.” (#002E) and “ “ (#0020) shdl
be removed.

Fileldentifier CRC: Since through the above process character informetion
fromtheorigind Fileldentifier islost the chance of creating a duplicate
Fileldentifier inthe same directory increases. To greetly reduce the
chance of having aduplicate Fileldentifier the file name shdl be modified
to contain a CRC of the origind Fileldentifier.

If there isafile extension then the new Fileldentifier shal be composed of
up to thefirst (255 — (length of (new file extension) + 1 (for the*.’)) — 5
(for the #CRC)) characters condtituting the file name at this sep in the
process, followed by the separator ‘# (#0023); followed by a4 digit CSO
Hex representation of the 16-bit CRC of the origind CS0 Fileldentifier,
followed by ‘. (#002E) and the file extension at this step in the process.

Otherwise if thereis no file extension the new Fileldentifier shal be
composed of up to the first (255 — 5 (for the #CRC)) characters
condiituting the file name at this step in the process. Followed by the
Separator ‘# (#0023); followed by a4 digit CSO Hex representation of the
16-bit CRC of the origind CS0 Fileldentifier.

Fileldentifier Lookup: Upon request for a* lookup” of aFileldentifier, a
case-sengitive comparison shdl be performed.

Vadidate Fileldentifer: If the Fileldentifier isavdid UNIX fileidentifier for
the current system environment then do not apply the following steps.
Invalid Characters. A Fileldentifier that contains characters consdered
invaid within aUNIX file name for the current systlem environment, or not
displayable in the current environment shdl have them trandated into “_”
(#O005E). Multiple sequentid invalid or non-displayable characters shall be
trandated into asingle” " (#005E) character. Reference the gppendix on
invaid charactersfor acomplete list

95 March 15, 2000

4. Long Fleldentifier — In the event that the number of characters condtituting
the Fileldentifier a this step in the process is greater than
MAXNameLength (maximum name length for the specific UNIX operating
system), the new Fileldentifier will congg of the firda MAXNameLength-5
characters of the Fileldentifier at this step in the process.

5. Hledentifier CRC Since through the above process character information
fromtheorigind Fileldentifier islost the chance of creating a duplicate
Fileldentifier in the same directory increases. To greatly reduce the
chance of having a duplicate Fileldentifier the file name shdl be modified
to contain a CRC of the origind Fileldentifier.

If there isafile extension then the new Fileldentifier shall be composed of
up to the first (MAXNameLength — (length of (new file extension) + 1 (for
the*.’)) — 5 (for the #CRC)) characters congtituting the file name at this
step in the process, followed by the separator ‘# (#0023); followed by a4
digit CSO Hex representation of the 16-bit CRC of the origind CS0
Fileldentifier, followed by *. (#002E) and the file extension at thisstep in
the process.

Otherwise if thereis no file extension the new Fileldentifier shal be
composed of up to the first (MAXNamelLength—5 (for the #CRC))
characters condtituting the file name at this step in the process. Followed
by the separator ‘# (#0023); followed by a4 digit CSO Hex representation
of of the 16-bit CRC of the origind CS0 Fileldentifier.

4.2.2.1.6 OS/400

Due to the restrictions imposed by OS/400 operating system environments, on the
Fileldentifier associated with afile the following methodology shal be employed to handle
Fileldentifier(s) under the above mentioned operating system environment.

1. Fileldentifier Lookup: Upon request for a“lookup” of aFileldentifier, a case-
sensitive comparison may be performed. If the case-senditive comparison is not done or
if it fals acase-insengtive comparison shdl be performed.

2. VdidaeFileldentifier: If the Fileldentifier isavdid fileidentifier for OS/400 then do
not apply the following steps.

3. Invdid Characters: A Fileldentifier that contains characters consdered invaid within
an 0OS/400 file name, or not displayable in the current environment shall have them
trandated into “_” (#005F). Multiple sequentid invalid or non-displayable characters
shall betrandated into asingle“ " (#005F) character.

4. Traling Spaces All traling “ “(#0020) shdl be removed.

UDF 2.01 96 March 15, 2000

5. Hledentifier CRC: Since through the above process character information from the
origind Fileldentifier islost the chance of creating a duplicate Fileldentifier inthe
same directory increases. To greetly reduce the chance of having a duplicate
Fileldentifier the filename shal be modified to contain a CRC of the origind
Fileldentifier.

If thereisafile extendon then the new Fileldentifier shal be composed of up to the
firgt (255 — (Iength of (new file extension) + 1 (for the*.”)) — 5 (for the #CRC))
characters congtituting the file name at this step in the process, followed by the
separator “#" (#0023); followed by a4 digit CS0 Hex representation of the 16 —hit
CRC of the origind CS0 Fileldentifier, followed by “.” (#002E) and the file extenson
at this step in the process.

Otherwiseif thereis no file extenson the new Fileldentifier shal be composed of up to
the first (255 - 5 (for the new #CRC)) characters congtituting the file name at this step
in the process. Followed by the separator “#’ (#0023); followed by a4 digit CSO hex
representation of the 16-bit CRC of the origind CS0 Fileldentifier.

Note: Invalid characters for OS400 are only the forward slash “/” (#002F) character.
Non-displayable characters for OS400 are any characters that do not translate to code
page 500 (EBCDIC Multilingual).

UDF 2.01 97 March 15, 2000

5. Informative
5.1 Descriptor Lengths

The following table summarizes the UDF limitations on the lengths of the Descriptors described

in ECMA 167.
Descriptor Length in bytes

Anchor Volume Descriptor Pointer 512

Volume Descriptor Pointer 512

Implementation Use Volume Descriptor 512

Primary V olume Descriptor 512

Partition Descriptor 512

Logica Volume Descriptor no max

Unallocated Space Descriptor no max

Terminating Descriptor 512

Logicd VVolume Integrity Descriptor Nno max

File Set Descriptor 512

File Identifier Descriptor Maximum of aLogicd
Block Sze

Allocation Extent Descriptor 24

Indirect Entry 52

Termind Entry 36

File Entry Maximum of aLogicd
Block Sze

Extended File Entry Maximum of aLogicd
Block Size

Extended Attribute Header Descriptor 24

Undlocated Space Entry Maximum of aLogicd
Block Sze

Space Bit Map Descriptor no max

Partition Integrity Entry N/A

5.2 Using Implementation Use Areas

5.2.1 Entity Identifiers

Refer to section 2.1.5 on Entity Identifiers defined earlier in this documen.

UDF 2.01

98

March 15, 2000

5.2.2 Orphan Space
Orphan gpace may exig within alogica volume, but it is not recommended Since some
type of logicd volume repair facility may redlocate it. Orphan space is defined as space
that isnot directly or indirectly referenced by any of the non-implementation use
descriptors defined in ECMA 167.

NOTE: Any dlocated extent for which the only reference resdes within an
implementation use field is congdered orphan space.

5.3 Boot Descriptor
T.B.D.

5.4 Clarification of Unrecorded Sectors
ECMA 167 section 3/8.1.2.2 states

Any unrecorded constituent sector of alogical sector shall be interpreted as containing all
#00 bytes. Within the sector containing the last byte of alogical sector, the interpretation
of any bytes after that last byteis not specified by this Part.

A logical sector isunrecorded if the standard for recording allows detection that a sector
has been unrecorded and all of the logical sector’s constituent sectors are unrecorded. A
logical sector should either be completely recorded or unrecorded.

For the purposes of interchange, UDF must clarify the correct interpretation of this
section.

This part specifies that an unrecorded sector logicdly contains #00 bytes. However, the
converse argument that a sector containing only #00 bytesis unrecorded is not implied,
and such a sector is not an “unrecorded” sector for the purposes of ECMA. Only the
standard governing the recording of sectors on the media can provide the rule for
determining if a sector is unrecorded. For example, a blank check condition would
provide correct determination for aWORM device.

The following additiond ECMA 167 sections reference the rule defined 3/8.1.2.2:
3/8.4.2,3/8.8.2, 4/3.1, 4/8.3.1 and 4/8.10. By derivation, UDF 6.6 (strategy 4096) is
aso affected. Since unrecorded sectors/blocks are terminating conditions for sequences
of descriptors, an implementation must be careful to know that the underlying storage
media provides a notion of unrecorded sectors before assuming that not writing to a
sector is detectable. Otherwise, reliance on the incorrect converse argument mentioned
above may result. Explicit termination descriptors must be used when an gppropriate
unrecorded sector would be undetectable.

UDF 2.01 99 March 15, 2000

5.5 Technical Contacts
Technicd questions regarding this document may be emailed to the OSTA File
Interchange Committee at info@osta.org. Also technica questions may be faxed to
the attention of the OSTA File Interchange Committee at 1-805-962-1542.

OSTA may adso be contacted through the following address:
File Interchange Committee Chairman
OSTA
311 East Carrillo Street
Santa Barbara, CA 93101
(805) 963-3853

Also monitor the OSTA web site at www.ogta.or g for additiond information.

UDF 2.01 100 March 15, 2000

6. Appendices

6.1 UDF Entity Identifier Definitions

Entity Identifier Description

“*OSTA UDF Compliant” Indicates the contents of the specified logical volume or file setis
compliant with domain defined by this document.

“*UDFLV Info” Contains additional Logical Volume identification information.

“*UDF FreeEA Space’ Contains free unused space within the implementation extended
attributes space.

“*UDF FreeAppEA Space” Contains free unused space within the application extended
attributes space.

“*UDF DVD CGMS Info” Contains DVD Copyright Management Information

“*UDF OS/2EALength” Contains OS/2 extended attribute length.

“*UDF Mac Volumelnfo” Contains M acintosh volumeinformation.

“*UDF Mac FinderInfo” Contains Macintosh finder information.

