

Universal Disk
Format®

Specification

Revision 2.0150

March 15, 2000

April 30, 2003

 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000-2003
 Optical Storage Technology Association

ALL RIGHTS RESERVED

REVISION HISTORY

1.00 October 24, 1995 Original Release
1.01 November 3, 1995 DVD appendix added
1.02 August 30, 1996 Incorporates Document Change Notices DCN 2-001 through DCN 2-024
1.50 February 4, 1997 Integrated support for CD-R and CD-RW media (DCN 2-025 through

DCN 2-032)
2.00 April 3, 1998 Integrated support for ECMA 167 3rd Edition which

included the support for named streams.
 (DCN 2-033 through DCN 2-064)
2.01 March 15, 2000 Incorporates DCNs 5000, 5002, 5004, 5006-5009, 5013-5015, 5018-

5021, 5024-5027, 5029-5032, 5034-5042, 5044-5048, 5050
2.50 April 15, 2003 Incorporates DCNs 5049, 5061-5066, 5068-5072, 5074-5079, 5081-5082,

5086, 5089, 5090.
 April 30, 2003 Approved by committee vote. Minor formatting changes.

POINTS OF CONTACT

Optical Storage Technology Association OSTA UDF E-Mail Reflector
Ray Freeman To subscribe: address request@list.osta.org with
311 East Carrillo Street “subscribe udf” in the subject.
Santa Barbara, CA 93101 To unsubscribe: address request@list.osta.org with
Tel: +1 805 963-3853 “unsubscribe udf” in the subject.
Fax: +1 805 962-1541 Send messages to: udf@list.osta.org
Email: ray@osta.org
http://www.osta.org

Technical Editor
editor.udf@osta.org
Optical Storage Technology Association
http://www.osta.org

Contact information
http://www.osta.org/osta/contact.htm

Technical Editor
editor.udf@osta.org

Technical questions
info@osta.org

OSTA UDF E-Mail Reflector

To subscribe: address request@list.osta.org with
“subscribe udf” as a line in the mail text.

To unsubscribe: address request@list.osta.org with
“unsubscribe udf” as a line in the mail text.

Send messages to UDF reflector: udf@list.osta.org

Important Notices
__

This document is a specification adopted by Optical Storage Technology Association (OSTA). This document may be revised by OSTA. It is intended
solely as a guide for companies interested in developing products which can be compatible with other products developed using this document. OSTA
makes no representation or warranty regarding this document, and any company using this document shall do so at its sole risk, including specifically the
risks that a product developed will not be compatible with any other product or that any particular performance will not be achieved. OSTA shall not be
liable for any exemplary, incidental, proximate or consequential damages or expenses arising from the use of this document. This document defines only
one approach to compatibility, and other approaches may be available in the industry.

This document is an authorized and approved publication of OSTA. The underlying information and materials contained herein are the exclusive property
of OSTA but may be referred to and utilized by the general public for any legitimate purpose, particularly in the design and development of writable optical
systems and subsystems. This document may be copied in whole or in part provided that no revisions, alterations, or changes of any kind are made to the
materials contained herein. Only OSTA has the right and authority to revise or change the material contained in this document, and any revisions by any
party other than OSTA are totally unauthorized and specifically prohibited.

Compliance with this document may require use of one or more features covered by proprietary rights (such as features which are the subject of a patent,
patent application, copyright, mask work right or trade secret right). By publication of this document, no position is taken by OSTA with respect to the
validity or infringement of any patent or other proprietary right, whether owned by a Member or Associate of OSTA or otherwise. OSTA hereby expressly

mailto:request@list.osta.org
mailto:request@list.osta.org
mailto:udf@list.osta.org
mailto:ray@osta.org
http://www.osta.org/
mailto:editor.udf@osta.org
http://www.osta.org/
http://www.osta.org/osta/contact.htm
mailto:editor.udf@osta.org
mailto:info@osta.org
mailto:request@list.osta.org
mailto:request@list.osta.org
mailto:udf@list.osta.org

disclaims any liability for infringement of intellectual property rights of others by virtue of the use of this document. OSTA has not and does not investigate
any notices or allegations of infringement prompted by publication of any OSTA document, nor does OSTA undertake a duty to advise users or potential
users of OSTA documents of such notices or allegations. OSTA hereby expressly advises all users or potential users of this document to investigate and
analyze any potential infringement situation, seek the advice of intellectual property counsel, and, if indicated, obtain a license under any applicable
intellectual property right or take the necessary steps to avoid infringement of any intellectual property right. OSTA expressly disclaims any intent to
promote infringement of any intellectual property right by virtue of the evolution, adoption, or publication of this OSTA document.
(a) THIS DOCUMENT IS AN AUTHORIZED AND APPROVED PUBLICATION OF OSTA. THE SPECIFICATIONS CONTAINED HEREIN ARE

THE EXCLUSIVE PROPERTY OF OSTA BUT MAY BE REFERRED TO AND UTILIZED BY THE GENERAL PUBLIC FOR ANY LEGITIMATE
PURPOSE, PARTICULARLY IN THE DESIGN AND DEVELOPMENT OF WRITABLE OPTICAL SYSTEMS AND SUBSYSTEMS. THIS
DOCUMENT MAY BE COPIED IN WHOLE OR IN PART PROVIDED THAT NO REVISIONS, ALTERATIONS, OR CHANGES OF ANY KIND
ARE MADE TO THE MATERIALS CONTAINED HEREIN.

(b) COMPLIANCE WITH THIS DOCUMENT MAY REQUIRE USE OF ONE OR MORE FEATURES COVERED BY THE PATENT RIGHTS OF AN

OSTA MEMBER, ASSOCIATE OR THIRD PARTY. NO POSITION IS TAKEN BY OSTA WITH RESPECT TO THE VALIDITY OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT, WHETHER OWNED BY A MEMBER OR
ASSOCIATE OF OSTA OR OTHERWISE. OSTA HEREBY EXPRESSLY DISCLAIMS ANY LIABILITY FOR INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF OTHERS BY VIRTUE OF THIS OSTA DOCUMENT, NOR DOES OSTA UNDERTAKE A DUTY TO ADVISE USERS OR
POTENTIAL USERS OF OSTA DOCUMENTS OF SUCH NOTICES OR ALLEGATIONS. OSTA HEREBY EXPRESSLY ADVISES ALL USERS OR
POTENTIAL USERS OF THIS DOCUMENT TO INVESTIGATE AND ANALYZE ANY POTENTIAL INFRINGEMENT SITUATION, SEEK THE
ADVICE OF INTELLECTUAL PROPERTY COUNSEL AND, IF INDICATED, OBTAIN A LICENSE UNDER ANY APPLICABLE INTELLECTUAL
PROPERTY RIGHT OR TAKE THE NECESSARY STEPS TO AVOID INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT. OSTA
EXPRESSLY DISCLAIMS ANY INTENT TO PROMOTE INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT BY VIRTUE OF THE
EVOLUTION, ADOPTION, OR PUBLICATION OF THIS OSTA DOCUMENT.

(c) ONE OR MORE PATENT HOLDERS HAVE FILED STATEMENTS OF WILLINGNESS TO GRANT A LICENSE, ON REASONABLE AND

NONDISCRIMINATORY TERMS, ON A RECIPROCAL BASIS, UNDER PATENT CLAIMS ESSENTIAL TO IMPLEMENT THIS SPECIFICATION.
FURTHER INFORMATION MAY BE OBTAINED FROM OSTA.

(d) OSTA MAKES NO REPRESENTATION OR WARRANTY REGARDING ANY SPECIFICATION, AND ANY COMPANY USING A SPECIFICATION

SHALL DO SO AT ITS SOLE RISK, INCLUDING SPECIFICALLY THE RISKS THAT A PRODUCT DEVELOPED WILL NOT BE COMPATIBLE
WITH ANY OTHER PRODUCT OR THAT ANY PARTICULAR PERFORMANCE WILL NOT BE ACHIEVED. OSTA SHALL NOT BE LIABLE
FOR ANY EXEMPLARY, INCIDENTAL, PROXIMATE OR CONSEQUENTIAL DAMAGES OR EXPENSES ARISING FROM THE USE OR
IMPLEMENTATION OF THIS DOCUMENT. THIS DOCUMENT DEFINES ONLY ONE APPROACH TO COMPATIBILITY, AND OTHER
APPROACHES MAY BE AVAILABLE IN THE INDUSTRY.

Universal Disk Format® and UDF® are registered marks of the Optical Storage Technology Association.

ii

CONTENTS

1. INTRODUCTION ...1

1.1 Document Layout ...2

1.2 Compliance..3

1.3 General References...4
1.3.1 References ...4
1.3.2 Definitions ...4
1.3.3 Terms...7
1.3.4 Acronyms...7

2. BASIC RESTRICTIONS & REQUIREMENTS..8

2.1 Part 1 - General ..11
2.1.1 Character Sets ..11
2.1.2 OSTA CS0 Charspec ...12
2.1.3 Dstrings..12
2.1.4 Timestamp ...13
2.1.5 Entity Identifier..14
2.1.6 Descriptor Tag Serial Number at Formatting Time ...19
2.1.7 Volume Recognition Sequence..19

2.2 Part 3 - Volume Structure..21
2.2.1 Descriptor Tag ...21
2.2.2 Primary Volume Descriptor ...22
2.2.3 Anchor Volume Descriptor Pointer ...24
2.2.4 Logical Volume Descriptor..25
2.2.5 Unallocated Space Descriptor..27
2.2.6 Logical Volume Integrity Descriptor ...27
2.2.7 Implemention Use Volume Descriptor ..30
2.2.8 Virtual Partition Map...32
2.2.9 Sparable Partition Map ..32
2.2.10 Metadata Partition Map...33
2.2.11 Virtual Allocation Table ...35
2.2.11 12 ...Sparing Table 38
2.2.12 13 ...Metadata Partition 40
2.2.14 Partition Descriptor...46

2.3 Part 4 - File System...48
2.3.1 Descriptor Tag ...48
2.3.2 File Set Descriptor ...49
2.3.3 Partition Header Descriptor ...51
2.3.4 File Identifier Descriptor ...52
2.3.5 ICB Tag ...54
2.3.6 File Entry ...57
2.3.7 Unallocated Space Entry..59
2.3.8 Space Bitmap Descriptor ...60
2.3.9 Partition Integrity Entry ...60
2.3.10 Allocation Descriptors ..60

iii

2.3.11 Allocation Extent Descriptor...62
2.3.12 Pathname...63

2.4 Part 5 - Record Structure ..63

3. SYSTEM DEPENDENT REQUIREMENTS ...64

3.1 Part 1 - General ..64
3.1.1 Timestamp ...64

3.2 Part 3 - Volume Structure..65
3.2.1 Logical Volume Header Descriptor ...65

3.3 Part 4 - File System...67
3.3.1 File Identifier Descriptor ...67
3.3.2 ICB Tag ...68
3.3.3 File Entry ...71
3.3.4 Extended Attributes ...75
3.3.5 Named Streams..85
3.3.6 Extended Attributes as named streams...88
3.3.7 UDF Defined System Streams ...88
3.3.8 UDF Defined Non-System Streams ...96

4. USER INTERFACE REQUIREMENTS ..98

4.1 Part 3 – Volume Structure...98

4.2 Part 4 – File System..98
4.2.1 ICB Tag ...98
4.2.2 File Identifier Descriptor ...99

5. INFORMATIVE ..108

5.1 Descriptor Lengths ...108

5.2 Using Implementation Use Areas ..108
5.2.1 Entity Identifiers ..108
5.2.2 Orphan Space...108

5.3 Boot Descriptor...109

5.4 Clarification of Unrecorded Sectors ...109

5.5 Technical Contacts ...110

6. APPENDICES..112

6.1 UDF Entity Identifier Definitions..112

6.2 UDF Entity Identifier Values...113

6.3 Operating System Identifiers...114

iv

6.4 OSTA Compressed Unicode Algorithm..116

6.5 CRC Calculation...118

6.6 Algorithm for Strategy Type 4096 ..121

6.7 Identifier Translation Algorithms...122
6.7.1 DOS Algorithm..122
6.7.2 OS/2, Macintosh,Windows 95, Windows NT and UNIX Algorithm...................................130

6.8 Extended Attribute Checksum Algorithm..135

6.9 Requirements for DVD-ROM ...136
6.9.1 Constraints imposed on UDF by DVD-Video ...136
6.9.2 How to read a UDF DVD-Video disc..137
6.9.3 Obtaining DVD Documents...139

6.10 Recommendations for CD Media ..140
6.10.1 Use of UDF on CD-R media ...140
6.10.2 Use of UDF on CD-RW media ...142
6.10.3 Multisession and Mixed Mode..145

6.11 Real-Time Files ...147

6.12 UDF Media Format Revision HistoryRequirements for DVD-R/-RW/RAM interchangeability 148
6.12.1 Requirements for DVD-RAM...148
6.12.2 Requirements for DVD-RW..148
6.12.3 Requirements for DVD-R ...149
6.12.4 Requirements for Real-Time file recording on DVD discs ...149

6.13 Recommendations for DVD+R and DVD+RW Media ..151
6.13.1 Use of UDF for incremental writing on DVD+R media ...151
6.13.2 Use of UDF on DVD+RW 4.7 GBytes Basic Format media ..154

6.14 Recommendations for Mount Rainier formatted media ...156
6.14.1 Properties of CD-MRW and DVD+MRW media and drives..156
6.14.2 Background Physical Formatting ..156

6.15 UDF Media Format Revision History...157

6.16 Developer Registration Form ..160

v

This page left intentionally blank

UDF 2.01 March50 April1

1. Introduction
The OSTA Universal Disk Format (UDF®) specification defines a subset of the standard
ECMA 167 3rd edition. The primary goal of the OSTA UDF is to maximize data
interchange and minimize the cost and complexity of implementing ECMA 167.

To accomplish this task this document defines a Domain. A domain defines rules and
restrictions on the use of ECMA 167. The domain defined in this specification is known
as the “OSTA UDF Compliant” domain.

This document attempts to answer the following questions for the structures of ECMA
167 on a per operating system basis:

Given some ECMA 167 structure X, for each field in structure X answer the
following questions for a given operating system:

1) When reading this field: If the operating system supports the data in
this field then what should it map to in the operating system?

2) When reading this field: If the operating system supports the data in
this field with certain limitations then how should the field be interpreted
under this operating system?

3) When reading this field: If the operating system does NOT support the
data in this field then how should the field be interpreted under this
operating system?

4) When writing this field: If the operating system supports the data for
this field then what should it map from in the operating system?

5) When writing this field: If the operating system does NOT support the
data for this field then to what value should the field be set?

For some structures of ECMA 167 the answers to the above questions were self-
explanatory and therefore those structures are not included in this document.

In some cases additional information is provided for each structure to help clarify the
standard.

This document should help make the task of implementing the ECMA 167 standard
easier.

To be informed of changes to this document please fill out and return the OSTA UDF
Developers Registration Form located in appendix 6.16.

UDF 2.01 March50 April2

1.1 Document Layout
This document presents information on the treatment of structures defined under standard
ECMA 167.
This document is separated into the following 4 basic sections:

• Basic Restrictions and Requirements - defines the restrictions and
requirements that are operating system independent.

• System Dependent Requirements - defines the restrictions and requirements
that are operating system dependent.

• User Interface Requirements - defines the restrictions and requirements which
are related to the user interface.

• Informative Annex - Additional useful information.

This document presents information on the treatment of structures defined under standard
ECMA 167. The following areas are covered:

 Interpretation of a structure/field upon reading from media.

 Contents of a structure/field upon writing to media. Unless specified otherwise
writing refers only to creating a new structure on the media. When it applies to
updating an existing structure on the media it will be specifically noted as such.

The fields of each structure are listed first, followed by a description of each field with
respect to the categories listed above. In certain cases, one or more fields of a structure
are not described if the semantics associated with the field are obvious.

A word on terminology: in common with ECMA 167, this document will use shall to
indicate a mandatory action or requirement, may to indicate an optional action or
requirement, and should to indicate a preferred, but still optional action or requirement.

Also, special comments associated with fields and/or structures are prefaced by the
notification: "NOTE:"

UDF 2.01 March50 April3

1.2 Compliance
This document requires conformance to parts 1, 2, 3 and 4 of ECMA 167. Compliance to
part 5 of ECMA 167 is not supported by this document. Part 5 may be supported in a
later revision of this document.

For an implementation to claim compliance to this document the implementation shall
meet all the requirements (indicated by the word shall) specified in this document.

The following are a few points of clarification in regards to compliance:

• Multi-Volume support is optional. An implementation can claim compliance
and only support single volumes.