“*UDF Virtual Partition” Describes UDF Virtual Partition

“*UDF Sparable Partition” Describes UDF Sparable Partition

“* UDF OS/400 Dirlnfo” 0S/400 Extended directory information

“*UDF Sparing Table” Contains information for handling defective areas on the media

UDF 2.01 101 March 15, 2000

6.2

UDF Entity Identifier Values

Entity | dentifier

Byte Value

"*OSTA UDF Compliant"

H#2A, #HAF, #53, #54, #41, #20, #55, #44, #46, #20, #43, #6F, #6D,
#70, #6C, #69, #61, #OE, #74

“*UDF LV Info” #2A, #55, #44, #46, #20, #AC, #56, #20, #49, #OE, #66, #6F

"*UDF FreeEA Space" #2A, #55, #44, #46, #20, #46, #12, #65, #65, #45, #41, #53, #70,
#061, #63, #65

"*UDF FreeAppEA Space" #2A, #55, #44, #46, #20,

#A06, #72, #65, #65, #41, #10, #70,
#45, #41, #53, #70, #61, #63, #65

“*UDF DVD CGMS Info”

#2A, #55, #44, #46, #20, #44, #56, #44, #20,
#43, #47, #4D, #53, #20, #49, #OE, #66, #6F

“*UDF OS/2 EALength”

#2A, #55, #44, #46, #20, #AF, #53, #2F, #32, #20, #45, #41, #4C,
H#65, #OE, #67, #74, #68

“*UDF OS/400 Dirlnfo”

#2A, #55, #44, #46, #20, #4F, #53, #2F, #34, #30, #30, #20, #44,
#69, #72, #49, #6E, #66, #6F

"*UDF Mac Volumelnfo"

H#2A, #55, #44, #46, #20, #4D, #61, #63, #20, #56, #6F, #6C, #75,
H#6D, #65, #49, #OE, #66, #6F

"*UDF Mac FinderInfo"

H2A, #55, #A4, #46, #20, #4D, #61, #63, #20, #49, #69, #OE, #64,
HOD, #72, #49, #OE, #66, #6F

“*UDF Virtual Partition”

#2A, #55, #44, #46, #20, #56, #69, #72, #74, #15, #61, #6C, #20,
#50, #61, #72, #74, #69, #74, #69, #0F, #6E

“*UDF Sparable Partition”

#2A, #55, #44, #46, #20, #53, #70, #61, #72, #61, #62, #6C, #65,
#20, #50, #61, #72, #74, #69, #14, #069, #OF, #6E

“*UDF Sparing Table”

#2A, #55, #44, #46, #20, #53, #70, #61, #72, #69, #OE, #67, #20,
#54, #61, #62, #6C, #65

UDF 2.01

102 March 15, 2000

6.3 Operating System ldentifiers

UDF 2.01

Thefollowing tables define the current dlowable vaues for the OS Class and OS
Identifier fiddsin the I dentifier Suffix of Entity |dentifiers.

The OS Class fidd will identify under which class of operating system the specified
descriptor was recorded. Thevalid vauesfor thisfidd are asfollows

Value Operating System Class
Undefined
DOS
0S5/2
Macintosh OS
UNIX
Windows 9x
Windows NT
0S/400
BeOS

9 Windows CE
10-255 | Reserved

o

OIN|O(O|D|W[IN|F-

The OS Identifier field will identify under which operating system the specified
descriptor was recorded. Thevalid vauesfor thisfied are asfollows:

oS oS Operating System | dentified
Class | ldentifier

Any Value Undefined

o

DOSWindows 3.x

0S/2

Macintosh OS

UNIX - Gengric

UNIX - IBM AIX

UNIX - SUN OS/ Solaris

UNIX - HP/UX

UNIX - Slicon Graphics Irix

UNIX - Linux

UNIX - MKLinux

UNIX - FreeBSD

Windows 9x — generic (includes Windows 98)

Windows NT — generic (includes Windows 2000)

0S/400

o|~N|o|lalssaaannplw|N|R|O
olo|lo|lo|N|o|u|s|w|vk|o|o|o

BeOS - genearic

103 March 15, 2000

| 9 | 0 |Wind0wsCE-generic

For the most up to date list of values for OS Class and OS Identifier please contact OSTA and
request a copy of the UDF Entity Identifier Directory. Thisdirectory will aso contain
Implementation Identifiers of 1SV'swho have provided the necessary information to OSTA.

NOTE: If you wish to add to thislist please contact the OSTA Technica Committee Chairman
at the OSTA address listed in section 5.3 Technical Contacts.

UDF 2.01 104 March 15, 2000

6.4 OSTA Compressed Unicode Algorithm

/***

* OSTA conpl i ant Uni code conpression, unconpression routines.
* Copyright 1995 Mcro Design International, Inc.
* Witten by Jason M R nn.
* Mcro Design International gives permission for the free use of the
* foll owi ng source code.
*/
#i ncl ude <stddef. h>

/***

* The following two typedef's are to renove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to be
* unsigned 16-bit.
*/
t ypedef unsigned short unicode_t;
t ypedef unsi gned char byte;

/***

* Takes an OSTA CSO conpressed uni code nane, and converts

* it to Unicode.

* The Uni code output will be in the byte order

* that the |l ocal conpiler uses for 16-bit val ues.

* NOTE: This routine only perforns error checking on the conpl D
* |t is up to the user to ensure that the unicode buffer is |arge
* enough, and that the conpressed uni code nane is correct.

* RETURN VALUE

* The number of unicode characters which were unconpressed.
* A-1lis returned if the conpression IDis invalid.
*/

nt Unconpr essUni code(
nt nunber O Byt es, [* (Input) nunber of bytes read fromnedia. */

byt e *UDFConpressed, /* (Input) bytes read from nedi a. */
uni code_t *uni code) /* (Qutput) unconpressed uni code characters. */
{

unsi gned int conpl D
int returnVal ue, uni codel ndex, byt el ndex;

/* Use UDFConpressed to store current byte being read. */
conpl D = UDFConpr essed[0] ;

/* First check for valid conplD. */
if (conpiD!= 8 && conplD != 16)

{
returnVval ue = -1;
}
el se
{

uni codel ndex = 0;
byt el ndex = 1;

/* Loop through all the bytes. */
whi | e (bytel ndex < nunber O Byt es)

{
if (conplD == 16)

UDF 2.01 105

March 15, 2000

{
/*Move the first byte to the high bits of the unicode char. */

uni code[uni codel ndex] = UDFConpr essed[byt el ndex++] << 8;

}
el se
{
uni code[uni codel ndex] = 0;
}
if (bytelndex < nunber O Bytes)
{
/*Then the next byte to the low bits. */
uni code[uni codel ndex] | = UDFConpr essed[byt el ndex++] ;
}

uni codel ndex++;

ret ur nvVal ue = uni codel ndex;

}

return(returnVval ue);

/***

* DESCRI PTI O\

* Takes a string of unicode wi de characters and returns an OSTA CSO

* conpressed unicode string. The uni code MJST be in the byte order of
* the conpiler in order to obtain correct results. Returns an error
if the conpression IDis invalid.

*

* NOTE: This routine assunmes the inplenmentation already knows, by
* the local environment, how many bits are appropriate and

* therefore does no checking to test if the input characters fit
* into that nunber of bits or not.

* RETURN VALUE

* The total nunber of bytes in the conpressed OSTA CSO string,

* i ncl udi ng the conpression ID.

* A-1lis returned if the conpression IDis invalid.

*/

i nt ConpressUni code(

int nunber O Chars, /* (Input) nunber of unicode characters. */
int conplD, /* (Input) conpression ID to be used. */
uni code_t *uni code, /* (Input) unicode characters to conpress. */

byt e *UDFConpressed) /* (Qutput) conpressed string, as bytes. */
{

i nt bytelndex, unicodel ndex;

if (conplD!=8 && conplD != 16)

{
bytelndex = -1; /* Unsupported conpression ID! */
}
el se
{

/* Place conpression code in first byte. */
UDFConpr essed[0] = conpl D

byt el ndex = 1;

UDF 2.01 106 March 15, 2000

uni codel ndex = 0;
whi | e (uni codel ndex < nunber O Chars)

if (conplD == 16)

{
/* First, place the high bits of the char
* into the byte stream
*/
UDFConpr essed[byt el ndex++] =
(uni code[uni codel ndex] & OxFF00) >> 8§;
}

/*Then place the low bits into the stream */
UDFConpr essed[byt el ndex++] = uni code[uni codel ndex] & OxOOFF;
uni codel ndex++;

ret urn(byt el ndex) ;

{
}
}
}
UDF 2.01

107

March 15, 2000

6.5 CRC Calculation

The following C program may be used to caculate the CRC-CCITT checksum

used in the TAG descriptors of ECMA 167.

/*

* CRC 010041

*/

static unsigned short crc_tabl e[256]

0x0000,
0x8108,
0x1231,
0x9339,
0x2462,
OxA56A,
0x3653,
0xB75B,
0x48C4,
0xC9CC,
Ox5AF5,
0xDBFD,
0x6CAB,
Ox EDAE,
Ox7E97,
OxFFIF,
0x9188,
0x1080,
0x83B9,
0x02B1,
OxB5EA,
0x34E2,
OxA7DB,
0x26D3,
0xD94C,
0x5844,
0xCB7D,
0x4A75,
OxFD2E,
0x7C26,
OxXEF1F,
Ox6E17,

}s

0x1021,
0x9129,
0x0210,
0x8318,
0x3443,
0xB54B,
0x2672,
OXATTA,
0x58E5,
OxD9ED,
0x4AD4,
0xCBDC,
0x7C87,
OxFD8F,
Ox6EB6,
OXEFBE,
0x81A9,
0x00A1,
0x9398,
0x1290,
OxALCB,
0x24C3,
OxB7FA,
0x36F2,
0xC96D,
0x4865,
0xDB5C,
0x5A54,
OXEDOF,
0x6Q07,
OxFF3E,
Ox7E36,

unsi gned short

cksun(s, n)

0x2042,
OxAl14A,
0x3273,
0xB37B,
0x0420,
0x8528,
0x1611,
0x9719,
0x6886,
OxE98E,
Ox7AB7,
Ox FBBF,
Ox4CE4,
0x CDEC,
Ox5EDb,
OxDFDD,
0xB1CA,
0x30C2,
OxA3FB,
0x22F3,
0x95A8,
0x14A0,
0x8799,
0x0691,
0xF90E,
0x7806,
OxEB3F,
0x6A37,
0xDD6C,
0x5C64,
0xCF5D,
Ox4E55,

0x3063,
0xB16B,
0x2252,
OXA35A,
0x1401,
0x9509,
0x0630,
0x8738,
Ox78A7,
OxF9AF,
0x6A96,
OxEB9E,
0x5CC5,
0xDDCD,
Ox4EF4,
OxCFFC,
OxAl1EB,
0x20E3,
0xB3DA,
0x32D2,
0x8589,
0x0481,
0x97B8,
0x16B0,
OxE92F,
0x6827,
OxFB1E,
Ox7A16,
0xCA4D,
0x4CA45,
OxDF7C,
Ox5E74,

regi ster unsigned char *s;
register int n;

= {
0x4084,
0xC18C,
0x52B5,
0xD3BD,
0x64E6,
OxE5EE,
0x76D7,
OxF7DF,
0x0840,
0x8948,
Ox1A71,
0x9B79,
0x2C22,
OxAD2A,
Ox3E13,
OxBF1B,
0xD10C,
0x5004,
0xC33D,
0x4235,
OxF56E,
0x7466,
OXE75F,
0x6657,
0x99C8,
0x18C0,
0x8BF9,
Ox0AF1,
OxBDAA,
0x3CA2,
OxAF9B,
0x2E93,

regi ster unsigned short crc=0;

while (n-- > 0)
crc = crc_table[(crc>>8 ™ *s++) & Oxff] ”~ (crc<<8);

return crc;

UDF 2.01

108

0x50A5,
OxD1AD,
0x4294,
0xC39C,
0x74C7,
OxF5CF,
0Ox66F6,
OXET7FE,
0x1861,
0x9969,
0x0A50,
0x8B58,
0x3003,
0xBDOB,
0x2E32,
OxAF3A,
0xC12D,
0x4025,
0xD31C,
0x5214,
OxE54F,
0x6447,
OXF77E,
0x7676,
0x89E9,
0x08E1,
0x9BD8,
0x1ADO,
OxADBB,
0x2C83,
OxBFBA,
0x3EB2,

0x600C8,
OxE1CE,
0x72F7,
OxF3FF,
0x44A4,
0xC5AC,
0x5695,
0xD79D,
0x2802,
0xA90A,
0x3A33,
0xBB3B,
0x0Co0,
0x8D68,
Ox1E51,
0x9F59,
OxF14E,
0x7046,
OxE37F,
0x6277,
0xD52C,
0x5424,
0xC71D,
0x4615,
0xB98A,
0x3882,
OxABBB,
0x2AB3,
0x9DES8,
0x1CEQ,
Ox8FD9,
Ox0ED1,

0x70E7,
OxF1EF,
0x62D6,
OXE3DE,
0x5485,
0xD58D,
0x46B4,
0xC7BC,
0x3823,
0xB92B,
0x2A12,
OxAB1A,
0x1C41,
0x9D49,
Ox0E70,
Ox8F78,
OxE16F,
0x6067,
O0xF35E,
0x7256,
0xC50D,
0x4405,
0xD73C,
0x5634,
OxA9AB,
0x28A3,
0xBB9A,
0x3A92,
0x8DC9,
0x0CcC1,
Ox9FF8,
Ox1EFO

March 15, 2000

/* UNI CCDE Checksum */

unsi gned short

uni code_cksum(s, n)
regi ster unsigned short *s;
register int n;

regi ster unsigned short crc=0
while (n-- > 0) {
/* Take high order byte first--corresponds to a big endian byte stream */
crc = crc_table[(crc>>8 N (*s>>8) & Oxff] ~ (crc<<8);
crc = crc_table[(crc>>8 N (*s++ & Oxff)) & Oxff] ~ (crc<<8);

}

return crc;
}
#ifdef MAIN

unsi gned char bytes[] = { 0x70, Ox6A, 0x77 };
mai n()
{
unsi gned short x;
x = cksun(bytes, sizeof bytes);
printf("checksum cal cul ated=%. 4x, correct=%l.4x\en", x, 0x3299);
exit(0);

#endi f

UDF 2.01 109 March 15, 2000

The CRC table in the previous listing was generated by the following program:

#i ncl ude <st di 0. h>

/*
* a.out 010041 for CRGCATT
*/

mai n(argc, argv)
int argc; char *argv[];

{
unsi gned long crc, poly;
int n, i;
sscanf (argv[1], "%o", &poly);
i f(poly & Oxffff0000){
fprintf(stderr, "polynomal is too |large\en");
exit(1);
}
printf("/*\en * CRC 0%\ en */\en", poly);
printf("static unsigned short crc_table[256] = {\en");
for(n = 0; n < 256; n++){
if(n %8 == 0)
printf(" "),
Crc = n << §;
for(i =0; i <8; i++){
if(crc & 0x8000)
crc = (crc << 1) ~ poly;
el se
crc <<= 1;
crc & OxFFFF;
}
if(n == 255)
printf("0x%®4X ", crc);
el se
printf("0x%®4X, ", crc);
if(n %8 ==7)
printf("\en");
}
printf("};\en");
exit(0);
}

All the above CRC code was devised by Don P. Mitchdll of AT& T Bell Laboratories and Ned
W. Rhodes of Software Systems Group.

It has been published in "Design and Vdidation of Computer Protocols,”

Prentice Hall, Englewood Cliffs, NJ, 1991, Chapter 3, ISBN 0-13-539925-4.
Copyrightisheld by AT&T.

AT&T gives permisson for the free use of the above source code.

UDF 2.01 110 March 15, 2000

6.6 Algorithm for Strategy Type 4096

This section describes a rategy for constructing an ICB hierarchy. For strategy type 4096 the
root ICB hierarchy shdl contain 1 direct entry and 1 indirect entry. To indicate that thereis 1
direct entry a 1 shdl be recorded as a Uint16 in the StrategyParameter field of the ICB Tag
fidd. A vaueof 2 shdl be recorded in the MaximumNumber OfEntries fied of the ICB Tag
fidd.

The indirect entry shal specify the address of another ICB which shal dso contain 1 direct
entry and 1 indirect entry, where the indirect entry specifies the address of another ICB of the
sametype. Seethefigure below:

DE
IE

DE

DE

NOTE: This drategy builds an ICB hierarchy that isasmple linked list of direct entries.

UDF 2.01 111 March 15, 2000

6.7 ldentifier Trandation Algorithms
The following sample source code examples implement the file identifier trandation dgorithms
described in this document.

The following basic dgorithms may aso be used to handle OS specific trandations of the
Volumel dentifier, VolumeSetidentifier, Logical Volumel D and FileSetID.

6.7.1 DOS Algorithm

/* OSTA UDF conpliant file name translation routine for DOS and */
/* W ndows short nanmespaces. */
/* Define constants for nanmespace transl ation */

#define DOS_NAME_LEN 8
#define DOS_EXT_LEN 3
#define DOS_LABEL_LEN 11
#define DOS_CRC_LEN 4
#defi ne DOS_CRC_MODULUS 41

/* Define standard types used in exanpl e code. */
typedef BOOLEAN int;

typedef short |NT16;

typedef unsigned short Ul NT16;

typedef Ul NT16 UNI CODE_CHAR,;

#define FALSE 0O

#define TRUE 1

static char crcChar[] =

"0123456789ABCDEFCHI JKLMNOPQRSTUVWKYZ#_~- @ ;

/* FUNCTI ON PROTOTYPES */

UNI CODE_CHAR Uni codeToUpper (UNI CODE_CHAR val ue);

BOOLEAN | sFi | eNaneChar Legal (UNI CODE_CHAR val ue);

BOOLEAN | sVol umeLabel Char Legal (UNI CODE_CHAR val ue) ;

I NT16 Nati veCharLengt h(UNI CODE_CHAR val ue);

BOOLEAN | sDevi ceNanme(UNI CODE_CHAR* nane, Ul NT16 nanelLen);

/***/

/ * UDFDOSName() */

/* Transl ate udf Nane to dosName using OSTA conpliant algorithm */
/* dosName nust be a Unicode string buffer at |east 12 characters */
/* in length. */

/***/

Ul NT16 UDFDOSName(UNI CODE_CHAR* dosNane, UNI CODE_CHAR* udf Name,
Ul NT16 udf NameLen)
{

I NT16 i ndex;

I NT16 targetl ndex;

I NT16 crclndex;

I NT16 extLen;

I NT16 nanmelen;

I NT16 charlLen;

I NT16 overl ayByt es;

I NT16 byteslLeft;

UNI CODE_CHAR current;

BOOLEAN needsCRC;

UNI CODE_CHAR ext [DOS_EXT_LEN] ;

UDF 2.01 112 March 15, 2000

UDF 2.01

needsCRC = FALSE;

/* Start at the end of the UDF file name and scan for a period
/* ("."). This will be where the DOS extension starts (if
/* any). */
index = udf NanelLen;
while (index-- > 0) {
i f (udf Name[index] =="'.")
br eak;

}

if (index < 0) {
/* There nanme was scanned to the beginning of the buffer */
/* and no extension was found. */
extLen = 0;
nameLen = udf NameLen;
}
el se {
/* A DOS extension was found, process it first. */
ext Len = udf NameLen - index - 1;
namelLen = index
targetlndex = 0
bytesLeft = DOS_EXT_LEN

whi |l e (++index < udf NameLen && bytesLeft > 0) {

/* Get the current character and convert it to upper */

/* case. */
current = Uni codeToUpper (udf Name[i ndex]);
if (current =="' ") {

*/
*/

/* |If a space is found, a CRC nust be appended to */

/* the mangled file name. */
needsCRC = TRUE
}
el se {
/* Determne if this is a valid file name char and
/* calculate its correspondi ng BCS character byte
/* length (zero if the char is not |egal or
/* undi spl ayable on this system. */
charLen = (IsFil eNanmeCharLegal (current)) ?
Nat i veChar Lengt h(current) : O;

/* 1If the char is larger than the avail abl e space
/* in the buffer, pretend it is undisplayable. */
if (charLen > bytesLeft)

charLen = 0;

if (charLen == 0) {
/* Undi spl ayable or illegal characters are */

/* substituted with an underscore ("_"), and */

/* required a CRC code appended to the mangl ed
/[* file name. */

needsCRC = TRUE

char Len 1;

current)

/* Skip over any follow ng undiplayable or */
/* illegal chars. */
whil e (index +1 <udfNanmeLen &&

*/
*/

*/

*/

(!'l'sFil eNaneChar Legal (udf Name[i ndex + 1]) ||
Nat i veChar Lengt h(udf Name[i ndex + 1]) == 0))

i ndex++;

113

March 15, 2000

}

/* Assign the resulting char to the next index in */
/* the extension buffer and determ ne how many BCS */
/* bytes are left. */

ext[target|ndex++] = current;

bytesLeft -= charlLen

}

/* Save the number of Unicode characters in the extension */
extLen = targetlndex;

/* 1f the extension was too large, or it was zero length */
/* (i.e. the name ended in a period), a CRC code nust be */
/* appended to the mangl ed name. */
if (index < udfNaneLen || extLen == 0)
needsCRC = TRUE
}

/* Now process the actual file name. */
index = 0;
targetlndex = O;
crclndex = 0
over| ayBytes = -1,
bytesLeft = DOS_NAME_LEN;
whil e (index < nameLen && bytesLeft > 0) {
/* Get the current character and convert it to upper case. */
current = Uni codeToUpper (udf Name[i ndex]);
if (current ==" ' ||current =="'.") {
/* Spaces and periods are just skipped, a CRC code */
/* must be added to the mangled file name. */
needsCRC = TRUE
}

el se {

/* Determine if this is a valid file name char and */
/* calculate its correspondi ng BCS character byte */
/* length (zero if the char is not legal or */

/* undi spl ayable on this system. */

charLen = (IsFil eNameCharLegal (current)) ?