• Multi-Partition support is optional. An implementation can claim compliance
without supporting the special multi-partition case on a single volume defined
in this specification.

• Media support. An implementation can claim compliance and support a
single media type or any combination. All implementations should be able to
read any media that is physically accessible.

• Multisession support. Any implementation that supports reading of CD-R
media shall support reading of CD-R Multisessions as defined in 6.10.36.10.3.

• File Name Translation - Any time an implementation has the need to
transform a filename to meet operating system restrictions it shall use the
algorithms specified in this document.

• Extended Attributes - All compliant implementations shall preserve existing
extended attributes encountered on the media. Implementations shall create
and maintain the extended attributes for the operating systems they support.
For example, an implementation that supports Macintosh shall preserve any
OS/2 extended attributes encountered on the media. An implementation that
supports Macintosh shall also create and maintain all Macintosh extended
attributes specified in this document.

• Backwards Read Compatibility – An implementation compliant to this version
of the UDF specification shall be able to read all media written under
previous versions of the UDF specification.

• Backwards Write Compatibility – UDF 2.0xxx structures shall not be written
to media that contain UDF 1.50 or UDF 1.02 structures. UDF 1.50 and UDF
1.02 structures shall not be written to media that contain UDF 2.0xxx
structures. These two requirements prevent media from containing different
versions of the UDF structures.

UDF 2.01 March50 April4

1.3 General References
1.3.1 References
ISO 9660:1988 Information Processing - Volume and File Structure of CD-ROM for Information

Interchange

IEC 908:1987 Compact disc digital audio system

ISO/IEC 10149:1993 Information technology - Data Interchange on read-only 120mm optical data discs
(CD-ROM based on the Philips/Sony “Yellow Book”)

Orange Book part-II Recordable Compact Disc System Part-II, N.V. Philips and Sony Corporation

Orange Book part-III Recordable Compact Disc System Part-III, N.V. Philips and Sony Corporation

ISO/IEC 13346:1995 Volume and file structure of write-once and rewritable media using non-
sequential recording for information interchange. This ISO standard is equivalent
to ECMA 167 2nd edition..

ECMA 167 ECMA 167 3rd edition is an update to ECMA 167 2nd edition that adds the
support for multiple data stream files, and is available from http://www.ecma.ch.
The previous edition of ECMA 167 (2nd) was is equivalent to ISO/IEC
13346:1995. References enclosed in [] in this document are references to ECMA
167 3rd edition. The references are in the form [x/a.b.c], where x is the section
number and a.b.c is the paragraph or figure number.

1.3.2 Definitions
Audio session Audio session contains one or more audio tracks, and no data track.

Audio track Audio tracks are tracks that are designated to contain audio sectors specified in
ISO/IEC 908.

CD-R CD-Recordable. A write once CD defined in Orange Book, part-II.

CD-RW CD-Rewritable. An overwritable CD defined in Orange Book, part-III.

Clean File System The file system on the media conforms to this specification.

Data track Data tracks are tracks that are designated to contain data sectors specified in
ISO/IEC 10149.

Dirty File System A file system that is not a clean file system.

ECC Block Size (bytes) This term refers to values defined in relevant device and/or media specifications.
The reader should consult the appropriate document – for example, the “MMC”
or “Mt. Fuji” specifications for C/DVD class media. For media exposing no such
concept externally (e.g. hard disc) this term shall be interpreted to mean the sector
size of the media.

Fixed Packet An incremental recording method in which all packets in a given track are of a
length specified in the Track Descriptor Block. Addresses presented to a CD
drive are translated according to the Method 2 addressing specified in Orange
Book parts-II and -III.

ICB A control node in ECMA 167.

Logical Block Address A logical block number [3/8.8.1].

UDF 2.01 March50 April5

 NOTE 1: This is not to be confused with a logical block address [4/7.1], given by
the lb_addr structure which contains both a logical block number [3/8.8.1] and a
partition reference number [3/8.8], the latter identifying the partition [3/8.7]
which contains the addressed logical block [3/8.8.1].

 NOTE 2: A logical block number [3/8.8.1] translates to a logical sector number
[3/8.1.2] according to the scheme indicated by the partition map [3/10.7] of the
partition [3/8.7], which contains the addressed logical block [3/8.8.1]

Media Block Address A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] is equivalent to a logical sector number [3/8.1.2].

Packet A recordable unit, which is an integer number of contiguous sectors [1/5.9],
which consist of user data sectors, and may include additional sectors [1/5.9]
which are recorded as overhead of the Packet-writing operation and are
addressable according to the relevant standard for recording [1/5.10].

Physical Address A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] is equivalent to a logical sector number [3/8.1.2].

Physical Block Address A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] is equivalent to a logical sector number [3/8.1.2].

physical sector A sector [1/5.9] given by a relevant standard for recording [1/5.10]. In this
specification, a sector [1/5.9] is equivalent to a a logical sector [3/8.1.2].

Random Access File System A file system for randomly writable media, either write once or
rewritable

Sequential File System A file system for sequentially written media (e.g. CD-R)

Session The tracks of a volume shall be organized into one or more sessions as specified
by the Orange Book part-II. A session shall be a sequence of one or more tracks,
the track numbers of which form a contiguous ascending sequence.

Track The sectors of a volume shall be organized into one or more tracks. A track shall
be a sequence of sectors, the sector numbers of which form a contiguous
ascending sequence. No sector shall belong to more than one track.

 Note: There may be gaps between tracks; that is, the last sector of a track need
not be adjacent to the first sector of the next track.

UDF OSTA Universal Disk Format

UDF 2.01 March50 April6

user data blocks The logical blocks [3/8.8.1] which were recorded in the sectors [1/5.9]
(equivalent in this specification to logical sectors [3/8.1.2]) of a Packet and which
contain the data intentionally recorded by the user of the drive. This specifically
does not include the logical blocks [3/8.8.1], if any, whose constituent sectors
[1/5.9] were used for the overhead of recording the Packet, even though those
sectors [1/5.9] are addressable according to the relevant standard for recording
[1/5.10]. Like any logical blocks [3/8.8.1], user data blocks are identified by
logical block numbers [3/8.8.1].

user data sectors The sectors [1/5.9] of a Packet which contain the data intentionally recorded by
the user of the drive, specifically not including those sectors [1/5.9] used for the
overhead of recording the Packet, even though those sectors [1/5.9] may be
addressable according to the relevant standard for recording [1/5.10]. Like any
sectors [1/5.9], user data sectors are identified by sector numbers [3/8.1.1]. In
this specification, a sector number [3/8.1.1] is equivalent to a a logical sector
number [3/8.1.2].

Variable Packet An incremental recording method in which each packet in a given track is of a
host determined length. Addresses presented to a CD drive are as specified in
Method 1 addressing in Orange Book parts II and III.

Virtual Address A logical block number [3/8.8.1] of a logical block [3/8.8.1] in a virtual partition.
Such a logical block [3/8.8.1] is recorded using the space of a logical block
[3/8.8.1] of a corresponding non-virtual partition. The Nth Uint32 in the VAT
represents the logical block number [3/8.8.1] in a non-virtual partition used to
record logical block number N of its corresponding virtual partition. The first
virtual address is 0.

virtual partition A partition of a logical volume [3/8.8] identified in a logical volume descriptor
[3/10.6] by a Type 2 partition map [3/10.7.3] recorded according section 2.2.8 of
this specification. The virtual partition map contains a partition number that is the
same as the partition number [3/10.7.2.4] in a Type 1 partition map [3/10.7.2] in
the same logical volume descriptor [3/10.6]. Each logical block [3/8.8.1] in the
virtual partition is recorded using the space of a logical block [3/8.8.1] of that
corresponding non-virtual partition. A VAT lists the logical blocks [3/8.8.1] of
the non-virtual partition, which have been used to record the logical blocks
[3/8.8.1] of its corresponding virtual partition.

virtual sector A logical block [3/8.8.1] in a virtual partition. Such a logical block [3/8.8.1] is
recorded using the space of a logical block [3/8.8.1] of a corresponding non-
virtual partition. A virtual sector should not be confused with a sector [1/5.9] or a
logical sector [3/8.1.2].

VAT A file [4/8.8] recorded in the space of a non-virtual partition which has a
corresponding virtual partition, and whose data space [4/8.8.2] is structured
according to section 2.2.102.2.11 of this specification. This file provides an
ordered list of Uint32s, where the Nth Uint32 represents the logical block number
[3/8.8.1] of a non-virtual partition used to record logical block number N of its
corresponding virtual partition. This file [4/8.8] is not necessarily referenced by a
file identifier descriptor [4/14.4] of a directory [4/8.6] in the file set [4/8.5] of the
logical volume [3/8.8].

VAT ICB A File Entry ICB that describes a file containing a Virtual Allocation Table.

.

UDF 2.01 March50 April7

1.3.3 Terms
May Indicates an action or feature that is optional.

Optional Describes a feature that may or may not be implemented. If implemented, the
feature shall be implemented as described.

Shall Indicates an action or feature that is mandatory and must be implemented to claim
compliance to this standard.

Should Indicates an action or feature that is optional, but its implementation is strongly
recommended.

Reserved A reserved field is reserved for future use and shall be set to zero. A reserved
value is reserved for future use and shall not be used.

1.3.4 Acronyms

Acronym Definition
AD Allocation Descriptor
AVDP Anchor Volume Descriptor Pointer
EA Extended Attribute
EFE Extended File Entry
FE File Entry
FID File Identifier Descriptor
FSD File Set Descriptor
ICB Information Control Block
IUVD Implementation Use Volume Descriptor
LV Logical Volume
LVD Logical Volume Descriptor
LVID Logical Volume Integrity Descriptor
PD Partition Descriptor
PVD Primary Volume Descriptor
SBD Space Bitmap Descriptor
USD Unallocated Space Descriptor
VAT Virtual Allocation Table
VDS Volume Descriptor Sequence
VRS Volume Recognition Sequence

UDF 2.01 March50 April8

2. Basic Restrictions & Requirements

The following table summarizes several of the basic restrictions and requirements defined
in this specification. These restrictions & requirements as well as additional ones are
described in detail in the following sections of this specification.

Item Restrictions & Requirements
Logical Sector Size The Logical Sector Size for a specific volume shall be the

same as the physical sector size of the specific volume.
Logical Block Size The Logical Block Size for a Logical Volume shall be set to

the logical sector size of the volume or volume set on which
the specific logical volume resides.

Volume Sets All media within the same Volume Set shall have the same
physical sector size. Rewritable/Overwritable media and
WORM media shall not be mixed in/ be present in the same
volume set.

First 32K of Volume Space The first 32768 bytes of the Volume space shall not be used
for the recording of ECMA 167 structures. This area shall
not be referenced by the Unallocated Space Descriptor or
any other ECMA 167 descriptor. This is intended for use by
the native operating system.

Volume Recognition Sequence The Volume Recognition Sequence as described in part 2 of
ECMA 167 shall be recorded.

Timestamp All timestamps shall be recorded in local time. Time zones
shall be recorded on operating systems that support the
concept of a time zone.

Entity Identifiers Entity Identifiers shall be recorded in accordance with this
document. Unless otherwise specified in this specification
the Entity Identifiers shall contain a value that uniquely
identifies the implementation.

Descriptor CRCs CRCs shall be supported and calculated for all Descriptors,
except for the Space Bitmap Descriptor. There is a CRC
length special case for the Allocation Extent Descriptor.

File Name Length Maximum of 255 bytes
Extent Length Maximum Extent Length shall be 230 – 1 rounded down to

the nearest integral multiple of the Logical Block Size.
Maximum Extent Length for extents in virtual space shall be
the Logical Block Size.

Primary Volume Descriptor There shall be exactly one prevailing Primary Volume
Descriptor recorded per volume. The media where the
VolumeSequenceNumber of this descriptor is equal to 1
(one) must be part of the logical volume defined by the
prevailing Logical Volume Descriptor.

Anchor Volume Descriptor Pointer Shall be recorded in at least 2 of the following 3 locations:
256, N-256, or N, where N is the last addressable sector of a
volume. See also 2.2.3.

Partition Descriptor A Partition Descriptor Access Type of Read-Only,
Rewritable, Overwritable and WORMWrite-Once shall be
supported.
 There shall be exactly one prevailing Partition Descriptor
recorded per volume, with one exception. For Volume Sets
that consist of single volume, the volume may contain 2

UDF 2.01 March50 April9

non-overlapping Partitions with 2 prevailing Partition
Descriptors only if one has an access type of read
onlyRead-Only and the other has an access type of
Rewritable, Overwritable, or WORM. Write-Once. The
Logical Volume for this volume would consist of the
contents of both partitions.

Logical Volume Descriptor There shall be exactly one prevailing Logical Volume
Descriptor recorded per Volume Set.

The LogicalVolumeIdentifier field shall not be null and
should contain an identifier that aids in the identification of
the logical volume. Specifically, software generating
volumes conforming to this specification shall not set this
field to a fixed or trivial value. Duplicate disks, which are
intended to be identical, may contain the same value in this
field. This field is extremely important in logical volume
identification when multiple media are present within a
jukebox. This name is typically what is displayed to the
user.

The LogicalVolumeDescriptor recorded on the volume
where the PrimaryVolumeDescriptor’s
VolumeSequenceNumber field is equal to 1 (one) must have
a NumberofPartitionMaps value and PartitionMaps
structure(s) that represent the entire logical volume. For
example, if a volume set is extended by adding partitions,
then the updated LogicalVolumeDescriptor written to the
last volume in the set must also be written (or rewritten) to
the first volume of the set.

Logical Volume Integrity Descriptor Shall be recorded. The extent of LVIDs may be terminated
by the extent length.

Unallocated Space Descriptor A single prevailing Unallocated Space Descriptor shall be
recorded per volume.

File Set Descriptor There shall be exactly one File Set Descriptor recorded per
Logical Volume on Rewritable/Overwritable media. For
WORM media multiple File Set Descriptors may be
recorded based upon certain restrictions defined in this
document. The FSD extent may be terminated by the extent
length.

ICB Tag Only strategy types 4 or 4096 shall be recorded.
File Identifier Descriptor The total length of a File Identifier Descriptor shall not

exceed the size of one Logical Block.
File Entry The total length of a File Entry shall not exceed the size of

one Logical Block.
Allocation Descriptors Only Short and Long Allocation Descriptors shall be

recorded.
Allocation Extent Descriptors The length of any single extent of allocation descriptors

shall not exceed the Logical Block Size.
Unallocated Space Entry The total length of an Unallocated Space Entry shall not

exceed the size of one Logical Block.
Space Bitmap Descriptor CRC not required.
Partition Integrity Entry Shall not be recorded.
Volume Descriptor Sequence Extent Both the main and reserve volume descriptor sequence

UDF 2.01 March50 April10

extents shall each have a minimum length of 16 logical
sectors. The VDS Extent may be terminated by the extent
length.

Record Structure Record structure files, as defined in part 5 of ECMA 167,
shall not be created.

UDF 2.01 March50 April11

2.1 Part 1 - General
2.1.1 Character Sets

The character set used by UDF for the structures defined in this document is the
CS0 character set. The OSTA CS0 character set is defined as follows:

OSTA CS0 shall consist of the d-characters specified in The Unicode Standard,
Version 2.0 (ISBN 0-201-48345-9 from Addison-Wesley Publishing Company
http://www.awl.com/ , see also http://www.unicode.org), excluding #FEFF and
FFFE, stored in the OSTA Compressed Unicode format which is defined as
follows:

OSTA Compressed Unicode format

RBP Length Name Contents
0 1 Compression ID Uint8
1 ?? Compressed Bit Stream Byte

The CompressionID shall identify the compression algorithm used to compress
the CompressedBitStream field. The following algorithms are currently
supported:

Compression Algorithm

Value Description
0 - 7 Reserved

8 Value indicates there are 8 bits per character
in the CompressedBitStream.

9-15 Reserved
16 Value indicates there are 16 bits per

character in the CompressedBitStream.
17-253 Reserved

254 Value indicates the CS0 expansion is empty
and unique. Compression Algorithm 8 is
used for compression.

255 Value indicates the CS0 expansion is empty
and unique. Compression Algorithm 16 is
used for compression.

For a CompressionID of 8 or 16, the value of the CompressionID shall specify
the number of BitsPerCharacter for the d-characters defined in the
CharacterBitStream field. Each sequence of CompressionID bits in the
CharacterBitStream field shall represent an OSTA Compressed Unicode d-
character. The bits of the character being encoded shall be added to the
CharacterBitStream from most- to least-significant-bit. The bits shall be added to
the CharacterBitStream starting from the most significant bit of the current byte
being encoded into.

http://www.awl.com/
http://www.unicode.org/

UDF 2.01 March50 April12

NOTE: This encoding causes characters written with a CompressionID of 16 to

be effectively written in big endian format.

The value of the OSTA Compressed Unicode d-character interpreted as a Uint16
defines the value of the corresponding d-character in the Unicode 2.0 standard.
Refer to appendix on OSTA Compressed Unicode for sample C source code to
convert between OSTA Compressed Unicode and standard Unicode 2.0.

The Unicode byte-order marks, #FEFF and #FFFE, shall not be used.

Compression IDs 254 and 255 shall only be used in FIDs where the deleted bit is
set to ONE.

When uncompressing file identifiers with Compression IDs 254 and 255, the
resulting name is to be considered empty and unique.

2.1.2 OSTA CS0 Charspec

struct charspec { /* ECMA 167 1/7.2.1 */
 Uint8 CharacterSetType;
 byte CharacterSetInfo[63];
}

The CharacterSetType field shall have the value of 0 to indicate the CS0 coded
character set.

The CharacterSetInfo field shall contain the following byte values with the
remainder of the field set to a value of 0.

#4F, #53, #54, #41, #20, #43, #6F, #6D, #70, #72, #65, #73, #73, #65,
#64, #20, #55, #6E, #69, #63, #6F, #64, #65

The above byte values represent the following ASCII string:

“OSTA Compressed Unicode”

2.1.3 Dstrings
The ECMA 167 standard, as well as this document, has normally defined byte positions
relative to 0. In section 7.2.12 of ECMA 167, dstrings are defined in terms of being
relative to 1. Since this offers an opportunity for confusion, the following shows what the
definition would be if described relative to 0.

7.2.12 Fixed-length character fields
A dstring of length n is a field of n bytes where d-characters (1/7.2) are recorded. The number of
bytes used to record the characters shall be recorded as a Uint8 (1/7.1.1) in byte n-1, where n is the

UDF 2.01 March50 April13

length of the field. The characters shall be recorded starting with the first byte of the field, and any
remaining byte positions after the characters up until byte n-2 inclusive shall be set to #00.

If the number of d-characters to be encoded is zero, the length of the dstring shall be zero.

NOTE: The length of a dstring includes the compression code byte (2.1.12.1.1) except
for the case of a zero length string. A zero length string shall be recorded by setting the
entire dstring field to all zeros.

2.1.4 Timestamp
struct timestamp { /* ECMA 167 1/7.3 */
 Uint16 TypeAndTimezone;
 Uint16Int16 Year;
 Uint8 Month;
 Uint8 Day;
 Uint8 Hour;
 Uint8 Minute;
 Uint8 Second;
 Uint8 Centiseconds;
 Uint8 HundredsofMicroseconds;
 Uint8 Microseconds;
}

2.1.4.1 Uint16 TypeAndTimezone;
For the following descriptions Type refers to the most significant 4 bits of this
field, and TimeZone refers to the least significant 12 bits of this field, which is
interpreted as a signed 12-bit number in two’s complement form.

 The time within the structure shall be interpreted as Local Time since Type
shall be equal to ONE for OSTA UDF compliant media.

 Type shall be set to ONE to indicate Local Time.

 TimeZone shall be interpreted as specifying the time zone for the location

when this field was last modified. If this field contains -2047 then the time
zone has not been specified.

 For operating systems that support the concept of a time zone, the offset of

the time zone (in 1 minute increments), from Coordinated Universal Time,
shall be inserted in the TimeZone field. Otherwise the TimeZone shall be
set to –2047.

UDF 2.01 March50 April14

Note: NOTE: Time zones West of Coordinated Universal Time have negative
offsets. For example, Eastern Standard Time is -300 minutes; Eastern
Daylight Time is -240 minutes.

NoteNOTE: Implementations on systems that support time zones should

interpret unspecified time zones as Coordinated Universal Time.
Although not a requirement, this interpretation has the advantage that files
generated on systems that do not support time zones will always appear to
have the same time stamps on systems that do support time zones,
irrespective of the interpreting system's local time zone.

2.1.5 Entity Identifier

struct EntityID { /* ECMA 167 1/7.4 */
 Uint8 Flags;
 char Identifier[23];
 char IdentifierSuffix[8];
}
NOTE: UDF uses EntityID for the structure that is called regid in ECMA-167.

UDF classifies Entity Identifiers into 4 separate types as follows. Each type has its
own
Suffix Type for the IdentifierSuffix field. The 4 types are:

• Domain Entity Identifiers with a Domain Identifier Suffix
• UDF Entity Identifiers with a UDF Identifier Suffix
• Implementation Entity Identifiers with an Implementation Identifier Suffix
• Application Entity Identifiers with an Application Identifier Suffix

The following sections describe the format and use of Entity Identifiers based
upon the different types mentioned above. For all UDF descriptor fields
containing an EntityID structure, the value of the Identifier field and the Suffix
Type for the IdentifierSuffix field are defined in the Entity Identifiers table of
2.1.5.2. The interpretation of the IdentifierSuffix field for each Suffix Type is
defined in 2.1.5.3.

2.1.5.1 Uint8 Flags
 Self-explanatory.

 Shall be set to ZERO.

UDF 2.01 March50 April15

2.1.5.2 char Identifier[23]
Unless stated otherwise in this document this field shall be set to an identifier that
uniquely identifies the implementation. This methodology will allow for
identification of the implementation responsible for creating structures recorded
on media interchanged between different implementations.

If an implementation updates existing structures on the media written by other
implementations the updating implementation shall set the Identifier field to a
value that uniquely identifies the updating implementation.

The following table summarizes the Entity Identifier fields defined in the ECMA
167 standard and this document and shows to what values they shall be set.

Entity Identifiers

Descriptor Field ID Value Suffix Type
Primary Volume
Descriptor

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Primary Volume
Descriptor

Application ID “*Application ID” Application Identifier
Suffix

Implementation Use
Volume Descriptor

Implementation
Identifier

“*UDF LV Info” UDF Identifier Suffix

Implementation Use
Volume Descriptor

Implementation ID
(in Implementation
Use field)

“*Developer ID” Implementation
Identifier Suffix

Partition Descriptor Implementation ID “*Developer ID” Implementation
Identifier Suffix

Partition Descriptor Partition Contents “+NSR03” Application Identifier
Suffix

Logical Volume
Descriptor

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Logical Volume
Descriptor

Domain ID "*OSTA UDF
Compliant"

DOMAIN Identifier
Suffix

File Set Descriptor Domain ID "*OSTA UDF
Compliant"

DOMAIN Identifier
Suffix

File Identifier
Descriptor

Implementation Use “*Developer ID” Implementation
Identifier Suffix
(optional)

File Entry Implementation ID “*Developer ID” Implementation
Identifier Suffix

Device Specification
Extended Attribute

Implementation
IDUse

“*Developer ID” Implementation
Identifier Suffix

UDF Implementation
Use Extended
Attribute

Implementation ID See 3.3.4.5 UDF Identifier Suffix

Non-UDF
Implementation Use
Extended Attribute

Implementation ID “*Developer ID” Implementation
Identifier Suffix

UDF Application Use
Extended Attribute

Application ID See 3.3.4.6 UDF Identifier Suffix

UDF 2.01 March50 April16

Non-UDF
Application Use
Extended Attribute

Application ID “*Application ID” Application Identifier
Suffix

UDF Unique ID
Mapping Data

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Power Calibration
Table Stream

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Logical Volume
Integrity Descriptor

Implementation ID
(in Implementation
Use field)

“*Developer ID” Implementation
Identifier Suffix

Partition Integrity
Entry

Implementation ID N/A N/A

Virtual Partition Map Partition Type
Identifier

“*UDF Virtual
Partition”

UDF Identifier Suffix

Virtual Allocation
Table

Implementation Use “*Developer ID” Implementation
Identifier Suffix
(optional)

Sparable Partition
Map

Partition Type
Identifier

“*UDF Sparable
Partition”

UDF Identifier Suffix

Sparing Table Sparing Identifier “*UDF Sparing
Table”

UDF Identifier Suffix

Metadata Partition
Map

Partition Type
Identifier

“*UDF Metadata
Partition”

UDF Identifier Suffix

NOTE: The value of the Entity Identifier field is interpreted as a sequence of
bytes, and not as a dstring specified in CS0. For ease of use the values used by
UDF for this field are specified in terms of ASCII character strings. The actual
sequence of bytes used for the Entity Identifiers defined by UDF are specified in
section 6.2.

NOTE: In the ID Value column in the above table “*Application ID” refers to an
identifier that uniquely identifies the writer’s application.

In the ID Value column in the above table “*Developer ID” refers to an Entity Identifier
that uniquely identifies the current implementation. The value specified should be used
when a new descriptor is created. Also, the value specified should be used for an existing
descriptor when anything within the scope of the specified EntityID field is modified.

NOTE: The value chosen for a “*Developer ID” should contain enough
information to identify the company and product name for an implementation.
For example, a company called XYZ with a UDF product called DataOne might
choose “*XYZ DataOne” as their developer ID. Also in the suffix of their
developer ID they may choose to record the current version number of their
DataOne product. This information is extremely helpful when trying to determine
which implementation wrote a bad structure on a piece of media when multiple
products from different companies have been recording on the media.

UDF 2.01 March50 April17

The Suffix Type column in the above table defines the format of the suffix to be used with
the corresponding Entity Identifier. These different suffix types are defined in the
following paragraphs.

NOTE: All Identifiers defined in this document (appendix 6.16.1) shall be
registered by OSTA as UDF Identifiers.

2.1.5.3 char IdentifierSuffix[8]
The format of the IdentifierSuffix field is dependent on the type of the Identifier.

In regard to OSTA Domain Entity Identifiers specified in this document (appendix
6.16.1) the IdentifierSuffix field shall be constructed as follows:

Domain IdentifierSuffix field format

RBP Length Name Contents
0 2 UDF Revision Uint16 (=

#0201)0250)
2 1 Domain Flags Uint8
3 5 Reserved bytes (= #00)

The UDFRevision field shall contain #02010250 to indicate revision 2.0150 of
this document. This field will allow an implementation to detect changes made in
newer revisions of this document. The OSTA Domain Identifiers are only used in
the Logical Volume Descriptor and the File Set Descriptor. The DomainFlags
field defines the following bit flags:

Domain Flags
Bit Description

0 Hard Write-Protect
1 Soft Write-Protect

2-7 Reserved

The SoftWriteProtect flag is a user settable flag that indicates that the volume or
file system structures within the scope of the descriptor in which it resides are
write protected. A SoftWriteProtect flag value of ONE shall indicate user write
protected structures. This flag may be set or reset by the user. The
HardWriteProtect flag is an implementation settable flag that indicates that the
scope of the descriptor in which it resides is permanently write protected. A
HardWriteProtect flag value of ONE shall indicate a permanently write protected
structure. Once set this flag shall not be reset. The HardWriteProtect flag
overrides the SoftWriteProtect flag.

The write protect flags appear in the Logical Volume Descriptor and in the File
Set Descriptor. They shall be interpreted as follows:

UDF 2.01 March50 April18

is_fileset_write_protected = LVD.HardWriteProtect || LVD.SoftWriteProtect ||
FSD.HardWriteProtect || FSD.SoftWriteProtect

is_fileset_hard_protected = LVD.HardWriteProtect || FSD.HardWriteProtect
is_fileset_soft_protected = (LVD.SoftWriteProtect || FSD.SoftWriteProtect) &&

(! !is_volfileset_hard_protected)
is_vol_write_protected = LVD.HardWriteProtect || LVD.SoftWriteProtect
is_vol_hard_protected = LVD.HardWriteProtect
is_vol_soft_protected = LVD.SoftWriteProtect && !LVD.HardWriteProtect

Implementation use Entity Identifiers defined by UDF (appendix 6.1) the
IdentifierSuffix field shall be constructed as follows:

UDF IdentifierSuffix
RBP Length Name Contents

0 2 UDF Revision Uint16 (=
#0201)0250)

2 1 OS Class Uint8
3 1 OS Identifier Uint8
4 4 Reserved bytes (= #00)

The contents of the OS Class and OS Identifier fields are described in the
Appendix on Operating System Identifiers.
For implementation use Entity Identifiers not defined by UDF the IdentifierSuffix
field shall be constructed as follows:

Implementation IdentifierSuffix
RBP Length Name Contents

0 1 OS Class Uint8
1 1 OS Identifier Uint8
2 6 Implementation Use Area bytes

NOTE: It is important to understand the intended use and importance of the OS Class
and OS Identifier fields. The main purpose of these fields is to aid in debugging when
problems are found on a UDF volume. The fields also provide useful information that
could be provided to the end user. When set correctly these two fields provide an
implementation with information such as the following:

• Identify under which operating system a particular structure was last modified.
• Identify under which operating system a specific file or directory was last

modified.
• If a developer supports multiple operating systems with their implementation,

it helps to determine under which operating system a problem may have
occurred.

UDF 2.01 March50 April19

For an Application Entity Identifier not defined by UDF, the IdentifierSuffix field
shall be constructed as follows, unless specified otherwise.

Application IdentifierSuffix
RBP Length Name Contents

0 8 Implementation Use Area bytes

2.1.6 Descriptor Tag Serial Number at Formatting Time
In order to support disaster recovery, the TagSerialNumber value of all UDF descriptors
that will be recorded at formatting time, shall be set to a value that differs from ones
previously recorded, upon volume re-initialization.

If no disaster recovery will be supported, a value zero (#0000) shall be used for the
TagSerialNumber field of all UDF descriptors that will be recorded at formatting time,
see ECMA 3/7.2.5 and 4/7.2.5.

If disaster recovery is supported, the value to be used depends on the state of the volume
prior to formatting. There are only two states in which a volume can be formatted such
that disaster recovery will be possible in the future. These states are:

1) The volume is completely erased. Only after this action, and where disaster recovery

is to be supported then a value of one (#0001) shall be used as the TagSerialNumber
value.

2) The volume is a clean UDF volume that supports disaster recovery for
TagSerialNumber values, and the TagSerialNumber values of at least two Anchor
Volume Descriptor Pointers are both equal to X, where X is not equal to zero. If
disaster recovery is to be supported then a value X+1 shall be used as the
TagSerialNumber value. If X+1 wraps to zero then keep it as zero to indicate that
disaster recovery is not supported.

NOTE: The reason for this is that if X+1 wraps to zero then the uniqueness of any
TagSerialNumber value unequal to zero can no longer be guaranteed on the volume.

NOTE: By ‘erased’ in the above paragraphs, we mean that the sectors are made non-valid
for UDF – for example by writing zeroes to the sectors.

2.1.7 Volume Recognition Sequence
The following rules shall apply when writing the volume recognition sequence:

UDF 2.01 March50 April20

 The Volume Recognition Sequence (VRS) as described in part 2 and part 3 of
ECMA 167 shall be recorded. There shall be exactly one NSR descriptor in the
VRS. The NSR and BOOT2 descriptors shall be in the Extended Area. There shall
be only one Extended Area with one BEA01 and one TEA01. All other VSDs are
only allowed before the Extended Area. The blockfirst sector after the VRS shall
be unrecorded or contain all #00 bytes.

 Implementers should expect that disksmedia recorded by UDF 2.00 and earlier

didlower revisions do not have this constraint,the requirement mentioned above
concerning the first sector after the VRS.

NOTE: Currently, no BOOT2 descriptor is defined for UDF, see 5.3. Further, see ECMA

part 2, 3/3.1, 3/3.2 and should handle these cases accordingly.

3/9.1.

UDF 2.01 March50 April21

2.2 Part 3 - Volume Structure
2.2.1 Descriptor Tag

struct tag { /* ECMA 167 3/7.2 */
 Uint16 TagIdentifier;
 Uint16 DescriptorVersion;
 Uint8 TagChecksum;
 byte Reserved;
 Uint16 TagSerialNumber;
 Uint16 DescriptorCRC;
 Uint16 DescriptorCRCLength;
 Uint32 TagLocation;
}

2.2.1.1 Uint16 TagSerialNumber
 Ignored. Intended for disaster recovery.

 Shall be set to the TagSerialNumber value of the Anchor Volume

Descriptor Pointers on this volume.

In order to preserve disaster recovery support, the TagSerialNumber must be set to
a value that differs from ones previously recorded, upon volume re-initialization.
This value is determined at volume formatting time and may depend on the state
of the volume prior to formatting. See 2.1.6 for further details.

2.2.1.2 Uint16 DescriptorCRCLength
CRCs shall be supported and calculated for each descriptor. The value of this
field shall be set to (Size of the Descriptor) - (Length of Descriptor Tag). When
reading a descriptor the CRC should be validated.