Nat i veChar Lengt h(current) : O;

/* If the char is larger than the avail able space in */
/* the buffer, pretend it is undisplayable. */
if (charLen > bytesLeft)

charLen = 0;

if (charLen == 0) {
/* Undi spl ayable or illegal characters are */
/* substituted with an underscore ("_"), and */
/* required a CRC code appended to the mangled */
/* file name. */
needsCRC = TRUE
charLen = 1;

current ="'_';

/* Skip over any follow ng undiplayable or illegal */
/* chars. */
whil e (index +1 <naneLen &&
(!'l'sFil eNaneChar Legal (udf Name[i ndex + 1]) ||
Nat i veChar Lengt h(udf Name[i ndex + 1]) == 0))

UDF 2.01 114 March 15, 2000

i ndex++

/* Termnate loop if at the end of the file name. */
if (index >= nanmelLen)
br eak;

}

/* Assign the resulting char to the next index in the */
/* file name buffer and determ ne how many BCS bytes */
[* are left. */

dosNane[t arget| ndex++] = current;

bytesLeft -= charlLen;

/* This figures out where the CRC code needs to start */
/* in the file name buffer. */
if (bytesLeft >= DOS_CRC_LEN) {

/* If there is enough space left, just tack it */

/* onto the end. */

crclndex = targetlndex;

}
el se {
/* If there is not enough space left, the CRC */
/* must overlay a character already in the file */
/* nanme buffer. Once this condition has been */
/* met, the value will not change. */
if (overlayBytes < 0) {
/* Determ ne the index and save the length of */
/* the BCS character that is overlayed. It */
/* is possible that the CRC m ght overlay */
/* half of a two-byte BCS character depending */
/* upon how the character boundaries |line up. */
overl ayBytes = (bytesLeft + charLen > DOS_CRC_LEN)?1 :0;
crclndex = targetlndex - 1;
}
}

}

/* Advance to the next character. */
i ndex++

/* I f the scan did not reach the end of the file name, or the */
/* length of the file name is zero, a CRC code is needed. */
if (index < nameLen || index == 0)

needsCRC = TRUE

/* If the name has illegal characters or and extension, it */
/* is not a DOS device nane. */
if (needsCRC == FALSE && extlLen == 0) {
/* 1If this is the nane of a DOS device, a CRC code should */
/* be appended to the file name. */
if (IsDeviceNanme(udf Nane, udfNameLen))
needsCRC = TRUE

/* Append the CRC code to the file nane, if needed. */

if (needsCRC) {
/* Get the CRC value for the original Unicode string */
Ul NT16 udf CRCVal ue = Cal cul at eCRC(udf Nanme, udf NamelLen);

UDF 2.01 115 March 15, 2000

/* Determ ne the character index where the CRC should */
/* begin. */
targetl ndex = crclndex;

/* 1If the character being overlayed is a two-byte BCS */
/* character, replace the first byte with an underscore. */
if (overlayBytes > 0)
dosName[t arget| ndex++] ="' _";
/* Append the encoded CRC value with delimter. */
dosNanme[t ar get| ndex++] = '#";
dosNane[target| ndex++] =
crcChar [udf CRCVal ue / (DOS_CRC_MODULUS * DOS_CRC_MODULUS)];
udf CRCVal ue % DOS_CRC_MODULUS * DOS_CRC_MODULUS;
dosNanme[t arget| ndex++] =
crcChar [udf CRCVal ue / DOS_CRC_MODULUS] ;
udf CRCval ue % DOS_CRC_MODULUS;
dosNanme[t ar get | ndex++] = crcChar[udf CRCval ue];
}

/* Append the extension, if any. */

if (extLen > 0) {
/* Tack on a period and each successive byte in the */
/* extension buffer. */
dosNanme[targetlndex++] ="'.";

for (index = 0; index < extLen; index++)
dosName[t arget| ndex++] = ext[index];

}

/* Return the length of the resulting Unicode string. */
return (U NT16)target| ndex;

/***/

/* UDFDOSVol uneLabel () */
/* Transl ate udfLabel to dosLabel using OSTA conpliant algorithm */
/* dosLabel nmust be a Unicode string buffer at |least 11 characters */
/* in length. */
/***/
Ul NT16 UDFDOSVol uneLabel (UNI CODE_CHAR* dosLabel , UNI CODE_CHAR*
udf Label , Ul NT16 udfLabel Len)
{

I NT16 index;

I NT16 targetlndex;

I NT16 crcl ndex;

I NT16 charLen;

I NT16 overl ayBytes;

| NT16 byteslLeft;

UNI CODE_CHAR current;

BOOLEAN needsCRC;

needsCRC = FALSE;

/* Scan end of label to see if there are any trailing spaces. */
i ndex = udfLabel Len;
while (index-- > 0) {

if (udflLabel[index] !'=" ")

br eak;

UDF 2.01 116

March 15, 2000

UDF 2.01

/* 1If there are trailing spaces, adjust the length of the */
/* string to exclude them and indicate that a CRC code is */
/* needed. */
if (index +1 !=udflLabel Len) {

udf Label Len = index + 1;

needsCRC = TRUE;
}

index = 0;
targetlndex = 0;
crclndex = 0;
overl ayBytes = -1,
byt esLeft = DOS_LABEL_LEN,;
whil e (index < udflLabel Len && bytesLeft > 0) {
/* Get the current character and convert it to upper case. */
current = UnicodeToUpper (udfLabel [index]);
if (current =="'.") {
/* Periods are just skipped, a CRC code nust be added */
/* to the mangled file name. */
needsCRC = TRUE;

el se {
/* Determine if this is a valid file name char and */
/* calculate its correspondi ng BCS character byte */
/* length (zero if the char is not |legal or */
/* undi spl ayable on this system. */
charLen = (IsVol uneLabel CharLegal (current)) ?
Nat i veChar Lengt h(current) : O;

/* 1If the char is larger than the avail able space in */
/* the buffer, pretend it is undisplayable. */
if (charLen > bytesLeft)
charLen = 0;
if (charLen == 0) {
/* Undi spl ayable or illegal characters are */
/* substituted with an underscore ("_"), and */
/* required a CRC code appended to the mangled */
/* file nane. */
needsCRC = TRUE;
charlLen = 1;
current ="' _";

/* Skip over any follow ng undiplayable or illegal */
/* chars. */
while (index +1 <udfLabel Len &&
(!1sVol uneLabel Char Legal (udf Label [i ndex + 1]) ||
Nat i veChar Lengt h(udf Label [i ndex + 1]) == 0))
i ndex++;

/* Term nate loop if at the end of the file name. */
if (index >= udfLabel Len)
br eak;

}

/* Assign the resulting char to the next index in the */
/* file name buffer and determ ne how many BCS bytes */
/* are left. */

dosLabel [target| ndex++] = current;

bytesLeft -= charlLen;

/* This figures out where the CRC code needs to start */

117 March 15, 2000

/* in the file name buffer. */

if (bytesLeft >= DOS_CRC_LEN) {
/* |f there is enough space left, just tack it */
/* onto the end. */
crclndex = targetlndex;

}
el se {
/* |f there is not enough space |left, the CRC */
/* must overlay a character already in the file */
/* nanme buffer. Once this condition has been */
/* met, the value will not change. */
if (overlayBytes < 0) {
/* Determ ne the index and save the length of */
/* the BCS character that is overlayed. It */
/* is possible that the CRC m ght overlay */
/* half of a two-byte BCS character depending */
/* upon how the character boundaries |ine up. */
overl ayBytes = (bytesLeft + charLen >
DOS_CRC_LEN)
?1 :0;
crclndex = targetlndex - 1;
}
}

}

/* Advance to the next character. */
i ndex++;

}

/* 1f the scan did not reach the end of the file name, or the */
/* length of the file name is zero, a CRC code is needed. */
if (index < udfLabellLen || index == 0)

needsCRC = TRUE;

/* Append the CRC code to the file name, if needed. */

if (needsCRC) {
/* Get the CRC value for the original Unicode string */
Ul NT16 udf CRCVal ue = Cal cul at eCRC(udf Nane, udf NanelLen);

/* Determ ne the character index where the CRC should */
/* begin. */
targetlndex = crclndex;

/* |f the character being overlayed is a two-byte BCS */
/* character, replace the first byte with an underscore. */
if (overlayBytes > 0)
dosLabel [target| ndex++] = "_";
/* Append the encoded CRC value with delimter. */
dosLabel [target| ndex++] = "#';
dosLabel [target| ndex++] =
crcChar [udf CRCVal ue / (DOS_CRC_MODULUS * DOS_CRC_MODULUS)] ;
udf CRCval ue % DOS_CRC_MODULUS * DOS_CRC_MODULUS;
dosLabel [target| ndex++] =
cr cChar [udf CRCVal ue / DOS_CRC_MODULUS] ;
udf CRCVal ue % DOS_CRC_MODULUS;
dosLabel [target| ndex++] = crcChar[udf CRCVal ue];
}

/* Return the length of the resulting Unicode string. */
return (U NT16)targetl ndex;

UDF 2.01 118 March 15, 2000

/***/

/* Uni codeToUpper () */
/* Convert the given character to upper-case Unicode. */

/***/

UNI CODE_CHAR Uni codeToUpper (UNI CODE_CHAR val ue)

{
/* Actual inplenentation will vary to accommpdate the target */
/* operating system APl services. */
/* Just handle the ASCII range for the tinme being. */
return (value >= '"a' && value <= 'z") ?
value - ("a'" - "A') : value;
}

/***/

/* | sFil eNaneChar Legal () */
/* Determine if this is a legal file nane id character. */

/***/

BOOLEAN | sFi | eNameChar Legal (UNI CODE_CHAR val ue)

{
/* Control characters are illegal. */
if (value < ")
return FALSE;
/* Test for illegal ASCI| characters. */
switch (value) {
case '"\\':
case '/':
case ':'
case '*':
case '?':
case '\"':
case '<':
case '>':
case '|"':
case ';':
case 'N':
case ','
case '&':
case '+’
case '=":
case '[':
case ']':
return FALSE;
defaul t:
return TRUE;
}
}

/***/

/* 1 sVol uneLabel Char Legal () */
/* Determine if this is a legal volume |abel character. */

/***/

BOOLEAN | sVol uneLabel Char Legal (UNI CODE_CHAR val ue)
{

/* Control characters are illegal. */

UDF 2.01 119

March 15, 2000

if (value < ")
return FALSE;