NOTE: The DescriptorCRCLength field must not be used to determine the actual
length of the descriptor or the number of bytes to read. These lengths do not
match in all cases; there are exceptions in the standard where the Descriptor CRC
Length need not match the length of the descriptor.

UDF 2.01 March50 April22

2.2.2 Primary Volume Descriptor
struct PrimaryVolumeDescriptor { /* ECMA 167 3/10.1 */
 struct tag DescriptorTag;
 Uint32 VolumeDescriptorSequenceNumber;
 Uint32 PrimaryVolumeDescriptorNumber;
 dstring VolumeIdentifier[32];
 Uint16 VolumeSequenceNumber;
 Uint16 MaximumVolumeSequenceNumber;
 Uint16 InterchangeLevel;
 Uint16 MaximumInterchangeLevel;
 Uint32 CharacterSetList;
 Uint32 MaximumCharacterSetList;
 dstring VolumeSetIdentifier[128];
 struct charspec DescriptorCharacterSet;
 struct charspec ExplanatoryCharacterSet;
 struct extent_ad VolumeAbstract;
 struct extent_ad VolumeCopyrightNotice;
 struct EntityID ApplicationIdentifier;
 struct timestamp RecordingDateandTime;
 struct EntityID ImplementationIdentifier;
 byte ImplementationUse[64];
 Uint32 PredecessorVolumeDescriptorSequenceLocation;
 Uint16 Flags;
 byte Reserved[22];
}

2.2.2.1 Uint16 InterchangeLevel
 Interpreted as specifying the current interchange level (as specified in

ECMA 167 3/11), of the contents of the associated volume and the
restrictions implied by the specified level.

 If this volume is part of a multi-volume Volume Set then the level shall be
set to 3, otherwise the level shall be set to 2.

ECMA 167 requires an implementation to enforce the restrictions associated with
the specified current Interchange Level. The implementation may change the
value of this field as long as it does not exceed the value of the Maximum
Interchange Level field.

2.2.2.2 Uint16 MaximumInterchangeLevel
 Interpreted as specifying the maximum interchange level (as specified in

ECMA 167 3/11), of the contents of the associated volume.

 This field shall be set to level 3 (No Restrictions Apply), unless
specifically given a different value by the user.

UDF 2.01 March50 April23

NOTE: This field is used to determine the intent of the originator of the volume.
If this field has been set to 2 then the originator does not wish the volume to be
included in a multi-volume set (interchange level 3). The receiver may override
this field and set it to a 3 but the implementation should give the receiver a strict
warning explaining the intent of the originator of the volume.

2.2.2.3 Uint32 CharacterSetList
 Interpreted as specifying the character set(s) in use by any of the structures

defined in Part 3 of ECMA 167 (3/10.1.9).

 Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.2.2.4 Uint32 MaximumCharacterSetList
 Interpreted as specifying the maximum supported character sets (as

specified in ECMA 167) which may be specified in the CharacterSetList
field.

 Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.2.2.5 dstring VolumeSetIdentifier[128]

 Interpreted as specifying the identifier for the volume set .

 The first 16 characters of this field should be set to a unique value. The
remainder of the field may be set to any allowed value. Specifically,
software generating volumes conforming to this specification shall not set
this field to a fixed or trivial value. Duplicate disks which are intended to
be identical may contain the same value in this field.

NOTE: The intended purpose of this is to guarantee Volume Sets with
unique identifiers. The first 8 characters of the unique part should come
from a CS0 hexadecimal representation of a 32-bit time value. The
remaining 8 characters are free for implementation use.

2.2.2.6 struct charspec DescriptorCharacterSet

 Interpreted as specifying the character sets allowed in the Volume
Identifier and Volume Set Identifier fields.

 Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.2.7 struct charspec ExplanatoryCharacterSet

 Interpreted as specifying the character sets used to interpret the contents of
the VolumeAbstract and VolumeCopyrightNotice extents.

UDF 2.01 March50 April24

 Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.2.8 struct EntityID ImplementationIdentifier
For more information on the proper handling of this field see section 2.1.5.

2.2.2.9 struct EntityID ApplicationIdentifier
 This field either specifies a valid Entity Identifier (section 2.1.5)

identifying the application that last wrote this field, or the field is filled
with all #00 bytes, meaning that no application is identified.

 Either all #00 bytes or a valid Entity Identifier (section 2.1.5) shall be

recorded in this field.

2.2.3 Anchor Volume Descriptor Pointer

struct AnchorVolumeDescriptorPointer { /* ECMA 167 3/10.2 */
 struct tag DescriptorTag;
 struct extent_ad MainVolumeDescriptorSequenceExtent;
 struct extent_ad ReserveVolumeDescriptorSequenceExtent;
 byte Reserved[480];
}

NOTE: An AnchorVolumeDescriptorPointer structure shall be recorded in at
least 2 of the following 3 locations on the media:

• Logical Sector 256.
• Logical Sector (N - 256).
• N

NOTE: As specified in section 6.10sections 6.10 and 6.13, unclosed CD-
Rsequential write once media may have a single AVDP present at either sector
256 or 512. If on an unclosed disc a single AVDP is recorded on sector 256, any
AVDP recorded on sector 512 must be ignored. Closed CD-R media shall
conform to the above rules.

2.2.3.1 struct MainVolumeDescriptorSequenceExtent
The main VolumeDescriptorSequenceExtent shall have a minimum length of 16
logical sectors.

2.2.3.2 struct ReserveVolumeDescriptorSequenceExtent
The reserve VolumeDescriptorSequenceExtent shall have a minimum length of 16
logical sectors.

UDF 2.01 March50 April25

2.2.4 Logical Volume Descriptor
struct LogicalVolumeDescriptor { /* ECMA 167 3/10.6 */
 struct tag DescriptorTag;
 Uint32 VolumeDescriptorSequenceNumber;
 struct charspec DescriptorCharacterSet;
 dstring LogicalVolumeIdentifier[128];
 Uint32 LogicalBlockSize,
 struct EntityID DomainIdentifier;
 byte LogicalVolumeContentsUse[16];
 Uint32 MapTableLength;
 Uint32 NumberofPartitionMaps;
 struct EntityID ImplementationIdentifier;
 byte ImplementationUse[128];
 extent_ad IntegritySequenceExtent,
 byte PartitionMaps[];
}

2.2.4.1 struct charspec DescriptorCharacterSet
 Interpreted as specifying the character set allowed in the

LogicalVolumeIdentifier field.

 Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.4.2 Uint32 LogicalBlockSize
 Interpreted as specifying the Logical Block Size for the logical volume

identified by this LogicalVolumeDescriptor.

 This field shall be set to the largest logical sector size encountered
amongst all the partitions on media that constitute the logical volume
identified by this LogicalVolumeDescriptor. Since UDF requires that all
Volumes within a VolumeSet have the same logical sector size, the
Logical Block Size will be the same as the logical sector size of the
Volume.

2.2.4.3 struct EntityID DomainIdentifier

 Interpreted as specifying a domain specifying rules on the use of, and
restrictions on, certain fields in the descriptors. If this field is all zero then
it is ignored, otherwise the Entity Identifier rules are followed.

NOTE: If the field does not contain “*OSTA UDF Compliant” then an

implementation may deny the user access to the logical volume.

UDF 2.01 March50 April26

 This field shall indicate that the contents of this logical volume conforms
to the domain defined in this document, therefore the DomainIdentifier
shall be set to:

 "*OSTA UDF Compliant"

As described in the section on Entity Identifier the IdentifierSuffix field of
this EntityID shall contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of this field see section 2.1.5.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags. Refer to 2.1.5.32.1.5.3.

2.2.4.4 byte LogicalVolumeContentUse[16]

This field contains the extent location of the FileSet Descriptor. This is described
in 4/3.1 of ECMA 167 as follows:

“If the volume is recorded according to Part 3, the extent in which the first File Set Descriptor
Sequence of the logical volume is recorded shall be identified by a long_ad (4/14.14.2) recorded
in the Logical Volume Contents Use field (see 3/10.6.7) of the Logical Volume Descriptor
describing the logical volume in which the File Set Descriptors are recorded.”

This filedfield can be used to find the FileSet descriptor, and from the FileSet
descriptor the root volumedirectory can be found.

2.2.4.5 struct EntityID ImplementationIdentifier;

For more information on the proper handling of this field see section 2.1.5.

2.2.4.6 struct extent_ad IntegritySequenceExtent
A value in this field is required for the Logical Volume Integrity Descriptor. For
Rewriteable or Overwriteable media this shall be set to a minimum of 8K bytes.

WARNING: For WORM media this field should be set to an extent of some
substantial length. Once the WORM volume on which the Logical Volume
Integrity Descriptor resides is full a new volume must be added to the volume set
since the Logical Volume Integrity Descriptor must reside on the same volume as
the prevailing Logical Volume Descriptor.

2.2.4.7 byte PartitionMaps[]

For the purpose of interchange partition maps shall be limited to Partition Map
type 1, except type 2 maps as described in this document (2.2.8, 2.2.9 and 2.2.10).

UDF 2.01 March50 April27

2.2.5 Unallocated Space Descriptor
struct UnallocatedSpaceDesc { /* ECMA 167 3/10.8 */
 struct tag DescriptorTag;
 Uint32 VolumeDescriptorSequenceNumber;
 Uint32 NumberofAllocationDescriptors;
 extent_ad AllocationDescriptors[];
}

This descriptor shall be recorded, even if there is no free volume space. The first
32768 bytes of the Volume space shall not be used for the recording of ECMA
167 structures. This area shall not be referenced by the Unallocated Space
Descriptor or any other ECMA 167 descriptor.

2.2.6 Logical Volume Integrity Descriptor
struct LogicalVolumeIntegrityDesc { /* ECMA 167 3/10.10 */
 struct tag DescriptorTag,
 Timestamp RecordingDateAndTime,
 Uint32 IntegrityType,
 struct extend_ad NextIntegrityExtent,
 byte LogicalVolumeContentsUse[32],
 Uint32 NumberOfPartitions,
 Uint32 LengthOfImplementationUse,
 Uint32 FreeSpaceTable [],
 Uint32 SizeTable[],
 byte ImplementationUse[]
}

The Logical Volume Integrity Descriptor is a structure that shall be written any
time the contents of the associated Logical Volume is modified. Through the
contents of the Logical Volume Integrity Descriptor an implementation can easily
answer the following useful questions:

1) Are the contents of the Logical Volume in a consistent state?

2) When was the last date and time that anything within the Logical
Volume was modified?

3) What is the total Logical Volume free space in logical blocks?

4) What is the total size of the Logical Volume in logical blocks?

5) What is the next available UniqueID for use within the Logical
Volume?

UDF 2.01 March50 April28

6) Has some other implementation modified the contents of the logical
volume since the last time that the original implementation, which created
the logical volume, accessed it.

2.2.6.1 byte LogicalVolumeContentsUse[32]
See section 3.2.1 for information on the contents of this field.

2.2.6.2 Uint32 FreeSpaceTable[]

Since most operating systems require that an implementation provide the true free
space of a Logical Volume at mount time it is important that these values be
maintained for all non-virtual partitions. The optional value of #FFFFFFFF, which
indicates that the amount of available free space is not known, shall not be used
for non-virtual partitions. For virtual partitions the FreeSpaceTable value shall be
set to #FFFFFFFF.

NOTE: The FreeSpaceTable is guaranteed to be correct only when the Logical
Volume Integrity Descriptor is closed.

2.2.6.3 Uint32 SizeTable[]
Since most operating systems require that an implementation provide the total size
of a Logical Volume at mount time it is important that these values be maintained
for all non-virtual partitions. The optional value of #FFFFFFFF, which indicates
that the partition size is not known, shall not be used for non-virtual partitions.
For virtual partitions the SizeTable value shall be set to #FFFFFFFF.

2.2.6.4 byte ImplementationUse[]
The ImplementationUse area for the Logical Volume Integrity Descriptor shall be
structured as follows:

ImplementationUse format

RBP Length Name Contents
0 32 ImplementationID EntityID

32 4 Number of Files Uint32
36 4 Number of Directories Uint32
40 2 Minimum UDF Read Revision Uint16
42 2 Minimum UDF Write Revision Uint16
44 2 Maximum UDF Write Revision Uint16
46 ?? Implementation Use byte

NOTE: For a Sequential File System using a VAT, all field values above will be
overruled by the corresponding VAT fields, except for the ImplementationID and
Implementation Use fields, see 2.2.11.

Implementation ID - The implementation identifier EntityID of the
implementation which last modified anything within the scope of this

UDF 2.01 March50 April29

EntityID. The scope of this EntityID is the Logical Volume Descriptor,
and the contents of the associated Logical Volume. This field allows an
implementation to identify which implementation last modified the
contents of a Logical Volume.

Number of Files - The current number of files in the associated Logical
Volume, including hard links. The count includes all FIDs in the directory
hierarchy for which the Directory bit, Parent bit and Deleted bit are all
ZERO. FIDs identifying a stream are not included in the count. This
information is needed by the Macintosh OS. All implementations shall
maintain this information. NOTE: This value does not include Extended
Attributes or streams as part of the file count.

Number of Directories - The current number of directories in the
associated Logical Volume. This information is needed by, plus the
Macintosh OS. All implementations shall maintain this information.
NOTE: The root directory shall be included in the directory count. . The
directory count doesincludes the root directory and all FIDs in the
directory hierarchy for which the Directory bit is ONE and the Parent bit
and Deleted bit are both ZERO. FIDs identifying a stream directory are not
include stream directoriesincluded in the count. This information is needed
by the Macintosh OS. All implementations shall maintain this information.

Minimum UDF Read Revision - Shall indicate the minimum recommended
revision of the UDF specification that an implementation is required to
support to successfully be able to read all potential structures on the
media. This number shall be stored in binary coded decimal format, for
example #0150 would indicate revision 1.50 of the UDF specification.

Minimum UDF Write Revision - Shall indicate the minimum revision of
the UDF specification that an implementation is required to support to
successfully be able to modify all structures on the media. This number
shall be stored in binary coded decimal format, for example #0150 would
indicate revision 1.50 of the UDF specification.

Maximum UDF Write Revision - Shall indicate the maximum revision of
the UDF specification that an implementation that has modified the media
has supported. An implementation shall update this field only if it has
modified the media and the level of the UDF specification it supports is
higher than the current value of this field. This number shall be stored in
binary coded decimal format, for example #0150 would indicate revision
1.50 of the UDF specification.

Implementation Use - Contains implementation specific information
unique to the implementation identified by the Implementation ID.

UDF 2.01 March50 April30

2.2.7 Implemention Use Volume Descriptor
struct ImpUseVolumeDescriptor { /* ECMA 167 3/10.4 */
 struct tag DescriptorTag;
 Uint32 VolumeDescriptorSequenceNumber;
 struct EntityID ImplementationIdentifier;
 byte ImplementationUse[460];
}

This section defines an UDF Implementation Use Volume Descriptor. This
descriptor shall be recorded on every Volume of a Volume Set. The Volume may
also contain additional Implementation Use Volume Descriptors that are
implementation specific. The intended purpose of this descriptor is to aid in the
identification of a Volume within a Volume Set that belongs to a specific Logical
Volume.

NOTE: An implementation may still record an additional Implementation Use
Volume Descriptor in its own format on the media. The UDF Implementation
Use Volume Descriptor does not preclude an additional descriptor.

2.2.7.1 EntityID ImplementationIdentifier
The Identifier field of this EntityID shall specify “*UDF LV Info”. Refer to
section 2.1.5 on Entity Identifier.

2.2.7.2 bytes ImplementationUse[460]
The implementation use area shall contain the following structure:

struct LVInformation {
 struct charspec LVICharset,
 dstring LogicalVolumeIdentifier[128],
 dstring LVInfo1[36],
 dstring LVInfo2[36],
 dstring LVInfo3[36],
 struct EntityID ImplementationID,
 bytes ImplementationUse[128];
}

2.2.7.2.1 charspec LVICharset

 Interpreted as specifying the character sets allowed in the
LogicalVolumeIdentifier and LVInfo fields.

 Shall be set to indicate support for CS0 only as defined in 2.1.2.

UDF 2.01 March50 April31

2.2.7.2.2 dstring LogicalVolumeIdentifier[128]
 Identifies the Logical Volume referenced by this descriptor.

2.2.7.2.3 dstring LVInfo1[36], LVInfo2[36] and LVInfo3[36]

The fields LVInfo1, LVInfo2 and LVInfo3 should contain additional information
to aid in the identification of the media. For example the LVInfo fields could
contain information such as Owner Name, Organization Name, and Contact
Information.

2.2.7.2.4 struct EntityID ImplementationID

Refer to section 2.1.5 on Entity Identifier.

2.2.7.2.5 bytes ImplementationUse[128]
This area may be used by the implementation to store any additional
implementation specific information.