/* Test for illegal ASCI| characters. */

switch (value) {
case '"\\':
case '/':
case ':'
case '*':
case '?':
case '\"':
case '<':
case '>':
case '|"':
case '.':
case ';'
case '™
case ',':
case '&':
case '+':
case '=":
case '[':
case ']

return FALSE;

defaul t:
return TRUE;

/***/

/* NativeCharLength() */

/* Determ nes the corresponding native length (in bytes) of the */
/* given Unicode character. Returns zero if the character is */

/* undi spl ayabl e on the current system */

/***/

I NT16 Nati veCharLengt h(UNI CODE_CHAR val ue)

{
/* Actual inplementation will vary to accomodate the target */
/* operating system APl services. */
/* This is an exanple of a conservative test. A better test */
/* will utilize the platforns |anguage/codeset support to */
/* determ ne how wi de this character is when converted to the */
/* active variable width character set. */
return 1;

}

/***/

/* | sDeviceName() */

/* Determine if the given Unicode string corresponds to a DOS */

/* device name (e.g. "LPT1", "COWM", etc.). Since the set of */

/* valid device nanes with vary from systemto system and */

/* a means for determ ning them m ght not be readily avail able, */
/* this functionality is only suggested as an optional */

/* inplenmentation enhancenent. */
/***/

BOOLEAN | sDevi ceName(UNI CODE_CHAR* nanme, Ul NT16 nanelLen)
{

UDF 2.01 120

March 15, 2000

/* Actual inplenentation will vary to accommpdate the target */
/* operating system APl services. */

/* Just return FALSE for the time being. */

return FALSE;

UDF 2.01 121 March 15, 2000

6.7.2 OS2, Macintosh,Windows 95, Windows NT and UNI X
Algorithm

/***
* OSTA UDF conpliant file name translation routine for O/ 2,

* W ndows 95, Wndows NT, Macintosh and UN X

* Copyright 1995 Mcro Design International, Inc.

* Witten by Jason M Rinn.

* Mcro Design International gives permssion for the free use of the
* foll owi ng source code.

*/

/***

* To use these routines with different operating systens.

* 08/ 2
* Defi ne 082
* Def i ne MAXLEN

254

* W ndows 95
* Define WN_95
* Define MAXLEN = 255

* W ndows NT
* Define WN_NT
* Def i ne MAXLEN

255

* Maci nt osh:
* Defi ne MAC.
* Defi ne MAXLEN = 31.

* UNI X

* Define UN X

* Define MAXLEN as specified by uni x version.
*/

#define | LLEGAL_CHAR MARK 0x005F

#defi ne CRC_MARK 0x0023
#def i ne EXT_SI ZE 5
#defi ne TRUE 1
#defi ne FALSE 0
#defi ne PERI OD 0x002E
#defi ne SPACE 0x0020

/***

* The following two typedef's are to renove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.
*/
t ypedef unsigned int unicode_t;
t ypedef unsi gned char byte;

[*** PROTOTYPES ***/
int Islllegal (unicode_t ch);

unsi gned short uni code_cksun{regi ster unsigned short *s, register int n);

/* Define a function or nmacro which determnes if a Unicode character is

UDF 2.01 122 March 15, 2000

* printabl e under your inplenentation.
*
/
int Uni codel sPrint(unicode_t);

/***

* Translates a long file name to one using a MAXLEN and an il | egal
* char set in accord with the OSTA requirenents. Assunes the name has
* already been translated to Uni code.

* RETURN VALUE

* Nurmber of uni code characters in translated nane.
*/
i nt UDFTransNane(
uni code_t *newNane, /*(Qut put) Transl at ed nane. Miust be of |ength MAXLEN*/
uni code_t *udfNane, /* (Input) Nane from UDF vol une. */
int udfLen, /* (Input) Length of UDF Nane. */
{

int index, newl ndex = 0, needsCRC = FALSE;

int extlndex, newkxtlndex = 0, hasExt = FALSE;
#ifdef (082 | WN_ 95 | WN_NT)

int traillndex = 0;
#endi f

unsi gned short val ueCRG;

uni code_t current;

const char hexChar[] = "0123456789ABCDEF";

for (index = 0; index < udflLen; index++)

{
current = udf Nane[i ndex];
if (Islllegal (current) || !UnicodelsPrint(current))
{
needsCRC = TRUE;
/* Replace Illegal and non-displ ayabl e chars w th underscore. */
current = | LLEGAL_CHAR NARK;
/* Skip any other illegal or non-displayable characters. */
whi | e(i ndex+1 < udfLen & (Isl!Iegal (udf Name[i ndex+1])
|| !Unicodel sPrint (udf Nane[index+1])))
{
i ndex++;
}
}

/* Record position of extension, if one is found. */
if (current == PERIOD && (udflLen - index -1) <= EXT_SI ZE)

{ if (udfLen == index + 1)
{ /[* Atrailing period is NOT an extension. */
hasExt = FALSE;
}
el se
{

hasExt = TRUE;
ext I ndex = index;

UDF 2.01 123 March 15, 2000

newExt | ndex = new ndex;

}

#ifdef (082 | WN_95 | WN_NT)
/* Record position of |ast char which is NOT period or space. */
else if (current !'= PERIOD & current != SPACE)

{

}
#endi f

traill ndex = new ndex;

i f (newl ndex < MAXLEN)

{
newNane[new ndex++] = current;
}
el se
{
needsCRC = TRUE;
}

}

#ifdef (OS2 | WN.95 | WN_NT)
/* For OS82, 95 & NT, truncate any trailing periods and\or spaces. */

if (traillndex != new ndex - 1)
{
newl ndex = traillndex + 1
needsCRC = TRUE
hasExt = FALSE, /* Trailing period does not make an extension. */
}
#endi f
if (needsCRQO
{

uni code_t ext[EXT_SI ZE] ;
int |ocal Extlndex = 0;
i f (hasExt)
{
int maxFi | enanelLen
/* Translate extension, and store it in ext. */
for(index = 0; index<EXT_SIZE &% extlndex + index +1 < udfLen
i ndex++)

{

current = udf Nane[extlndex + index + 1];

if (Islllegal (current) || !UnicodelsPrint(current))
{
needsCRC = 1;
/* Replace Illegal and non-di spl ayabl e chars
* with underscore.
*/
current = | LLEGAL_CHAR MARK;
/* Skip any other illegal or non-displ ayabl e
* characters.
*/
whil e(index + 1 < EXT_SI ZE
&& (1sll1egal (udf Nane[ext I ndex + index + 2])

UDF 2.01 124

March 15, 2000

|| 'isprint(udfName[extlndex + index + 2])))
{

}

i ndex++;

}

ext[| ocal Ext I ndex++] = current;

}

/* Truncate filenane to | eave roomfor extension and CRC. */
maxFi | enaneLen = ((MAXLEN - 5) - |ocal Extlndex - 1);
i f (newl ndex > maxFi| enanelLen)

{
}

el se

{

}
}
else if (newl ndex > MAXLEN - 5)
{

new ndex = maxFi | enaneLen;

newl ndex = newExt | ndex;

/*1f no extension, make sure to | eave roomfor CRC */
newl ndex = MAXLEN - 5;

}
newNare[newl ndex++] = CRC_ MARK; /* Add mark for CRC. */

/*Calculate CRC fromoriginal filename fromFileldentifier. */
val ueCRC = uni code_cksun{ udf Nane, udfLen);

/* Convert 16-bits of CRC to hex characters. */

newNare[new ndex++] = hexChar [(val ueCRC & 0xf000) >> 12];
newNare[new ndex++] hexChar [(val ueCRC & 0x0f 00) >> 8];
newNare[newl ndex++] = hexChar[(val ueCRC & 0x00f Q) >> 4];
newNare[newl ndex++] = hexChar[(val ueCRC & 0x000f)];

/* Place a translated extension at end, if found. */

i f (hasExt)
{
newNane[new ndex++] = PERI QD
for (index = 0;index < |ocal Extlndex ;index++)
{
newNane[newl ndex++] = ext[index];
}
}

}

ret ur n(new ndex) ;

}

#ifdef (082 | WN_.95 | WN_NT)
/***
* Decides if a Unicode character matches one of a |ist

* of ASClI| characters.

* Used by OS2 version of Islllegal for readability, since all of the

* illegal characters above 0x0020 are in the ASCI| subset of Unicode.

* Wrks very simlarly to the standard C function strchr().

* RETURN VALUE

UDF 2.01 125 March 15, 2000

* Non-zero if the Unicode character is in the given ASCI| string.
*/
int Uni codel nString(
unsi gned char *string, /* (Input) String to search through. */
uni code_t ch) /* (lnput) Unicode char to search for. */
{
int found = FALSE;
while (*string !'="'\0" && found == FALSE)
{
/* These types shoul d conpare, since both are unsigned nunbers. */
if (*string == ch)

{

found = TRUE;
}
string++;

}

return(found);

}
#endif /* 082 */

/***

* Deci des whether the given character is illegal for a given CS.
*

* RETURN VALUE

*

* Non-zero if char is illegal.

*/

nt Islllegal (unicode_t ch)

{
#i f def MAC

/* Only illegal character on the MACis the colon. */
if (ch == 0x003A)
{

}

el se

{
}

#el i f defined UNI X
/* Illegal UNIX characters are NULL and sl ash. */
if (ch == 0x0000 || ch == 0x002F)
{

}

el se

{
}

#elif defined (052 | WN_95 | WN_NT)
/* 1llegal char's for 08/ 2 according to WARP tool kit. */
if (ch < 0x0020 || UnicodelnString("\\/:*?2\"<>|", ch))

{
}

return(l);

return(0);

return(l);

return(0);

return(l);

UDF 2.01 126

March 15, 2000

el se

{

}
#endi f

}

return(0);

UDF 2.01 127 March 15, 2000

6.8 Extended Attribute Checksum Algorithm

Cal cul ates a 16-bit checksum of the |nplenentation Use

Ext ended Attribute header or Application Use Extended Attribute
header. The fields AttributeType through Inplenentationldentifier
* (or Applicationldentifier) inclusively represent the

* data covered by the checksum (48 bytes).

* % * F

U nt16 Conput eEAChecksun(byte *data)

{
U nt 16 checksum = O;

U nt count ;

for(count = 0; count < 48; count++)

{
}

checksum += *dat a++;

return(checksum);

UDF 2.01 128 March 15, 2000

6.9 Requirementsfor DVD-ROM
This gppendix defines the requirements and restrictions for UDF formatted DVD-ROM discs.

DVD-ROM discs shdl be mastered with the UDF file system
DVD-ROM discs shdl conggt of asingle volume and asingle partition.