UDF 2.01 March50 April32

2.2.8 Virtual Partition Map
This is an extension of ECMA 167 to expand its scope to include sequentially written
media (eg. CD-R). This extension is for a partition map entry to describe a virtual space.

The Logical Volume Descriptor contains a list of partitions that make up a given volume.
As the virtual partition cannot be described in the same manner as a physical partition, a
Type 2 partition map defined below shall be used.

If a Virtual Partition Map is recorded, then the Logical Volume Descriptor shall contain
at least two partition maps. One partition map shall be recorded as a Type 1 partition
map. One partition map shall be recorded as a Type 2 partition map. The format of this
Type 2 partition map shall be as specified in the following table.

Layout of Type 2 partition map for virtual partition
RBP Length Name Contents
0 1 Partition Map Type Uint8 = 2

1 1 Partition Map Length Uint8 = 64

2 2 Reserved #00 bytes

4 32 Partition Type Identifier EntityID

36 2 Volume Sequence Number Uint16

38 2 Partition Number Uint16

40 24 Reserved #00 bytes

• Partition Type Identifier:

• Flags = 0
• Identifier = *UDF Virtual Partition
• IdentifierSuffix is recorded as defined in section 2.1.5

• Volume Sequence Number = volume upon which the VAT and Partition is recorded
• Partition Number = the partition number in the Type 1 partition map in the same logical

volume descriptor.

2.2.9 Sparable Partition Map
Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide
an apparent defect-free space for these systems, a partition of type 2 is used. The
partition map defines the partition number, packet size (see section 1.3.2), and size and
locations of the sparing tables. This type 2 map is intended to replace the type 1 map
normally found on the media. There should not be a type 1 map recorded if a Sparable
Partition Map is recorded. The Sparable Partition Map identifies not only the partition
number and the volume sequence number, but also identifies the packet length and the
sparing tables. A Sparable Partition Map shall not be recorded on disk/drive systems that
perform defect management.

UDF 2.01 March50 April33

Layout of Type 2 partition map for sparable partition
RBP Length Name Contents

0 1 Partition Map Type Uint8 = 2
1 1 Partition Map Length Uint8 = 64
2 2 Reserved #00 bytes
4 32 Partition Type Identifier EntityID
36 2 Volume Sequence Number Uint16
38 2 Partition Number Uint16
40 2 Packet Length Uint16
42 1 Number of Sparing Tables (=N_ST) Uint8
43 1 Reserved #00 byte
44 4 Size of each sparing table Uint32
48 4 * N_ST Locations of sparing tables Uint32
48 + 4 * N_ST 16 - 4 * N_ST Pad #00 bytes

• Partition Type Identifier:

• Flags = 0
• Identifier = *UDF Sparable Partition
• IdentifierSuffix is recorded as defined in section 2.1.5.

• Partition Number = the number of this partition. Shall identify a Partition Descriptor
associated with this partition.

• Packet Length = the number of user data blocks per fixed packet. This value is specified in
the medium specific section of Appendix 6.

• Number of Sparing Tables = the number of redundant tables recorded. This shall be a value in
the range of 1 to 4.

• Size of each sparing table = Length, in bytes, allocated for each sparing table.
• Locations of sparing tables = the start locations of each sparing table specified as a media

block address. Implementations should align the start of each sparing table with the beginning
of a packet. Implementations should record at least two sparing tables in physically distant
locations.

2.2.10 Metadata Partition Map
This partition map shall be recorded for volumes which contain a single partition having
an access type of 1 (read only) or 4 (overwritable). It shall not be recorded in all other
cases.

See section 2.2.13 for further description of the metadata partition.

UDF 2.01 March50 April34

 Layout of Type 2 partition map for metadata partition
RBP Length Name Contents

0 1 Partition Map Type Uint8 = 2
1 1 Partition Map Length Uint8 = 64
2 2 Reserved #00 bytes
4 32 Partition Type Identifier EntityID
36 2 Volume Sequence Number Uint16
38 2 Partition Number Uint16
40 4 Metadata File Location Uint32
44 4 Metadata Mirror File Location Uint32
48 4 Metadata Bitmap File Location Uint32
52 4 Allocation Unit Size (blocks) Uint32
56 2 Alignment Unit Size (blocks) Uint16
58 1 Flags Uint8
59 5 Reserved #00 bytes

• Partition Type Identifier:
• Flags = 0
• Identifier = *UDF Metadata Partition
• IdentifierSuffix is recorded as in section 2.1.5.
• Partition Number = the number of this partition. Shall identify a Partition Descriptor

associated with this partition. This shall match the partition number in the Type 1 map or Type
2 sparable map, one and only one of which shall also be recorded as appropriate to the media
type.

• Metadata File Location = address of the block containing the File Entry for the metadata file.
This address shall be interpreted as a logical block number within the physical or sparable
partition associated with this partition map (see above “Partition Number” field).

• Metadata Mirror File Location = address of block containing the File Entry for the metadata
file mirror. This address shall be interpreted as a logical block number within the physical or
sparable partition associated with this partition map (see above “Partition Number” field).

• Metadata Bitmap File Location = the address of of block containing the File Entry for the
metadata bitmap file. This address shall be interpreted as a logical block number within the
physical or sparable partition associated with this partition map (see above “Partition
Number” field).

• Allocation Unit Size = the number of logical blocks per Allocation Unit for the metadata file
(and mirror file) associated with this partition map. This value shall be an integer multiple of
the larger of the following three values: (media ECC block size (divided by) logical block
size); Packet Length (if a type 2 sparable partition map is recorded); 32.

• Alignment Unit Size (blocks) = all extents allocated to the Metadata File (or Mirror File) must
have a starting Lbn which is an integer multiple of this value. This value shall be an integer
multiple of the larger of the following: (media ECC block size (divided by) logical block
size); Packet Length (if a type 2 sparable partition map is recorded).

• Flags:
• Bit 0 – “Duplicate Metadata Flag”: When set, indicates that the Metadata Mirror file has

its own unique allocation (i.e. it duplicates the data in the Metadata File). When clear
indicates that the Metadata Mirror File allocation descriptors describe the same allocation
as the Metadata File allocation descriptors (i.e. the data is not duplicated, and the data
blocks are shared between both main and mirror files, but each File Entry and its
associated allocation descriptors are unique and distinct).

UDF 2.01 March50 April35

• Bits 1-7: Reserved. Shall be set to zero on write, and ignored on read.

NOTE: The Metadata Partition shall have an entry in the LVID Size and Free space
tables (see2.2.6).

NOTE: The Metadata File Location, Metadata Mirror File Location and Metadata
Bitmap File Location Uint32 fields define File Entry locations. The number of blocks
allocated for each File Entry shall be one logical block.

2.2.102.2.11 Virtual Allocation Table
The Virtual Allocation Table (VAT) is used on sequentially written media (eg. CD-R) to
give the appearance of randomly writable media to the system. The existence of this
partition is identified in the partition maps. The VAT shall only be recorded on
sequentially written media (eg. CD-R).

The VAT is a map that translates Virtual Addresses to logical addresses. It shall be
recorded as a file identified by a File Entry ICB (VAT ICB) that allows great flexibility in
building the table. The VAT ICB is the last sector recorded in any transaction. The VAT
itself may be recorded at any location.

The VAT shall be identified by a File Entry ICB with a file type of 248. This ICB shall be
the last valid data sector recorded. Error recovery schemes can find the last valid VAT by
finding ICBs with file type 248.

This file, when small, can be embedded in the ICB that describes it. If it is larger, it can
be recorded in a sector or sectors preceding the ICB. The sectors do not have to be
contiguous, which allows writing only new parts of the table if desired. This allows small
incremental updates, even on disks with many directories.

When the VAT is small (a small number of directories on the disk), the VAT is updated
by writing a new file ICB with the VAT embedded. When the VAT becomes too large to
fit in the ICB, writing a single sector with the VAT and a second sector with the ICB is
required. Beyond this point, more than one sector is required for the VAT. However, as
multiple extents are supported, updating the VAT may consist of writing only the sector
or sectors that need updating and writing the ICB with pointers to all of the pieces of the
VAT.

The Virtual Allocation Table is used to redirect requests for certain information to the
proper logical location. The indirection provided by this table provides the appearance of
direct overwrite capability. For example, the ICB describing the root directory could be
referenced as virtual sector 1. A virtual sector is contained in a partition identified by a
virtual partition map entry. Over the course of updating the disk, the root directory may
change. When it changes, a new sector describing the root directory is written, and its
Logical Block Address is recorded as the Logical Block Address corresponding to virtual
sector 1. Nothing that references virtual sector 1 needs to change, as it still points to the

UDF 2.01 March50 April36

most current virtual sector 1 that exists, even though it exists at a new Logical Block
Address.

The use of virtual addressing allows any desired structure to become effectively
rewritable. The structure is rewritable when every pointer that references it does so only
by its Virtual Address. When a replacement structure is written, the virtual reference does
not need to change. The proper entry in the VAT is changed to reflect the new Logical
Block Address of the corresponding Virtual Address and all virtual references then
indirectly point to the new structure. All structures that require updating, such as directory
ICBs, shall be referenced by a Virtual Address. As each structure is updated, its
corresponding entry in the VAT ICB shall be updated.

The VAT shall be recorded as a sequence of Uint32 entries in a file. Each entry shall be
the offset, in sectors, into the physical partition in which the VAT is located. The first
entry shall be for the virtual partition sector 0, the second entry for virtual partition sector
1, etc. The Uint32 entries shall follow the VAT header. The entry for the previous VAT
ICB allows for viewing the file system as it appeared in an earlier state. If this field is
#FFFFFFFF, then no such ICB is specified.

UDF 2.01 March50 April37

Virtual Allocation Table structure

Offset Length Name Contents
0 2 Length of Header (=L_HD) Uint16
2 2 Length of Implementation Use (=L_IU) Uint16
4 128 Logical Volume Identifier dstringDstring
132 4 Previous VAT ICB location Uint32
136 4 Number of Files Uint32
140 4 Number of Directories Uint32
144 2 Minimum UDF Read VersionRevision Uint16
146 2 Minimum UDF Write VersionRevision Uint16
148 2 Maximum UDF Write VersionRevision Uint16
150 2 Reserved #00 bytes
152 L_IU Implementation Use bytes
152 + L_IU 4 VAT entry 0 Uint32
156 + L_IU 4 VAT entry 1 Uint32
… … … …
Information
Length - 4

4 VAT entry n Uint32

Length of Header - Indicates the amount of data preceding the VAT entries. This value
shall be 152 + L_IU.

Length of Implementation Use - Shall specify the number of bytes in the Implementation
Use field. If this field is non-zero, the value shall be at least 32 and be an integral
multiple of 4.

Logical Volume Identifier - Shall identify the logical volume. This field shall be used by
implementations instead of the corresponding field in the Logical Volume Descriptor.
The value of this field should be the same as the field in the LVD until changed by the
user.

Previous VAT ICB Location - Shall specify the logical block number of an earlier VAT
ICB in the partition identified by the partition map entry. If this field is #FFFFFFFF, no
such ICB is specified.

Number of Files – The current number of files in the associated Logical Volume. This
information is needed by the Macintosh OS. All implementations shall maintain this
information. Defined in 2.2.6.4. The contents of this field shall be used by
implementations instead of the corresponding LVID field in the LVID.

NOTE: This value does not include Extended Attributes or streams as part of the
file count.

UDF 2.01 March50 April38

Number of Directories - The current number of directories in the associated
Logical Volume. This information is needed by the Macintosh OS. All
implementations shall maintain this informationDefined in 2.2.6.4. The contents
of this field shall be used by implementations instead of the corresponding LVID
field in the LVID.
NOTE: The root directory shall be included in the directory count. The directory
count does not include stream directories.

Minimum UDF Read VersionRevision - Defined in 2.2.6.4. The contents of this field shall
be used by implementations instead of the correspondingcorresponding LVID field in the
Logical Volume Integrity Descriptor (LVID).

Minimum UDF Write VersionRevision - Defined in 2.2.6.4. The contents of this field
shall be used by implementations instead of the corresponding LVID field in the LVID.

Maximum UDF Write VersionRevision - Defined in 2.2.6.4. The contents of this field
shall be used by implementations instead of the corresponding LVID field in the LVID.

Implementation Use - If non-zero in length, shall begin with an EntityID identifying the
usage of the remainder of the Implementation Use area.

VAT Entry - VAT entry n shall identify the logical block number of the virtual block n.
An entry of #FFFFFFFF indicates that the virtual sector is currently unused. The LBN
specified is located in the partition identified by the partition map entry. The number of
entries in the table can be determined from the VAT file size in the ICB:

Number of entries (N) = (Information Length - L_HD) / 4.

2.2.112.2.12 Sparing Table
Certain disk/drive systems do not perform defect management (eg. CD-RW). A Sparing
Table is used to provide an apparent defect-free space for these systems. Certain media
can only be written in groups of sectors (“packets”), further complicating relocation: a
whole packet must be relocated rather than only the sectors being written. To address this
issue a sparable partition is identified in the partition map, which further identifies the
location of the sparing tables. The sparing table identifies relocated areas on the media.
Sparing tables are identified by a sparable partition map. Sparing tables shall not be
recorded on disk/drive systems that perform defect management.

Sparing Tables point to space allocated for sparing and contains a list of mappings of
defective sectors to their replacements. Separate copies of the sparing tables shall be
recorded in separate packets. All instances of the sparing table shall be kept up to date.

Partitions map logical space to physical space. Normally, this is a linear mapping where
an offset and a length are specified. A sparable partition is based on this mapping, where

UDF 2.01 March50 April39

the offset and length of a partition within physical space is specified by a Partition
Descriptor (see 2.2.14). A sparable partition shall begin and end on a packet boundary.
The sparing table further specifies an exception list of logical to physical mappings. All
mappings are one packet in length. The packet size is specified in the sparable partition
map.

Available sparing areas may be anywhere on the media, either inside or outside of a
partition. If located inside a partition, sparable space shall be marked as allocated and
shall be included in the Non-Allocatable Space Stream. The mapped locations should be
filled in at format time; the original locations are assigned dynamically as errors occur.
Each sparing table shall be structured as shown below.

Sparing Table layout
BP Length Name Contents

0 16 Descriptor Tag tag = 0

16 32 Sparing Identifier EntityID

48 2 Reallocation Table Length (=RT_L) Uint16

50 2 Reserved #00 bytes

52 4 Sequence Number Uint32

56 8*RT_L Map Entry Map Entries

This structure may be larger than a single sector if necessary.

• Descriptor Tag
Contains a Tag Identifier of 0, which indicates that the format of the Descriptor Tag is not
specified by ECMA 167. All other fields of the Descriptor Tag shall be valid, as if the Tag
Identifier were one of the values defined by ECMA 167.

• Sparing Identifier:
• Flags = 0
• Identifier = *UDF Sparing Table

• IdentifierSuffix is recorded as defined in UDF 2.1.5
• Reallocation Table Length

Indicates the number of entries in the Map Entry table.
• Sequence Number

Contains a number that shall be incremented each time the sparing table is updated.
• Map Entry

A map entry is described in the table below. Maps shall be sorted in ascending order by the
Original Location field.

UDF 2.01 March50 April40

Map Entry description
RBP Length Name Contents

0 4 Original Location Uint32

4 4 Mapped Location Uint32

• Original Location

Logical Block Address of the packet to be spared. The address of a packet is the address of
the first user data block of a packet. If this field is #FFFFFFFF, then this entry is available for
sparing. If this field is #FFFFFFF0, then the corresponding mapped location is marked as
defective and should not be used for mapping. Original Locations of #FFFFFFF1 through
#FFFFFFFE are reserved.

• Mapped Location
Physical Block Address of active data. Requests to the original packet location are redirected
to the packet location identified here. All Mapped Location entries shall be valid, including
those entries for which the Original Location is #FFFFFFF0, #FFFFFFFF, or reserved. If the
mapped location overlaps a partition, that partition shall have that space marked as allocated
and that space shall be part of the Non-Allocatable Space Stream.

2.2.13 Metadata Partition
The files and policies defined in this section facilitate rapid location of all metadata in the
volume, promote clustering of ICBs / directory information, and optionally facilitate
duplication of all metadata. This will, in most cases, greatly speed file system repair
operations by eliminating the need to perform an exhaustive media scan, or directory
traversal, solely for the purpose of locating ICBs. The clustering of metadata will also
significantly improve performance of metadata intensive implementation operations.
When the metadata duplication option is chosen, file system robustness to media damage
is increased, at some cost to performance.

When a Type 2 Metadata Partition map is recorded, the Metadata File, Metadata Mirror
File and Metadata Bitmap File shall also be recorded and maintained.