NOTE:. Thedisc may dso include the 1SO 9660 file system. If the disc contains both UDF
and 1S0 9660 file systemsit shdl be known asa UDF Bridge disc. This UDF Bridge disc will
dlow playing DVD-ROM mediain computers, which may only support 1SO 9660. As UDF
computer implementations are provided, the need for 1SO 9660 will disappear, and future discs
should contain only UDF.

If you intend to do any DVD development with UDF, please make sure that you fill out the
OSTA UDF Developer Regidtration Form located in appendix 6.11. For planned operating
system, check the Other box and write in DVD.

6.9.1 Constraintsimposed on UDF by DVD-Video

This section describes the restrictions and requirements for UDF formatted DV D-Video discs
for dedicated DVD content players. DV D-Video is one specific application of DVD-ROM
using the UDF format for the home consumer market. Due to limited computing resources
within aDVD player, restrictions and requirements were crested so that a DVD player would
not have to support every feature of the UDF specification.

All DVD-Video discs shdl be mastered to contain adl required data as specified by ECMA 167
(2™ edition) and UDF 1.02. Thiswill ease playing of DVD-Video in computer systems.
Examples of such datainclude the time, date, permission bits, and a free space map (indicating
no free space). While DVD player implementations may ignore these fields, a UDF computer
system implementation will not. Both entertainment-based and computer- based content can
reside on the same disc.

NOTE: DVD-Video discs mastered according to UDF 2.0x may not be compatible with
DVD-Video players. DVD-Video players expect mediain UDF 1.02 format.

In an attempt to reduce code size and improve performance, al divison described isinteger
arithmetic; dl denominators shdl be 2", such thet dl divisons may be carried out vialogicd shift
operations.

A DVD player shdl only support UDF and not | SO 9660.

Originating systems shall congtrain individual files to be less than or equal to 2*° - Logical
Block Sze bytesin length.

UDF 2.01 129 March 15, 2000

The data of each file shdl be recorded as a single extent. Each File Entry shal be recorded
using the ICB Strategy Type 4.

File and directory names shdl be compressed as 8 bits per character using OSTA
Compressed Unicode format.

A DVD player shdl not be required to follow symbolic links to any files.

The DVD-Video files shal be sored in a subdirectory named "VIDEO TS’ directly under
the root directory. Directory names are stlandardized in the DVD Specifications for Read-
Only Disc document.

NOTE: The DVD Specifications for Read-Only Disc is a document, devel oped by the
DVD Consortium, that describes the names of dl DVD-Video filesand aDVD-Video
directory, which will be stored on the media, and additionaly, describes the contents of the
DVD-Videofiles.

The file named "VIDEO_TSIFO" inthe VIDEO TS subdirectory shall be read first.

All the above congraints apply only to the directory and files that the DVD player needs to
access. There may be other files and directories on the media which are not intended for the
DVD player and do not meet the above listed congtraints. These other files and directories are
ignored by the DVD player. Thisiswhat enables the ability to have both entertainment - based
and computer-based content on the same disc.

6.9.2 How toread a UDF DVD-Video disc
This section describes the basic procedures that a DV D player would go through to read a
UDF formatted DVD-Video disc.

6.9.2.1 Step 1. Volume Recognition Sequence
Find an ECMA 167 Descriptor in avolume recognition area, which shdl dart at logica
sector 16.

6.9.2.2 Step 2. Anchor Volume Descriptor Pointer
The Anchor Volume Descriptor Pointer, which islocated a an anchor point, must be
found. Duplicate anchor points shdl be recorded at logica sector 256 and logicd sector n,
where n is the highest numbered logica sector on the disc.

A DVD player only needsto look at logical sector 256; the copy at logica sector nis
redundant and only needed for defect tolerance. The Anchor Volume Descriptor Pointer
contains three things of interest:

1. Static sructures that may be used to identify and verify integrity of the disc.

2. Locdtion of the Main Volume Descriptor Sequence (absolute logica sector number)

3. Length of the Main Volume Descriptor Sequence (bytes)

UDF 2.01 130 March 15, 2000

The data located in bytes 0-3 and 5 of the Anchor Volume Descriptor Pointer may be
used for format verification if desired. Verifying the checksum in byte 4 and CRC in bytes
8-11 are good additional verificationsto perform. MVDS Location and MVDS Length
are read from this structure.

6.9.2.3 Step 3. Volume Descriptor Sequence
Read logical sectors:

MVDS Location through MVDS Location + (MVDS Length - 1) / SectorSize

Thelogica sector size shdl be 2048 bytes for DVD media. If this sequence cannot be
read, a Reserve VVolume Descriptor Sequence should be read.

The Partition Descriptor shdl be a descriptor with atag identifier of 5. The partition
number and partition location shall be recorded in logica sector number.

Partition_L ocation and Partition_Length are obtained from this Sructure.

The Logica Volume Destriptor shdl be a descriptor with atag identifier of 6. The location
and length of the File Set Descriptor shdl be recorded in the Logica Volume Descriptor.

FSD_Location, and FSD_Length are returned from this structure.

6.9.2.4 Step 4. File Set Descriptor
The File Set Descriptor is located at logical sector numbers:

Partition L ocation + FSD_L ocation through
Partition_Location + FSD_L ocation + (FSD_Length - 1) / BlockSize

RootDir_L ocation and RootDir_L ength shdl be read from the File Set Descriptor in logicd
block number.

6.9.2.5 Step 5. Root Directory File Entry
RootDir_Location and RootDir_L ength define the location of a File Entry. The File Entry
describes the data space and permissions of the root directory.
The location and length of the Root Directory is returned.

6.9.2.6 Step 6. Root Directory
Parse the data in the root directory extent to find the VIDEO_TS subdirectory.

UDF 2.01 131 March 15, 2000

Find the VIDEO_TS File Identifier Descriptor. The name shall be in 8 bit compressed
UDF format. Verify that VIDEO _TSisadirectory.

Read the File Identifier Descriptor and find the location and length of a File Entry
describing the VIDEO_TS directory.

6.9.2.7 Step 7. FileEntry of VIDEO_TS
The File Entry found in the step above describes the data space and permissions of the
VIDEO_TSdirectory.

The location and length of the VIDEO_TS directory is returned.

6.9.2.8 Step 8. VIDEO_TSdirectory
The extent found in the step above contains sets of File Identifier Descriptors. 1n this pass,
verify that the entry pointsto afile and isnamed VIDEO_TS.IFO.

6.9.2.9 Step 9. FileEntry of VIDEO_TS.IFO
The File Entry found in the step above describes the data space and permissions of the
VIDEO_TSIFOfile.

The location and length of the VIDEO_TS.IFO fileis returned.

Further files can be found in the same manner asthe VIDEO_TS.IFO file when needed.

6.9.3 Obtaining DVD Documents
To obtain acopy of the DVD Specifications for Read-Only Disc document as well as other
DVD related materid, contact:

DVD Forum

Office of Secretary

1-1, Shibaura 1-Chome, Minato-ku
Tokyo 105-8001

Japan

TEL: +81-3-5444-9580
FAX: +81-3-5444-9436

UDF 2.01 132 March 15, 2000

6.10 Recommendationsfor CD Media

CD Media (CD-R and CD-RW) requires specia consderation due to its nature. CD was
origindly designed for read-only applications, which affects the way in which it iswritten. The
following guiddines are established to ensure interchange.

Each file and directory shdl be described by asingle direct ICB. The ICB should be written
after thefile datato dlow for data underruns during writing, which will cause logicd gapsin the
filedata The ICB can be written afterward which will correctly identify dl extents of thefile
data. TheCB shdl be written in the data track, the file system track (if it exists), or both.

6.10.1 Use of UDF on CD-R media

ECMA 167 requires an Anchor Volume Descriptor Pointer (AVDP) at sector 256 and either N
or (N - 256), where N isthe last recorded Physicd Address on the media. UDF requires that
the AVDP be recorded at both sector 256 and sector (N - 256) when each sessonis closed
(2.2.3). Thefile system may bein an intermediate Sate before closng and till be
interchangegble, but not drictly in compliance with ECMA 167. In the intermediate Sate, only
one AVDP exids. It should exist at sector 256, but if thisis not possible due to atrack
reservation, it shall exist at sector 512.

Implementations should place file system control structures into virtua space and file detaiinto
red space. Reader implementations may cache the entire VAT; the Sze of the VAT should be
consdered by any UDF originating software. Computer based implementations are expected
to handle VAT szesof a least 64K bytes; dedicated player implementations may handle only
gndler Szes.

The VAT may belocated by usng READ TRACK INFORMATION (for unfinished media) or
READ TOC or READ CD RECORDED CAPACITY for finished media See X3T10-1048D
(SCSI-3 Multi Media Commands).

6.10.1.1 Requirements
Writing shall use Mode 1 or Mode 2 Form 1 sectors. On one disc, either Mode 1 or
Mode 2 Form 1 shdl be used; a mixture of Mode 1 and Mode 2 Form 1 sectors on one
discisnot dlowed.
NOTE: According to the Multisesson CD Specification, al data sessons on adisc must be
of the same type (Mode 1, or Mode 2 Form 1).

If Mode 2 Form 1 is used, then the subheader bytes of al sectors used by the user datafiles
and by the UDF gructures shdl have the following vaue

Filenumber =0
Channd number =0
Submode = 08h
Coding information =0

UDF 2.01 133 March 15, 2000

An intermediate state is dlowed on CD-R mediain which only one AVDP isrecorded; this
sngle AVDP shdl be at sector 256 or sector 512 and according to the multi-session rules
below.

Sequentid file system writing shdl be performed with variable packet writing. Thisdlows
maximum space efficiency for large and smdl updates. Variable packet writing is more
compatible with CD-ROM drives, as current models do not support method 2 addressing
required by fixed packets.

The Logicd Volume Integrity descriptor shall be recorded and the volume marked as open.
Logicd volume integrity can be verified by finding the VAT ICB at the last recorded
Physcd Address. If the VAT ICB is present, the volume is clean; otherwise it is dirty.

The Partition Header descriptor, if recorded, shall specify no Undlocated Space Table, no
Undlocated Space Bitmap, no Partition Integrity Table, no Freed Space Table, and no
Freed Space Bitmap. The drive is cagpable of reporting free space directly, diminating the
need for a separate descriptor.

Each surface shall contain O or 1 read only partitions, O or 1 write once partitions, and O or
1 virtud partitions. CD media should contain 1 write once partition and 1 virtua partition.