The allocation descriptors of the Metadata Mirror File File Entry shall either:

• reference the same extents in the physical/sparable partition as referenced by the
allocation descriptors of the Metadata File - in this case the Duplicate Metadata
Flag in the Metadata Partition Map Flags field shall not be set.

OR
• reference different extents thus duplicating all metadata.- in this case the

Duplicate Metadata Flag in the Metadata Partition Map Flags field shall be set.

The File Entries for the Metadata, Metadata Mirror and Metadata Bitmap files shall not
be referenced by any structure other than the Metadata Partition Map and shall have a link
count of 0. These files, when present, shall be recorded in the physical/sparable partition
referenced by the metadata partition map.

UDF 2.01 March50 April41

The Metadata Partition Map (see2.2.10) defines a partition space in which all metadata
(FSD, ICBs, Allocation Descriptors, and directory data) shall be recorded, with the sole
exception of the ICBs and data comprising the Metadata, Metadata Mirror, and Metadata
Bitmap files as described above.

File Entries describing directories or stream directories shall use either “immediate”
allocation (i.e. the data is embedded in the File Entry - see ECMA 4/14.6.8 flag bits 0-2)
or SHORT_ADs to describe the data space of the directory, since this data resides in the
metadata partition along with the File Entry itself.

File Entries describing any other type of file data (including streams) shall use either
“immediate” allocation, or LONG_ADs which shall reference the physical or sparable
partition referenced by the metadata partition, to describe the data space of the file.

The Extent Location field of any allocation descriptor referencing data recorded in the
Metadata Partition shall be interpreted as a block offset into the Metadata File. For
example logical block 40 in the Metadata Partition corresponds to byte offset (40 *
logical block size) in the Metadata File, which in turn (through the Allocation Descriptors
for the Metadata File) corresponds to some logical block in the associated
physical/sparable partition.

Implementations shall support both the duplicate and shared allocation modes for the
Metadata Mirror File (see above and2.2.10, Metadata Partition Map, Flags field). The
File Entry for the Metadata Mirror shall be actively maintained along with the Metadata
File File Entry, but should be updated after the Metadata File File Entry.

If the Duplicate Metadata Flag is set in the Metadata Partition Map Flags field, the
Metadata Mirror File shall be maintained dynamically so that it contains identical data to
the Metadata File at all times. In this case blocks in the metadata partition may be read
from the same offset in either the Metadata Mirror file or the Metadata File. Data should
be written first to the Metadata File and second to the Metadata Mirror File.

When the Duplicate Metadata Flag in the Metadata Partition Map Flags field is set,
implementations and repair utilities should consider the Metadata File content to be
primary over that of the Metadata Mirror File. For example, a repair utility could repair
the volume based on metadata read from the Metadata File (excepting unreadable
portions which would be read from the Mirror) and then replace the contents of the
Metadata Mirror file with that of the (now consistent) Metadata File.

Logical blocks allocated to the Metadata or Metadata Mirror Files shall be marked as
allocated in the partition unallocated space bitmap, therefore a mechanism to determine
available blocks within the metadata partition is needed. This is accomplished through the
Metadata Bitmap file.

UDF 2.01 March50 April42

…
Root Dir ICB (1,1)

Sys. Stream Dir ICB (1,2)
...

METADATA FILE
FILE ENTRY (A)

Allocation Descriptors

(0,16,64)
(0,256,32)

Physical
Partition
(ref 0)

METADATA MIRROR
FILE ENTRY (C)

Allocation Descriptors

(0,X+1,96)

MD BITMAP FILE
FILE ENTRY (B)

Allocation Descriptors

(immediate)

LVD
…

FSD (1,0)
…

Type 1 map (ref 0)

Type 2 map (ref 1)
Metadata Partition.

…
Duplicate MD Flag 1

MD File FE (0,0)
MD Mirror FE (0,X)
MD Bitmap FE (0,1)

...

Metadata
Partition (ref 1)
(Metadata File)

(Metadata
Mirror File)=

Extent addresses shown in form
(part ref, start lbn)

or... (part ref, start lbn, length (blocks))

A B C

LB
N

 0

LB
N

 1
6

LB
N

 2
56

LB
N

 X

LB
N

 0

1 (unallocated)

Metadata
Bitmap

File

B
IT

 0

B
IT

 9
5

0

B
IT

 3

LB
N

 9
5

NOTE: Because the “Duplicate Metadata
Flag” is set in the metadata partition map,
the mirror file has it’s own unique
allocation. If this flag was not set, the Mirror
File FE ADs would reference the same
blocks as the Metadata File ADs.

1 (unallocated)
Partition

unallocated
space

bitmap.

0 0 0 0

FSD (D)

S
B
D

D D

NOTE: the LBN values used in the diagram above are for illustrative purposes only and
are not fixed. The partition references used are fixed as a consequence of the Metadata
Partition implementation.

A more detailed description of these files and how they are used follows in section
2.2.13.1.

UDF 2.01 March50 April43

2.2.13.1 Metadata File (and Metadata Mirror File)
These files shall have the values of 250 (main) and 251 (Mirror) recorded in the IcbTag
File Type fields of their File Entries. The UniqueID field of these File Entries shall have a
value of zero.

The Allocation Descriptors (see 2.3.10) of these files shall at all times:

• Be SHORT_ADs (referencing space in the same physical/sparable partition in
which the ICB resides).

• Either be of type “allocated and recorded” or type “not allocated”.
• Have an extent length that is an integer multiple of the Allocation Unit Size

specified in the Metadata Partition Map.
• Have a starting logical block number which is an integer multiple of the

Alignment Unit Size specified in the Metadata Partition Map.

The Information Length field of the File Entries for these files shall be equal to (number
of blocks described by the ADs for this stream * logical block size).

The Allocation Descriptors for this file shall describe only logical blocks which contain
one of the below data types. No user data or other metadata may be referenced.

• FSD
• ICB
• Extent of Allocation Descriptors (see 2.3.11).
• Directory or stream directory data (i.e. FIDs)
• An unused block marked free in the Metadata Bitmap File.

NOTE: In the case where the Duplicate Metadata Flag in the Metadata Partition Map is
set, the allocations for the Metadata File and Metadata Mirror File should be as far apart
(physically) as possible. Typically this is achieved by maximizing the difference between
the start LBNs of the extents belonging to the file and its mirror. Likewise the file entries
for these two files should be recorded as far apart as possible. Some drive/media
combinations support “background physical formatting” (see 6.13 and 6.14) or
“incremental formatting”, and implementations using such features should consider this
when locating the metadata files and data. In such cases it may be practically impossible
to position the files far apart without impacting the early eject time / media readability.

The Access Time and Modification Time fields of the Metadata File and Mirror File File
Entries shall be set to legal values at format time but need not be updated by a file system.

The File Entries for the Metadata File and Metadata Mirror file shall have NULL
Stream_Directory_ICB and Extended_Attribute_ICB fields.

UDF 2.01 March50 April44

2.2.13.2 Metadata Bitmap File

This file shall have a value of 252 recorded in the Icb Tag File Type field of its File Entry.
The UniqueID field of this File Entry shall have a value of zero.

This file contains a Space Bitmap Descriptor describing the utilization of blocks allocated
to the Metadata File (i.e. this is a bitmap describing allocated space for the Metadata
Partition). Bit zero of the bitmap corresponds to the first block in the aforementioned
file, bit one to the second, and so on. This also applies to the Metadata Mirror File since
contents of the two files are identical (regardless of the Duplicate Metadata Flag in the
Metadata Partition Map Flags field).

If a bit in this bitmap is set (one) then the corresponding blocks within the Metadata File
and Metadata Mirror File are available for use by new metadata.

NOTE: When the Duplicate Metadata Flag in the Metadata Partition Map Flags field is
not set, these blocks are one and the same, since the Allocation Descriptors for the
Metadata Mirror file reference the same blocks as those of the Metadata File.

If a bit in this bitmap is clear (zero) then the corresponding blocks are not available for
use – i.e. they are either in use, or fall within an unallocated region of the Metadata File.

Other requirements for the Metadata Bitmap File:

• The descriptor tag fields DescriptorCRC and DescriptorCRCLength for this SBD

shall be set to zero.
• The Allocation Descriptors for the Metadata Bitmap File shall not include any

Allocation Descriptors of type “not allocated”.
• The Information Length field of the File Entry for this file shall equal the size of

the SBD (NOTE: SBD size includes the bitmap portion).
• There shall be one bit in the bitmap for every block in the Metadata Partition.
• The Access Time and Modification Time fields of the Metadata Bitmap File Entry

shall be set to legal values at format time but need not be updated by a file system.
• The Metadata Bitmap File Entry shall have NULL StreamDirectoryIcb (if

extended FE) and ExtendedAttributeICB fields.
• The descriptor TagLocation field of this SBD shall be set to the logical block

number of the first block allocated to the Metadata Bitmap File.

2.2.13.3 Procedure for allocating blocks for new metadata.
Search for a set (one) bit in the Metadata Bitmap file, and clear it. The corresponding
block within the Metadata Partition (Metadata and Metadata Mirror (if duplicate mode)
files) may then be used for the new data. If there are no set (one) bits then the Metadata
File (and Mirror if duplicate) must be extended as described in section 2.2.13.5 below.

UDF 2.01 March50 April45

2.2.13.4 Procedure for de-allocating metadata blocks.
Set (to one) the bit(s) in the Metadata Bitmap file corresponding to the block number(s)
of the data within the Metadata Partition that is being de-allocated.

2.2.13.5 Recommended procedure for extending the Metadata Partition
These changes should be written to the device before the new blocks are allocated for use
by metadata. It would be undesirable for such changes to sit in an implementation’s write
cache for so long that new metadata assigned to the blocks being described by the
changes was written to the media first.

1. Verify that there is enough space in the Metadata File and Metadata Mirror File
Allocation Descriptor chains for a new Allocation Descriptor. If not then allocate
a new Allocation Descriptor extent.

2. Verify that the Metadata Bitmap file allocation is large enough to extend the
bitmap to describe the additional blocks added to the Metadata File, and if not
then allocate block(s) for the Metadata Bitmap file.

3. Allocate a new extent of blocks (for the Metadata File) observing the size and
alignment requirements specified in2.2.13.1.

4. If the Duplicate Metadata Flag in the Metadata Partition Map Flags field is set,
allocate a second extent of blocks observing the size and alignment requirements
specified in2.2.13.1, ideally as far away as possible from the first allocation (for
the Metadata Mirror File).

5. Add a new Allocation Descriptor to the Metadata File, or modify existing
descriptors, to reference the first newly allocated extent. If the Duplicate
Metadata Flag in the Metadata Partition Map Flags field is not set, modify the
Metadata Mirror file ADs to reference the same extent.

6. If a second extent of blocks was allocated above, add to the Metadata Mirror File
a new Allocation Descriptor, or modify existing ADs, to reference this second
extent.

7. If the new extents were added at the end of the Metadata File then increase the FE
Information Length for the Metadata File, and Mirror, to include the new blocks.

8. If the Metadata Bitmap file was extended, increase its FE Information Length
field to include the bits describing the additional blocks allocated to the Metadata
files.

9. Set (set to one) the bits in the Metadata Bitmap file which correspond to the extent
just added to the Metadata file, to indicate the blocks are available for use by new
metadata.

UDF 2.01 March50 April46

2.2.13.6 Recommended procedure for reclaiming space from the Metadata
Partition
Blocks allocated to the Metadata File, and its mirror, shall only be returned to the volume
in one of the following two ways:

• Truncation of the Metadata File and its mirror.
• Marking the AD(s) for a region of the Metadata file, and it’s mirror, as sparse (not

allocated) and setting the corresponding bits in the Metadata Bitmap file to zero,
indicating these blocks are not available for use.

Any region to be removed shall:

• Currently contain no referenced metadata (i.e. all corresponding bits in the
Metadata Bitmap file shall already be set (one)).

• Match the size/alignment restrictions laid down in section 2.2.13.1.

In the truncation case (metadata partition being truncated):

1. Update the SBD in the Metadata Bitmap File to reduce the bitmap size.
2. Update the Metadata Bitmap File Entry Information Length to reflect the

decreased bitmap size.
3. Update the Metadata File, and mirror, file entry Information Length fields to

‘remove’ the region.
4. Mark the de-allocated blocks as available in the partition unallocated space

bitmap.

In the mark sparse case (region in middle of metadata partition being removed):

1. Clear the corresponding bits in the Metadata Bitmap file to zero.
2. Generate sparse (not allocated) Allocation Descriptor(s) in the Metadata File (and

its mirror) for the region being de-allocated.
3. Mark the de-allocated blocks as available in the partition Unallocated Space

Bitmap.

2.2.122.2.14 Partition Descriptor

struct PartitionDescriptor { /* ECMA 167 3/10.5 */
 struct tag DescriptorTag;
 Uint32 VolumeDescriptorSequenceNumber;
 Uint16 PartitionFlags;
 Uint16 PartitionNumber;
 struct EntityID PartitionContents;
 byte PartitionContentsUse[128];
 Uint32 AccessType;
 Uint32 PartitionStartingLocation;
 Uint32 PartitionLength;

UDF 2.01 March50 April47

 struct EntityID ImplementationIdentifier;
 byte ImplementationUse[128];
 byte Reserved[156];
}

2.2.12.12.2.14.1 Struct EntityID PartitionContents

For more information on the proper handling of this field see the section on Entity
Identifier.

2.2.14.2 Uint32 AccessType
For some rewritable/overwritable media types there may be confusion between
partition access types 3 (rewritable) and 4 (overwritable).

Rewritable media are media that require some form of preprocessing before re-
writing data (for example legacy MO). Such media shall have a Freed Space
Bitmap or a Freed Space Table and shall use AccessType 3.

Overwritable media are media that do not require preprocessing before
overwriting data (for example: CD-RW, DVD-RW, DVD+RW, DVD-RAM).
Such media shall not have a Freed Space Bitmap or a Freed Space Table and shall
use AccessType 4.

2.2.12.22.2.14.3 Uint32 PartitionStartingLocation
For a Sparable Partition, the value of this field shall be an integral multiple of the
Packet Length. The Packet Length is defined in the Sparable Partition Map.

For a physical partition, the value of this field shall be an integral multiple of
(“ECC Block Size” (divided by) sector size) for the media (See 1.3.2 for
definition of ECC Block Size).

2.2.12.32.2.14.4 Uint32 PartitionLength

For a Sparable Partition, the value of this field shall be an integral multiple of the
Packet Length. The Packet Length is defined in the Sparable Partition Map.

2.2.12.42.2.14.5 Struct EntityID ImplementationIdentifier

For more information on the proper handling of this field see the section on Entity
Identifier.

UDF 2.01 March50 April48

2.3 Part 4 - File System
2.3.1 Descriptor Tag

struct tag { /* ECMA 167 4/7.2 */
 Uint16 TagIdentifier;
 Uint16 DescriptorVersion;
 Uint8 TagChecksum;
 byte Reserved;
 Uint16 TagSerialNumber;
 Uint16 DescriptorCRC;
 Uint16 DescriptorCRCLength;
 Uint32 TagLocation;
}

2.3.1.1 Uint16 TagSerialNumber
 Ignored. Intended for disaster recovery.

 Shall be set to the TagSerialNumber value for the Anchor Volume

Descriptor Pointers on this volume.

The same applies as for volume structure TagSerialNumber values, see
2.2.1.12.2.1.1 and 2.1.62.1.6.

2.3.1.2 Uint16 DescriptorCRCLength
CRCs shall be supported and calculated for each descriptor, unless otherwise
noted. The value of this field shall be set to: (Size of the Descriptor) - (Length of
Descriptor Tag). When reading a descriptor the CRC should be validated.

NOTE: The DescriptorCRCLength field must not be used to determine the actual
length of the descriptor or the number of bytes to read. These lengths do not
match in all cases; there are exceptions in the standard where the Descriptor CRC
Length need not match the length of the descriptor.

2.3.1.3 Uint32 TagLocation
For structures referenced via a virtual address (i.e. referenced through the VAT),
this value shall be the virtual address, not the physical or logical address.

UDF 2.01 March50 April49

2.3.2 File Set Descriptor
struct FileSetDescriptor { /* ECMA 167 4/14.1 */
 struct tag DescriptorTag;
 struct timestamp RecordingDateandTime;
 Uint16 InterchangeLevel;
 Uint16 MaximumInterchangeLevel;
 Uint32 CharacterSetList;
 Uint32 MaximumCharacterSetList;
 Uint32 FileSetNumber;
 Uint32 FileSetDescriptorNumber;
 struct charspec LogicalVolumeIdentifierCharacterSet;
 dstring LogicalVolumeIdentifier[128];
 struct charspec FileSetCharacterSet;
 dstring FileSetIdentifer[32];
 dstring CopyrightFileIdentifier[32];
 dstring AbstractFileIdentifier[32];
 struct long_ad RootDirectoryICB;
 struct EntityID DomainIdentifier;
 struct long_ad NextExtent;
 struct long_ad SystemStreamDirectoryICB;
 byte Reserved[32];
}

Only one FileSet descriptor shall be recorded. On WORM media, multiple
FileSets may be recorded.

The UDF provision for multiple File Sets is as follows:

• Multiple FileSets are only allowed on WORM media.
• The default FileSet shall be the one with the highest FileSetNumber.
• Only the default FileSet may be flagged as writable. All other FileSets

in the sequence shall be flagged HardWriteProtect (see 2.1.5.3).
• No writable FileSet shall reference any metadata structures which are

referenced (directly or indirectly) by any other FileSet. Writable
FileSets may, however, reference the actual file data extents.

Within a FileSet on WORM, if all files and directories have been recorded with
ICB strategy type 4, then the DomainID of the corresponding FileSet Descriptor
shall be marked as HardWriteProtected.

The intended purpose of multiple FileSets on WORM is to support the ability to
have multiple archive images on the media. For example one FileSet could
represent a backup of a certain set of information made at a specific point in time.
The next FileSet could represent another backup of the same set of information
made at a later point in time.

UDF 2.01 March50 April50

2.3.2.1 Uint16 InterchangeLevel

 Interpreted as specifying the current interchange level (as specified in
ECMA 167 4/15), of the contents of the associated file set and the
restrictions implied by the specified level.

 Shall be set to a level of 3.

An implementation shall enforce the restrictions associated with the specified
current Interchange Level.

2.3.2.2 Uint16 MaximumInterchangeLevel
 Interpreted as specifying the maximum interchange level of the contents of

the associated file set. This value restricts to what the current Interchange
Level field may be set.

 Shall be set to level 3.

2.3.2.3 Uint32 CharacterSetList

 Interpreted as specifying the character set(s) specified by any field, whose
contents are specified to be a charspec, of any descriptor specified in Part 4
of ECMA 167 and recorded in the file set described by this descriptor.

 Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.3.2.4 Uint32 MaximumCharacterSetList

 Interpreted as specifying the maximum supported character set in the
associated file set and the restrictions implied by the specified level.

 Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.3.2.5 struct charspec LogicalVolumeIdentifierCharacterSet
 Interpreted as specifying the d-characters allowed in the Logical Volume

Identifier field.

 Shall be set to indicate support for CS0 as defined in 2.1.2.

2.3.2.6 struct charspec FileSetCharacterSet
 Interpreted as specifying the d-characters allowed in dstring fields defined

in Part 4 of ECMA 167 that are within the scope of the FileSetDescriptor.

 Shall be set to indicate support for CS0 as defined in 2.1.2.

UDF 2.01 March50 April51

2.3.2.7 struct EntityID DomainIdentifier
 Interpreted as specifying a domain specifying rules on the use of, and

restrictions on, certain fields in the descriptors. If this field is NULL then
it is ignored, otherwise the Entity Identifier rules are followed.

 This field shall indicate that the scope of this File Set Descriptor conforms

to the domain defined in this document, therefore the
ImplementationIdentifier shall be set to:

 "*OSTA UDF Compliant"

As described in the section on Entity Identifier the IdentifierSuffix field of
this EntityID shall contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of this field see section 2.1.5.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags.

2.3.3 Partition Header Descriptor
struct PartitionHeaderDescriptor { /* ECMA 167 4/14.3 */
 struct short_ad UnallocatedSpaceTable;
 struct short_ad UnallocatedSpaceBitmap;
 struct short_ad PartitionIntegrityTable;
 struct short_ad FreedSpaceTable;
 struct short_ad FreedSpaceBitmap;
 byte Reserved[88];
}

As a point of clarification the logical blocks represented as Unallocated are blocks
that are ready to be written without any preprocessing. In the case of Rewritable
media this would be a write without an erase pass. The logical blocks
represented as Freed are blocks that are not ready to be written, and require some
form of preprocessing. In the case of Rewritable media this would be a write with
an erase pass. See section 2.2.14.2 for further detail regarding media
classification.

NOTE: The use of Space Tables or Space Bitmaps shall be consistent across a
Logical Volume. Space Tables and Space Bitmaps shall not both be used at the
same time within a Logical Volume.

2.3.3.1 struct short_ad PartitionIntegrityTable
Shall be set to all zeros since PartitionIntegrityEntrys are not used.

UDF 2.01 March50 April52

2.3.4 File Identifier Descriptor
struct FileIdentifierDescriptor { /* ECMA 167 4/14.4 */
 struct tag DescriptorTag;
 Uint16 FileVersionNumber;
 Uint8 FileCharacteristics;
 Uint8 LengthofFileIdentifier;
 struct long_ad ICB;
 Uint16 LengthOfImplementationUse;
 byte ImplementationUse[];
 char FileIdentifier[];
 byte Padding[];
}

The File Identifier Descriptor shall be restricted to the length of at most one
Logical Block.

NOTE: All UDF directories shall include a File Identifier Descriptor that
indicates the location of the parent directory. The File Identifier Descriptor
describing the parent directory shall be the first File Identifier Descriptor recorded
in the directory. The parent directory of the Root directory shall be Root, as stated
in ECMA 167 4/8.6

NOTE: On logical volumes where a Metadata Partition Map is recorded, all
directory and stream directory data shall be recorded in the Metadata Partition (see
2.2.10), however the data space of streams shall be recorded in physical space.

2.3.4.1 Uint16 FileVersionNumber
 There shall be only one version of a file as specified below with the value

being set to 1.

 Shall be set to 1.

2.3.4.2 Uint8 File Characteristics
The deleted bit may be used to mark a file or directory as deleted instead of
removing the FID from the directory, which requires rewriting the directory from
that point to the end. If the space for the file or directory is deallocated, the
implementation shall set the ICB field to zero, as all fields in a FID must be valid
even if the deleted bit is set. See [4/14.4.3], note 21 and [4/14.4.5].

ECMA 167 4/8.6 requires that the File Identifiers (and File Version Numbers,
which shall always be 1) of all FIDs in a directory shall be unique. While the
standard is silent on whether FIDs with the deleted bit set are subject to this
requirement, the intent is that they are not. FIDs with the deleted bit set are not
subject to the uniqueness requirement, as interpreted by UDF

UDF 2.01 March50 April53

In order to assist a UDF implementation that may have read the standard without
this interpretation, implementations shall follow these rules when a FID’s deleted
bit is set:

If the compression ID of the File Identifier is 8, rewrite the compression ID to
254. If the compression ID of the File Identifier is 16, rewrite the compression ID
to 255. Leave the remaining bytes of the File Identifier unchanged

In this way a utility wishing to undelete a file or directory can recover the original
name by reversing the rewrite of the compression ID.

NOTE: Implementations should re-use FIDs that have the deleted bit set to one
and ICBs set to zero in order to avoid growing the size of the directory
unnecessarily.

2.3.4.3 struct long_ad ICB
The Implementation Use bytes of the long_ad in all File Identifier Descriptors
shall be used to store the UDF Unique ID for the file and directory namespace.

The Implementation Use bytes of a long_ad hold an ADImpUse structure as
defined by 2.3.10.1. The four impUse bytes of that structure will be interpreted as
a Uint32 holding the UDF Unique ID.

ADImpUse structure holding UDF Unique ID
RBP Length Name Contents
0 2 Flags (see 2.3.10.1) Uint16
2 4 UDF Unique ID Uint32

Section 3.2.1 Logical Volume Header Descriptor describes how UDF Unique ID
field in Implementation Use bytes of the long_ad in the File Identifier Descriptor
and the UniqueID field in the File Entry and Extended File Entry are set.

2.3.4.4 Uint16 LengthofImplementationUse
 Shall specify the length of the ImplementationUse field.

 Shall specify the length of the ImplementationUse field. This field may

contain zero, indicating that the ImplementationUse field has not been
used. Otherwise, this field shall contain at least 32 as required by 2.3.4.5.

When writing a File Identifier Descriptor to write-once media, to ensure that the
Descriptor Tag field of the next FID will never span a block boundary, if there are
less than 16 bytes remaining in the current block after the FID, the length of the
FID shall be increased (using the Implementation Use field) enough to prevent

UDF 2.01 March50 April54

this. Remember that in the latter case, the Implementation Use field shall be at
least 32 bytes.

2.3.4.5 byte ImplementationUse[]
 If the LengthofImplementationUse field is non ZERO then the first 32

bytes of this field shall be interpreted as specifying the implementation
identifier EntityID of the implementation which last modified the File
Identifier Descriptor.

 If the LengthofImplementationUse field is non ZERO then the first 32

bytes of this field shall be set to the implementation identifier EntityID of
the current implementation.

NOTE: For additional information on the proper handling of this field refer to
the section on Entity Identifier.

This field allows an implementation to identify which implementation last created
and/or modified a specific File Identifier Descriptor .

2.3.4.6 char FileIdentifier[]
Contains a File Identifier stored in the OSTA Compressed Unicode format, see
2.1.1. The byte length of this field shall be greater than 1 with the sole exception
of 0 for a parent FID. If the deleted bit is set in the File Characteristics field of this
File Identifier Descriptor, then see 2.3.4.2 for additional rules. If the deleted bit is
not set, then the Unicode representation of the File Identifier shall be unique in
this directory. This requires not only byte-wise uniqueness as required by ECMA
4/8.6, but also uniqueness of the Unicode identifier resulting from uncompress of
the OSTA Compressed Unicode format.

2.3.5 ICB Tag
struct icbtag { /* ECMA 167 4/14.6 */
 Uint32 PriorRecordedNumberofDirectEntries;
 Uint16 StrategyType;
 byte StrategyParameter[2];
 Uint16 MaximumNumberofEntries;
 byte Reserved;
 Uint8 FileType;
 Lb_addr ParentICBLocation;
 Uint16 Flags;
}

UDF 2.01 March50 April55

2.3.5.1 Uint16 StrategyType
 The content of this field specifies the ICB strategy type used. For the

purposes of read access an implementation shall support strategy types 4
and 4096.

 Shall be set to 4 or 4096, see NOTE .

NOTE: Strategy type 4096, which is, defined in the appendixsection 6.6, is
intended for primary use on WORM media, but may also be used. Strategy type
4096 is allowed only for ICBs in a partition with Access Type write-once recorded
on rewritable and overwritablenon-sequential write once media.

2.3.5.2 Uint8 FileType
As a point to clarification a value of 5 shall be used for a standard byte
addressable file, not 0. The value of 248 shall be used for the VAT (refer to
2.2.102.2.11). The value of 249 shall be used to indicate a Real-Time file (see
Appendix 6.11). Values of File types 250, 251 and 252 shall be used for the
Metadata File, Metadata Mirror File and Metadata Bitmap File respectively. See
section 2.2.13 for more details. File types 253 to 255 shall not be used.

2.3.5.2.1 File Type 249
Files with FileType 249 require special commands to access the data space of this
file. To avoid possible damage, if an implementation does not support these
commands it shall not issue any command that would access or modify the data
space of this file. This includes but is not limited to reading, writing and deleting
the file.

2.3.5.3 ParentICBLocation
TheFor strategy 4 this field shall not be used and contain all zero bytes. For
strategy type 4096 the use of this field is optional.

NOTE: In ECMA 167-4/14.6.7 it states, “If this field contains 0, then no such
ICB is specified.” This is a flaw in the ECMA standard in that an implementation
could store an ICB at logical block address 0. Therefore, if you decide to use this
field, do not store an ICB at logical block address 0.

2.3.5.4 Uint16 Flags
Bits 0-2: These bits specify the type of allocation descriptors used. Refer to the
section 2.3.10 on Allocation Descriptors for the guidelines on choosing which
type of allocation descriptor to use.

UDF 2.01 March50 April56

Bit 3 (Sorted):
 For OSTA UDF compliant media this bit shall indicate (ZERO) that

directories may be unsorted.

 Shall be set to ZERO.

Bit 4 (Non-relocatable):

 For OSTA UDF compliant media this bit shall indicate (ONE) if the file is
non-relocatable. If ONE, an implementation shall set the bit to ZERO if a
modification will contravene the definition of this bit in ECMA
167-4/14.6.8.

 Should be set to ZERO unless required.

NOTE: This flag is not a lock on the file in any way. It is used to indicate that an
implementation has arranged the allocation of the file to satisfy specific
application requirements. In these cases, any remapping of a written block (see
UDF sparable partitions) or defragmentation of the file might not be desired. If a
file with this flag set to ONE is copied, then the new copy of the file should have
this bit set to ZERO.

Bit 9 (Contiguous):

 For OSTA UDF compliant media this bit may indicate (ONE) that the file
is contiguous. An implementation may reset this bit to ZERO to indicate
that the file may be non-contiguous if the implementation can not assure
that the file is contiguous.

 Should be set to ZERO.

Bit 11 (Transformed):

 For OSTA UDF compliant media this bit shall indicate (ZERO) that no
transformation has taken place.

 Shall be set to ZERO.

The methods used for data compression and other forms of data transformation
might be addressed in a future OSTA document.

Bit 12 (Multi-versions):

 For OSTA UDF compliant media this bit shall indicate (ZERO) that multi-
versioned files are not present.

 Shall be set to ZERO.

UDF 2.01 March50 April57

2.3.6 File Entry

struct FileEntry { /* ECMA 167 4/14.9 */
 struct tag DescriptorTag;
 struct icbtag ICBTag;
 Uint32 Uid;
 Uint32 Gid;
 Uint32 Permissions;
 Uint16 FileLinkCount;
 Uint8 RecordFormat;
 Uint8 RecordDisplayAttributes;
 Uint32 RecordLength;
 Uint64 InformationLength;
 Uint64 LogicalBlocksRecorded;
 struct timestamp AccessTime;
 struct timestamp ModificationTime;
 struct timestamp AttributeTime;
 Uint32 Checkpoint;
 struct long_ad ExtendedAttributeICB;
 struct EntityID ImplementationIdentifier;
 Uint64 UniqueID,
 Uint32 LengthofExtendedAttributes;
 Uint32 LengthofAllocationDescriptors;
 byte ExtendedAttributes[];
 byte AllocationDescriptors[];
}

NOTE: The total length of a FileEntry shall not exceed the size of one logical
block.

NOTE: If a Metadata Partition Map is recorded in a volume then all FileEntries,
Allocation Descriptor Extents and directory data shall be recorded in the Metadata
Partition – i.e. in logical blocks allocated to the Metadata and/or Metadata Mirror
Files (see section 2.2.13 for details including exceptions).

2.3.6.1 Uint8 RecordFormat;

 For OSTA UDF compliant media a value of zero shall indicate that the
structure of the information recorded in the file is not specified by this
field.

 Shall be set to ZERO.

UDF 2.01 March50 April58

2.3.6.2 Uint8 RecordDisplayAttributes;
 For OSTA UDF compliant media a value of zero shall indicate that the

structure of the information recorded in the file is not specified by this
field.

 Shall be set to ZERO.

2.3.6.3 Uint32 RecordLength;

 For OSTA UDF compliant media a value of zero shall indicate that the
structure of the information recorded in the file is not specified by this
field.

 Shall be set to ZERO.

2.3.6.4 Uint64 InformationLength

In most cases, the InformationLength can be reconstructed during a recovery
operation by finding the sum of the lengths of each of the allocation descriptors.
However, space may be allocated after the end of the file (identified as a “file tail.”).
As “unrecorded and allocated” space is a legal part of a file body, using the allocation
descriptors to determine the information length is possible under the following
conditions:

- if an allocation descriptor exists with an extent length that is not a multiple of the

block size.
- if no such extent exists and the extent type of the last allocation descriptor with an

extent length unequal to 0 is not equal to “unrecorded and allocated”.

Only the last extent of the file body may have an extent length that is not a
multiple of the block size, see ECMA 167 4/12.1 and 4/14.14.1.1.

2.3.6.5 Uint64 LogicalBlocksRecorded
For files and directories with embedded data the value of this field shall be ZERO.

2.3.6.6 struct EntityID ImplementationIdentifier;
Refer to the section on Entity Identifier.

2.3.6.7 Uint64 UniqueID
For the root directory of a file set this value shall be set to ZERO.

Section 3.2.1 Logical Volume Header Descriptor describes how the UDF Unique
ID field in the Implementation Use bytes of the long_ad in the File Identifier
Descriptor and the UniqueID filefield in the File Entry and Extended File Entry
are set.