6.10.1.2 UDF “Bridge” formats

SO 9660 requires a Primary Volume Descriptor (PVD) at sector 16. If an 1SO 9660 file
system is desired, it may contain references to the same files as those referenced by ECMA 167
dructures, or reference adifferent set of files, or acombination of the two.

It is assumed that early implementations will record some 1SO 9660 structures but that as
implementations of UDF become available, the need for 1SO 9660 structures will decrease.

If an 1SO 9660 bridge disc contains Mode 2 Form 1 sectors, then the CD-ROM XA
extensions for 1SO 9660 must be used.

6.10.1.3 End of session data

A sessionisclosed to enable reading by CD-ROM drives. The last complete session on the
disc shdl conform completely to ECMA 167 and have two AVDPsrecorded. Thisshdl be
accomplished by writing data according to End of sesson datatable below. Although not
shown in the folloming example, the data may be written in multiple packets.

UDF 2.01 134 March 15, 2000

End of session data

Count Description
1 Anchor Volume Descriptor Pointer
255 Implementation specific. May contain user
data, file system structures, and/or link areas.
1 VATICB.

The implementation specific data may contain repested copies of the VAT and VAT ICB.
Compeatibility with drives that do not accurately report the location of the last sector will be
enhanced. Implementations shal ensure that enough space is available to record the end of
sessondata. Recording the end of session data brings a volume into compliance with ECMA
167.

6.10.2 Use of UDF on CD-RW media
CD-RW mediais randomly readable and block writable. This meansthat while any individud
sector may be read, writing must occur in blocks containing multiple sectors. CD-RW systems

do not provide for sparing of bad areas. Writing rules and sparing mechanisms have been
defined.

6.10.2.1 Requirements
Writing which conformsto this section of the standard shdl be performed using fixed length
packets.

Writing shall be performed usng Mode 1 or Mode 2, Form 1 sectors. On one disc, either
Mode 1 or Mode 2 Form 1 shdl be used.

NOTE: According to the Multisesson CD Specification, dl data sessons on adisc must be
of the same type (Mode 1, or Mode 2 Form 1).

If Mode 2 Form 1 is used, then the subheader bytes of dl sectors used by the user datafiles
and by the UDF gructures shdl have the following value:

File number =0
Channd number =0
Submode = 08h
Coding information = 0

UDF 2.01 135 March 15, 2000

The hogt shal perform read/modify/write to enable the gpparent writing of sngle 2K
sectors.

The packet length shall be set when the disc isformatted. The packet length shall be 32
sectors (64 KB).

The hogt shdl maintain alist of defects on the disc usng aNonAllocatable Space Stream
(see 3.3.7.2).

Sparing shdl be managed by the host via the sparable partition and a sparing table.

Discs shall be formatted prior to use.

6.10.2.2 Formatting

Formatting shdl consst of writing alead-in, user data area, and lead-out. These areas may be
writtenin any order. A verification pass may follow this physica format. Defects found during
the verification pass shdl be enumerated in the Non-Allocatable Space Stream (see 3.3.7.2).
Finaly, file system root structures shal be recorded. These mandatory file system and root
gructures include the VVolume Recognition Sequence, Anchor VVolume Descriptor Pointers, a
Volume Descriptor Sequence, aFile Set Descriptor and a Root Directory.

The Anchor Volume Descriptor Pointers shall be recorded at sectors 256 and N - 256, where
N isthe Physical Address of the last addressable sector.

Allocation for gparing shdl occur during the format process. The sparing dlocation may be zero
inlength.

The free space descriptors shal be recorded and shall reflect space dlocated to defective areas
and sector sparing areas.

The format may indude dl available space on the medium. However, if requested by the user, a
subset may be formatted to save formatting time. That smaler format may be later “grown” to
the full available space.

UDF 2.01 136 March 15, 2000

6.10.2.3 Growing the Format
If the medium is partidly formatted, it may be later grown to alarger Sze. This operation
consgsof:

Optiondly erase the lead-in of the last session

Optiondly erase the lead-out of the last sesson

Write packets beginning immediately after the last recorded packet.
Update the sparing table to reflect any new spare areas

Adjust the partition map as appropriate

Update the free space map to show new available area
Movethelast AVDPto the new N - 256

Write the lead-in (which reflects the new track sze)

Write the lead-out

6.10.2.4 Host Based Defect Management

The hogt shdl perform defect management operations. The CD format was defined without any
defect management; to be compatible with existing technology and components, the host must
manage defects. There are two levels of defect management: Marking bad sectors a format
time and on-line sparing. The host shall keep the tables on the media current.

6.10.2.5 Read Modify Write Operation

CD-RW mediarequires large writable units, as each unit incurs a 14KB overhead. Thefile
system requires a 2KB writable unit. The difference in write Szesis handled by a read-modify-
write operation by the host. An entire packet is read, the appropriate portions are modified,
and the entire packet written to the CD.

Note that packets may not be aligned to 32 sector boundaries.

6.10.2.6 Levelsof Compliance

6.10.2.6.1 Level 1

The disc shdl be formatted with exactly one lead-in, program area, and lead-out. The program
area shdl contain exactly one track.

6.10.2.6.2 Level 2

The last sesson shdl contain the UDF file sysem. All prior sessons shdl be contained in one
read-only partition.

UDF 2.01 137 March 15, 2000

6.10.2.6.3 Level 3
No redrictions shal gpply.

6.10.3 Multisession and Mixed M ode

The Volume Recognition Sequence and Anchor Volume Descriptor Pointer locations are
specified by ECMA 167 to be at alocation relative to the begnning of the disc. The beginning
of adisc shal be determined from a base address Sfor the purposes of finding the VRS and
AVDP.

‘S isthe Physica Address of the first data sector in the first recorded datatrack in the last
exisent sesson of the volume. ‘S isthe same vaue currently used in multisesson SO 9660
recording. Thefirst track in the sesson shdl be a data track.

‘N’ isthe physical sector number of the last recorded data sector on adisc.

If random write mode is used, the media may be formatted with zero or one audio sessons
followed by exactly one writable data sesson containing one track. Other sesson
configurations are possible but not described here. There shdl be no more than one writable
partition or sesson a onetime, and this sesson shall be the last sesson on the disc.

6.10.3.1 Volume Recognition Sequence
The following descriptions are added to UDF (see dso ECMA 167 Part 2) in order to handle a
multisession disc.

The volume recognition area of the UDF Bridge format shall be the part of the volume
Space starting at sector S+ 16.

The volume recognition pace shdl end in the track in which it begins. Asaresult of this
definition, the volume recognition area dways exidsin the last sesson of adisc.

When recorded in Random Access mode, a duplicate Volume Recognition Sequence
should be recorded beginning at sector N - 16.

6.10.3.2 Anchor Volume Descriptor Pointer

Anchor Volume Descriptor Pointers (AVDP) shdl be recorded at the following logica sector
numbers. S+ 256 and N - 256. The AVDP at sector N - 256 shall be recorded before closing
asession; it may not be recorded while asesson is open.

6.10.3.3 UDF Bridge format

The UDF Bridge format alows UDF to be added to adisc that may contain another file system.
A UDF multisession Bridge disc shdl contain a UDF file sygem initslast session. Thelast
sesson shdl follow the rules described in “Multisesson and Mixed Mode” section above. The
disc may contain sessions that are based on SO 9660, audio, vendor unique, or acombination
of filesysems. The UDF Bridge format alows CD enhanced discsto be created.

A new Main and Reserve Volume Descriptor Sequence may exist in each added sesson, and
may be different than earlier VDSs.

UDF 2.01 138 March 15, 2000

If the last session on aCD does not contain avaid UDF file system, the disc is not a UDF disc.
Only the UDF structures in the last session, and any UDF structures and data referenced
through them, are vdid.

The UDF session may contain pointers to data or metadata in other sessions, pointers to data or
metadata only within the UDF session, or a combination of both. Some examples of UDF
Bridge discs are shown below.

Multisession UDF disc
Accessto LSN=16+x Accessto LSN=256

- =
—» \ —»
16 sectors R 16 sectors R
256 sectors § N-256 / 256 sectors g
LSN=0 . LSN=S
) |Fi rst Session | " 1% Recorded Track in the last session

I:I : Volume recognition area
- Anchor point

CD enhanced disc
UDF Session [
Playable by conventional CD-Player Used by UDF

UDF 2.01 139 March 15, 2000

SO 9660 converted to UDF

1st session 2nd session 3rd session

9660 Session 9660 Session UDF Session [

& >
<€ »

Written by conventional 9660 formatter software

r' S

Managed by UDF

Foreign format converted to UDF

1st session 27d session 3rd session

Data Session Data Session UDF Session [

r'y
v

Written by another file system

'

Managed by UDF

6.11 Real-TimeFiles

A Red-Timefile isafile that requires aminimum data-transfer rate when writing or reading, for
example, audio and video data. For these files specid read and write commands are needed.
For example for CD and DV D devices these specid commands can be found in the Mount Fuji
4 specification.

A Red-Timefile shdl be identified by file type 249 in the File Typefidd of thefilesICB Tag.

UDF 2.01 140 March 15, 2000

6.12 UDF Media Format Revison History
The following table shows when changes to the UDF Specification have taken place that affect
the UDF format that can be recorded on a piece of media. The Document Change Notices
(DCNs), which document a specific change, are referenced in the table. The column Update in
UDF Revision describes which revison of the UDF specification that the change was included.
The fidds Minimum UDF Read Revision and Minimum UDF Write Revision relate to the
Revison Access Control fields described in 2.2.6.4.

Description DCN Updated in Minimum Minimum
UDF UDF Read UDF Write
Revision Revision Revision
Allocation Extent Descriptor 2-002 1.02 1.02 1.02
Path Component File Version Number 2-003 1.02 1.02 1.02
Parent Directory Entries 2-004 1.02 1.02 1.02
Device Specification Extended Attribute 2-005 1.02 1.01 1.02
Maximum Logical Extent Length 2-006 1.02 1.02 1.02
Unallocated Space Entry 2-008 1.02 1.01 1.02
DVD Copyright Management Information 2-009 1.02 1.02 1.02
Logical Volume Identifier 2-010 1.02 1.01 1.02
Extent Length Field of an Allocation Descriptor 2-012 1.02 1.01 1.02
Non-relocatable & Contiguous Flags 2-013 1.02 1.01 1.02
Revision of Requirements for DVD-ROM 2-014 1.02 1.02 1.02
Revision Access Control 2-015 1.02 1.01 1.02
Volume Sat Identifier 2-017 1.02 1.01 1.02
Uniquel Ds for Extended Attributes 2-018 1.02 1.02 1.02
Clarification of Dstrings 2-019 1.02 1.01 1.02
Application FreeEA Space Extended Attribute 2-020 1.02 1.02 1.02
Update of Identifier Suffix to 1.02 2-021 1.02 1.02 1.02
Update of Identifier Suffix to 1.50 2-025 1.50 1.50 1.50
Virtual Partition Map Entry 2-026 1.50 1.50 1.50
Allocation of Sparable Partition Map 2-027 1.50 1.50 1.50
Addition of Virtual Allocation Table 2-028 1.50 1.50 1.50
Addition of Sparing Table 2-029 1.50 1.50 1.50
Addition of Non-Allocatable Space List 2-030 1.50 1.02 1.50
Reccommmendations for CD Media 2-031 1.50 1.50 1.50
Change 1.50 to 2.00 2-033 2.00 1.02 2.00
Clarified Domain flags 2-034 2.00 1.02 2.00
Unicode 2.0 Support 2-035 2.00 1.02 2.00
Named Streams 2-036 2.00 2.00 2.00
Unique ID Table as a Named Stream 2-037 2.00 1.02 2.00
Mac Resource Fork as a Named Stream 2-038 2.00 2.00 2.00
Location Field of the Extended Attribute Header 2-043 2.00 1.02 2.00
Access Control Lists 2-044 2.00 2.00 2.00
Descriptor Tags spanning block boundaries 2-047 2.00 1.02 2.00
Power Calibration Stream 2-048 2.00 1.02 2.00
Support for CD-R Multisession Required 2-050 2.00 1.50 2.00
Value of fieldsin LVID for virtua partition on CD-R 2-051 2.00 1.50 2.00
System stream to indicate volume backup time 2-055 2.00 2.00 2.00
New VAT 2-056 2.00 2.00 2.00

UDF 2.01

141

March 15, 2000

Restricting Virtual Addresses 2-057 2.00 1.50 2.00
File Times Extended Attribute 2-058 2.00 1.02 2.00
0S/2 EA Stream 2-061 2.00 2.00 2.00
Non-Allocatable Space Stream 2-062 2.00 1.02 2.00

6.13 Developer Registration Form
Any developer that plans on implementing ECMA 167 according to this document should
complete the developer regigtration form on the following page. By becoming aregistered
OSTA developer you receive the following benefits:

You will receive alist of the current OSTA registered developers and their
associated |mplementation Identifiers. The developers on thislist are encouraged

to interchange media to verify data interchange among implementations.

Notification of OSTA Technica Committee meetings. Y ou may attend alimited

number of these meetings without becoming an officid OSTA member.

Y ou can be added to the OSTA UDF email reflector. Thisreflector providesyou
the opportunity to post technica questions on the OSTA Universal Disk Format

Soecification.

Y ou will receive an invitation to participate in the development of the next revison

of this document.

For the latest information on OSTA and UDF visit the OSTA web site at the following

address:

http://www.osta.org

UDF 2.01

142

March 15, 2000

A\OTA OSTA Universal Disk Format Specification
AL N Developer Registration Form
ptical Storage
Technology Association

Name:

Company:
Address:

City:
State/Province:

Zip/Posta Code:
Country:

Phone: FAX:

Email:

Please indicate on which operating systems you plan to support UDF:

O DOS O 052 O Macintosh O Linux

O UNIX/POSIX 0 05400 OWindows9x O Windows NT/2000

O Other

Please indicate which media types you plan to support:

O Magneto Optical O WORM O Phase Change

O CD-ROM O CD-R O CD-RW

O DVD-ROM O DVD-R O DVD-RAM O DVD-Video
O DVD+RW O DVD-RW O DVD-Audio

O Other

Please indicate what value you plan to use in thel mplementation | dentifier field of the
Entity | dentifier descriptor to identify your implementation:

NOTE: Theidentifier should be something that uniquely identifies your company as well as your product.

O Pleaseadd my email address to the OSTA File Interchange Committee email reflector.
O Please send an OSTA Membership kit.

FAX Completed formto OSTA at 1-805-962-1541, or mail to:
OSTA, 19925 Stevens Creek Blvd., Cupertino, CA 95014

UDF 2.01 143 March 15, 2000

4096, 9, 44, 96, 107

A

Access Control Lists, 84

ACL, 84

AD. See Allocation Descriptor

Allocation Descriptor, 9, 45, 50, 51

Allocation Extent Descriptor, 52

Anchor Volume Descriptor Pointer, 8, 23
Application Entity Identifier, 18

AVDP. See Anchor Volume Descriptor Pointer

B
BeOS, 100

C

CD-R, 3,4, 5, 31, 126, 127, 128, 130
CD-RW, 126, 128

charspec, 12

Checksum, 68, 69, 70, 72, 74, 121

CRC, 20, 38, 50, 104, 106

CS0, 11, 12, 16, 22, 23, 24, 29, 40, 85, 87

D

Defect management, 31, 35, 79, 130

Descriptor Tag, 20, 38, 50

Domain, 1, 14, 15, 16, 17

DOS, 56, 57, 58, 62, 63, 69, 88, 100, 136

Dstrings, 12

DVD, 68, 98, 99, 122, 123, 124, 125, 134

DVD Copyright Management |nformation, 68, 98, 134
DVD-Video, 122, 123

E

EA. See Extended Attribute

ECMA 167, 1

EFE. See Extended File Entry

Entity Identifier, 8, 14, 21, 23, 24, 25, 27, 28, 39, 41,
44, 47, 48, 50, 60, 67, 73, 98, 99

Extended Attributes, 3, 28, 64, 67, 68, 69, 70, 72, 73,
74, 98

Extended File Entry, 7, 43, 48, 55, 64, 65, 66, 74, 75,
95

Extent Length, 8, 134

UDF 2.01

144

F

FE. See File Entry

FID. See File Identifier Descriptor

File Entry, 9, 15, 47, 60

File Identifier Descriptor, 15, 42, 44, 56, 86

File Set Descriptor, 7, 9, 15, 17, 25, 38, 39, 41, 74,
76, 77,79, 80, 95, 124, 129

File Set Descriptor Sequence, 25

Free Space, 26, 27, 31, 35, 79, 122, 127, 129, 130

Freed Space Bitmap, 127

Freed Space Table, 127

FSD. See File Set Descriptor

H

HardWriteProtect, 17, 25, 39, 41

ICB, 9, 42, 44, 56, 57, 64, 85, 86

ICB Tag, 9, 44, 57, 85

Implementation Use V olume Descriptor, 15, 29, 95

Implementationldentifier, 21, 23, 24, 25, 28, 41, 47,
48, 50, 60, 67, 68, 69, 70, 73

Information Control Block. See ICB

Information Length, 34, 35

interchange level, 21, 22, 40

IUVD. See Implementation Use Volume Descriptor

L

Logica Block Size, 8, 9, 24

Logical Sector Size, 8

Logicd Volume, 6, 8, 9, 24, 25, 27, 31, 34, 87, 95, 98
Logica Volume Descriptor, 9, 15, 24, 25, 27

Logica Volume Header Descriptor, 55

Logica Volume Identifier, 9, 34, 40, 134

Logica Volume Integrity Descriptor, 15, 25, 26, 50
LV. SeeLogicd Volume

LVD. SeeLogica Volume Descriptor

LVID. See Logical Volume Integrity Descriptor

M

Macintosh, 3, 28, 35, 56, 58, 62, 64, 67, 69, 70, 71,
72,73, 88, 90, 91, 98, 100, 116, 136

Metadata, 39, 74, 75, 76, 77, 83, 132

Multisession, 3, 126, 128, 131, 132, 134

N

Named Stream, 76, 134
Non-Allocatable Space, 36, 37, 79, 129

March 15, 2000

O

Orphan Space, 95

092, 3, 56, 57, 58, 62, 63, 67, 69, 73, 83, 84, 86, 88,
89, 98, 99, 100, 116, 120, 136

0S/400, 56, 58, 62, 63, 72, 73, 93, 94, 98, 99, 100, 136

Overwritable, 8,9

P

packet, 4, 6, 31, 32, 35, 36, 37, 127, 128, 129, 130
Partition Descriptor, 8, 15, 95, 124

Partition Header Descriptor, 41

Partition Integrity Entry, 9, 15, 50

partition map, 4, 6, 31, 32, 33, 34, 35, 36, 130
partition number, 6, 31, 124

partition reference number, 4, 79

Pathname, 52

PD. See Partition Descriptor

power calibration, 79, 80, 81, 82

Primary Volume Descriptor, 8, 15, 21

PVD. See Primary Volume Descriptor

R

Read-Only, 8
Redl-Timefile, 45, 133
Records, 9, 53
Rewritable, 4, 8, 9, 41, 51

S

session, 4, 5, 126, 127, 128, 130, 131, 132

SizeTable, 26

SoftWriteProtect, 17, 25, 41

Space Bit Map, 95

Sparable Partition Map, 31

sparing, 31, 32, 35, 36, 37, 79, 128, 129, 130

Sparing Table, 16, 32, 35, 36, 98, 99

strategy, 9, 39, 44

Stream, 4, 28, 34, 35, 51, 55, 57, 58, 59, 69, 74, 75, 76,
77,79, 80, 83, 84

Stream Directory, 55, 74, 75

Symbolic Link, 85

UDF 2.01

145

System stream, 134
System Stream Directory, 74, 75, 76, 79

T

TagSeria Number, 20, 38
Timestamp, 8, 13, 26, 54

U

UDF Bridge, 122, 131, 132

UDF Entity Identifier, 98, 99, 101
UDFUniquelD, 55, 77, 79

Unallocated Space Bitmap, 127
Unallocated Space Descriptor, 9, 26
Unallocated Space Entry, 9, 49, 95, 134
Unallocated Space Table, 127

Unicode, 11, 12, 86, 87, 102

Uniquel D, 26, 47, 48, 55, 60, 64, 134
UNIX, 56, 58, 72, 92

unrecorded sector, 96

USD. See Unallocated Space Descriptor
User Interface, 2, 85

Vv

VAT, 6, 31, 63, 126, 127, 128

VDS. See Volume Descriptor Sequence

Virtual Allocation Table, 6

virtual partition, 31, 127

Virtual Partition Map, 31

Volume Descriptor Sequence, 7, 9, 123, 124, 129, 131
Volume Recognition Sequence, 7, 8, 19, 123, 129, 131
Volume Set, 8, 9, 21, 22, 29, 134

VRS. See Volume Recognition Sequence

w

Windows, 56, 57, 58, 69, 88

Windows 95, 56, 57, 58, 91, 100, 136
Windows CE, 100

Windows NT, 56, 57, 58, 69, 91, 100, 116, 136
WORM, 8, 9, 25, 39, 44, 96, 136

March 15, 2000