UDF 2.01 March50 April59

2.3.6.8 FileLinkCount
Hard links to a directory are not allowed. A directory File Entry shall be identified
by:
• for non-root directories: exactly one FID defining the directory name
• zero or more parent FIDs if appropriate. One parent FID in each immediate

child directory, if any.

For stream and stream directory hard link restrictions, see 3.3.5.1.

2.3.7 Unallocated Space Entry
struct UnallocatedSpaceEntry { /* ECMA 167 4/14.11 */
 struct tag DescriptorTag;
 struct icbtag ICBTag;
 Uint32 LengthofAllocationDescriptors;
 byte AllocationDescriptors[];
}

NOTE: The maximum length of an UnallocatedSpaceEntry shall be one Logical
Block.

2.3.7.1 byte AllocationDescriptors[]
Only Short Allocation Descriptors shall be used.

NOTE: The upper 2 bits of the extent length field in allocation descriptors specify
an extent type (ECMA 167 4/14.14.1.1). For the allocation descriptors specified
for the UnallocatedSpaceEntry the type shall be set to a value of 1 to indicate
extent allocated but not recorded, or shall be set to a value of 3 to indicate the
extent is the next extent of allocation descriptors. This next extent of allocation
descriptors shall be limited to the length of one Logical Block.

AllocationDescriptors shall be ordered sequentially in ascending location order.
No overlapping AllocationDescriptors shall exist in the table. For example,
ad.location = 2, ad.length = 2048 (logical block size = 1024) then
nextad.location = 3 is not allowed. Adjacent AllocationDescriptors shall not be
contiguous. For example ad.location = 2, ad.length = 1024 (logical block size =
1024), nextad.location = 3 is not allowed and would instead be a single
AllocationDescriptor, ad.location = 2, ad.length = 2048. The only case where
adjacent AllocationDescriptors may be contiguous is when the ad.length of one of
the adjacent AllocationDescriptors is equal to the maximum
AllocationDescriptors length.

UDF 2.01 March50 April60

2.3.8 Space Bitmap Descriptor
struct SpaceBitmap { /* ECMA 167 4/14.12 */
 struct Tag DescriptorTag;
 Uint32 NumberOfBits;
 Uint32 NumberOfBytes;
 byte Bitmap[];
}

2.3.8.1 struct Tag DescriptorTag
The calculation and maintenance of the DescriptorCRC field of the Descriptor
Tag for the SpaceBitmap descriptor is optional. If the CRC is not maintained then
both the DescriptorCRC and DescriptorCRCLength fields shall be ZERO.

2.3.9 Partition Integrity Entry

struct PartitionIntegrityEntry { /*
(See ECMA 167 4/14.13 */
 struct tag DescriptorTag;
 struct icbtag ICBTag;
 struct timestamp RecordingTime;
 Uint8 IntegrityType;
 byte Reserved[175];
 struct EntityID ImplementationIdentifier;
 byte ImplementationUse[256];
}

). With the functionality of the Logical Volume Integrity Descriptor (see section
2.2.6) this descriptor is not needed, and therefore this descriptor shall not be
recorded.

2.3.10 Allocation Descriptors
When constructing the data area of a file an implementation has several types of
allocation descriptors from which to choose. The following guidelines shall be
followed in choosing the proper allocation descriptor to be used:

Short Allocation Descriptor - For a Logical Volume that resides on a single
Volume with no intent to expand the Logical Volume beyond the single volume
Short Allocation Descriptors should be used. For example a Logical Volume
created for a standalone drive.

NOTE: Refer to section 2.2.2.2 on the MaximumInterchangeLevel.

Long Allocation Descriptor - For a Logical Volume that resides on a single
Logical Volume with intent to later expand the Logical Volume beyond the single
volume, or a Logical Volume that resides on multiple Volumes Long Allocation

UDF 2.01 March50 April61

Descriptors should be used. For example a Logical Volume created for a
jukebox.

NOTE: There is a benefit of using Long Allocation Descriptors even on a single
volume, which is the support of tracking erased extents on rewritable media. See
section 2.3.10.1 for additional information.

For both Short and Long Allocation Descriptors, if the 30 least significant bits of
the ExtentLength field is 0, then the 2 most significant bits shall be 0.

NOTE: For volumes in which a Virtual Partition Map is recorded:

• Allocation Descriptors identifying virtual space shall have an extent length
of theone block size or less. Allocation descriptors identifying file data,
directories, or stream data shall identify physical space. ICBs recorded in
virtual space shall use long_ad allocation descriptors to identify physical
space. The use of short_ad allocation descriptors would identify file data
in virtual space if the ICB were in virtual space.

• Descriptors recorded in virtual space shall have the virtual logical block

number recorded in the Tag Location field.

NOTE: For volumes in which a Metadata Partition Map is recorded:

• Allocation descriptors identifying directory or stream directory data shall
identify metadata space.

• Allocation descriptors identifying file or stream data shall identify physical
space.

• Allocation descriptors recorded in metadata space shall use SHORT_ADs
when identifying extents also in metadata space.

• Allocation descriptors having an extent type of 3 (continuation) shall
identify an extent in the same partition in which the type 3 descriptor itself
is recorded.

• Descriptors recorded in metadata space shall have their metadata space
logical block number recorded in their descriptor tag TagLocation field, if
applicable.

UDF 2.01 March50 April62

2.3.10.1 Long Allocation Descriptor
struct long_ad { /* ECMA 167 4/14.14.2 */
 Uint32 ExtentLength;
 Lb_addr ExtentLocation;
 byte ImplementationUse[6];
}

To allow use of the ImplementationUse field by UDF and also by
implementations the following structure shall be recorded within the 6-byte
Implementation Use field.

struct ADImpUse
{
 Uint16 flags;
 byte impUse[4];
}

/*
 * ADImpUse Flags (NOTE: bits 1-15 reserved for future use by UDF)
*/
#define EXTENTErased (0x01)

In the interests of efficiency on Rewritable media that benefits from
preprocessing, the EXTENTErased flag shall be set to ONE to indicate an erased
extent. This applies only to extents of type not recorded but allocated.

2.3.11 Allocation Extent Descriptor
struct AllocationExtentDescriptor { /* ECMA 167 4/14.5 */
 struct tag DescriptorTag;
 Uint32 PreviousAllocationExtentLocation;
 Uint32 LengthOfAllocationDescriptors;
}

The Allocation Extent Descriptor does not contain the Allocation Descriptors
itself. UDF will interpret ECMA 167, 4/14.5 in such a way that the Allocation
Descriptors will start on the first byte following the
LengthOfAllocationDescriptors field of the Allocation Extent Descriptor. The
Allocation Extent Descriptor together with its Allocation Descriptors constitutes
an extent of allocation descriptors. The length of an extent of allocation
descriptors shall not exceed the logical block size. Unused bytes following the
Allocation Descriptors till the end of the logical block shall have a value of #00.

2.3.11.1 Struct tag DescriptorTag
The DescriptorCRCLength of the DescriptorTag should include the Allocation
Descriptors following the Allocation Extent Descriptor. The
DescriptorCRCLength shall be either 8 or 8 + LengthOfAllocationDescriptors.

UDF 2.01 March50 April63

2.3.11.2 Uint32 PreviousAllocationExtentLocation
 The previous allocation extent location shall not be used.

 Shall be set to 0.

2.3.12 Pathname
2.3.12.1 Path Component

struct PathComponent { /* ECMA 167 4/14.16.1 */
 Uint8 ComponentType;
 Uint8 LengthofComponentIdentifier;
 Uint16 ComponentFileVersionNumber;
 char ComponentIdentifier[];
}

2.3.12.1.1 Uint16 ComponentFileVersionNumber
 There shall be only one version of a file as specified below with the value

being set to ZERO.

 Shall be set to ZERO.

2.4 Part 5 - Record Structure
Record structure files shall not be created. If they are encountered on the media and they
are not supported by the implementation they shall be treated as an uninterpreted stream
of bytes.

UDF 2.01 March50 April64

3. System Dependent Requirements
3.1 Part 1 - General
3.1.1 Timestamp

struct timestamp { /* ECMA 167 1/7.3 */
 Uint16 TypeAndTimezone;
 Uint16Int16 Year;
 Uint8 Month;
 Uint8 Day;
 Uint8 Hour;
 Uint8 Minute;
 Uint8 Second;
 Uint8 Centiseconds;
 Uint8 HundredsofMicroseconds;
 Uint8 Microseconds;
}

3.1.1.1 Uint8 Centiseconds;

 For operating systems that do not support the concept of
centiseconds the implementation shall ignore this field.

 For operating systems that do not support the concept of

centiseconds the implementation shall set this field to ZERO.

3.1.1.2 Uint8 HundredsofMicroseconds;

 For operating systems that do not support the concept of hundreds
of Microseconds the implementation shall ignore this field.

 For operating systems that do not support the concept of a

hundreds of Microseconds the implementation shall set this field to
ZERO.

3.1.1.3 Uint8 Microseconds;

 For operating systems that do not support the concept of
microseconds the implementation shall ignore this field.

 For operating systems that do not support the concept of

microseconds the implementation shall set this field to ZERO.

UDF 2.01 March50 April65

3.2 Part 3 - Volume Structure
3.2.1 Logical Volume Header Descriptor

struct LogicalVolumeHeaderDesc { /* ECMA 167 4/14.15 */
 Uint64 UniqueID,
 bytes reserved[24]
}
This structure is in the LVID Logical Volume Contents Use field.

3.2.1.1 Uint64 UniqueID

This field contains the next Next UniqueID value that should to be used. for the
next new objects in the UDF UniqueID Mapping Data Stream, see 3.3.7.1. The
field Next UniqueID value is initialized to 16, because the value 0 is reserved for
the root directory and itsystem stream directory objects and the values 1-15 are
reserved for use in Macintosh implementations. The Next UniqueID value
monotonically increases with each assignment of a new UDF UniqueID value for
a newly created object as described below. Whenever the lower 32-bits of this the
Next UniqueID value reach #FFFFFFFF, the next increment is performed by
incrementing the upper 32-bits are incremented by 1, as would be expected for a
64-bit value, but the lower 32-bits “wrap” to 16 (the initialization value). This
behavior supports Mac™ OS which uses an ID number space of 16 through 231 - 1
inclusive, and will not cause problems for other platformsAfter such a “wrap”, the
uniqueness of a 32-bits FID UDF UniqueID value can no longer be guaranteed.
Therefore the UDF UniqueID Mapping Data Stream shall be removed altogether
if the value of Next UniqueID is higher than #FFFFFFFF.

UniqueID is used whenever a new file or directory is created, or another name is
linked to an existing file or directory. During a rename or move operation, the FID
UniqueID value of an object shall not be changed and the values in the
corresponding UDF Unique ID Mapping Entry shall remain consistent, see
3.3.7.1.2. The parent references of this mapping entry shall be updated when an
object is moved to a different directory. When a FID is deleted, the mapping entry
corresponding to the now unused UDF Unique ID shall not be re-used but be
deleted or marked invalid. The File Identifier Descriptors and File
Entries/Extended File Entries used for a stream directory and named streams
associated with a file or directory do not use UniqueID; rather, the unique ID
fields in these structures take their value from the UniqueID of the File
Entry/Extended File Entry of the file/directory they are associated with. The same
counts for File Entries/Extended File Entries used to define an Extended
Attributes Space. A parent FID takes its Unique ID value from the 32 lower bits
of the File Entry/Extended File Entry that is identified by the parent FID.
FIDs and File Entries of the System Stream Directory and of streams associated
with the System Stream Directory shall use a UniqueID value of zero.

When a file or directory is created, this UniqueID is assigned to the UniqueID
field of the File Entry/Extended File Entry, the lower 32-bits of UniqueID are

UDF 2.01 March50 April66

assigned to UDFUniqueID in the Implementation Use bytes of the ICB field in the
File Identifier Descriptor (see 2.3.4.32.3.4.3), and UniqueID is incremented by the
policy described above.

When a name is linked to an existing file or directory, the lower 32-bits of
NextUniqueID are assigned to UDFUniqueID in the Implementation Use bytes of
the ICB field in the File Identifier Descriptor (see 2.3.4.32.3.4.3), and UniqueID is
incremented by the policy described above.

The lower 32-bits shall be the same in the File Entry/Extended File Entry and its
first File Identifier Descriptor, but they shall differ in subsequent FIDs.

All UDF implementations shall maintain the UDFUniqueID in the FID and
UniqueID in the FE/EFE as described in this section. The LVHD in a closed
Logical Volume Integrity Descriptor shall have a valid UniqueID.

For file systems using a VAT, the function of the LVHD UniqueID field in the
LVID is taken over by the VAT ICB File Entry UniqueID field with the addition
that the first UniqueID value to be used for newly created objects will be the VAT
ICB UniqueID value incremented once according to the incrementing policy
described for Next UniqueID above in this section. In this way, no other object
will have the same UniqueID value as the VAT File Entry.

UDF 2.01 March50 April67

3.3 Part 4 - File System
3.3.1 File Identifier Descriptor

struct FileIdentifierDescriptor { /* ECMA 167 4/14.4 */
 struct tag DescriptorTag;
 Uint16 FileVersionNumber;
 Uint8 FileCharacteristics;
 Uint8 LengthofFileIdentifier;
 struct long_ad ICB;
 Uint16 LengthofImplementationUse;
 byte ImplementationUse[];
 char FileIdentifier[];
 byte Padding[];
}

3.3.1.1 Uint8 FileCharacteristics
The following sections describe the usage of the FileCharacteristics under various
operating systems.

3.3.1.1.1 MS-DOS, OS/2, Windows 95, Windows NT, Macintosh
 If Bit 0 is set to ONE, the file shall be considered a "hidden" file.

 If Bit 1 is set to ONE, the file shall be considered a "directory."
 If Bit 2 is set to ONE, the file shall be considered "deleted."

 If Bit 3 is set to ONE, the ICB field within the associated FileIdentifier
structure shall be considered as identifying the "parent" directory of the
directory that this descriptor is recorded in

 If the file is designated as a "hidden" file, Bit 0 shall be set to ONE.

 If the file is designated as a "directory," Bit 1 shall be set to ONE.
 If the file is designated as "deleted," Bit 2 shall be set to ONE.

3.3.1.1.2 UNIX and OS/400

Under UNIX and OS/400 these bits shall be processed the same as
specified in 3.3.1.1.1., except for hidden files which will be processed as
normal non-hidden files.

UDF 2.01 March50 April68

3.3.2 ICB Tag
struct icbtag { /* ECMA 167 4/14.6 */
 Uint32 PriorRecordedNumberofDirectEntries;
 Uint16 StrategyType;
 byte StrategyParameter[2];
 Uint16 MaximumNumberofEntries;
 byte Reserved;
 Uint8 FileType;
 Lb_addr ParentICBLocation;
 Uint16 Flags;
}

3.3.2.1 Uint16 Flags

3.3.2.1.1 MS-DOS, OS/2, Windows 95, Windows NT

Bits 6 & 7 (Setuid & Setgid):
 Ignored.

 In the interests of maintaining security under environments which do

support these bits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true :

• A file is created.

• The attributes/permissions associated with a file, are modified .

• A file is written to (the contents of the data associated with a file

are modified).

• An Extended Attribute associated with the file is modified.

• A stream associated with a file is modified.

Bit 8 (Sticky):

 Ignored.

 Shall be set to ZERO.

Bit 10 (System):

 Mapped to the MS-DOS / OS/2 system bit.

 Mapped from the MS-DOS / OS/2 system bit.

UDF 2.01 March50 April69

3.3.2.1.2 Macintosh

Bits 6 & 7 (Setuid & Setgid):
 Ignored.

 In the interests of maintaining security under environments, which do

support these bits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true:

• A file is created.

• The attributes/permissions associated with a file, are modified.

• A file is written to (the contents of the data associated with a file

are modified).

• An Extended Attribute associated with the file is modified.

• A stream associated with a file is modified.

Bit 8 (Sticky):

 Ignored.

 Shall be set to ZERO.

Bit 10 (System):

 Ignored.

 Shall be set to ZERO.

3.3.2.1.3 UNIX
Bits 6, 7 & 8 (Setuid, Setgid, Sticky):
These bits are mapped to/from the corresponding standard UNIX file system bits.

Bit 10 (System):

 Ignored.

 Shall be set to ZERO upon file creation only, otherwise maintained.

3.3.2.1.4 OS/400
Bits 6 & 7 (Setuid & Setgid):

 Ignored.

UDF 2.01 March50 April70

 In the interests of maintaining security under environments, which do
support these bits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true:

• A file is created.

• The attributes/permissions associated with a file, are modified.

• A file is written to (the contents of the data associated with a file

are modified).

• An Extended Attribute associated with the file is modified.

• A stream associated with a file is modified.

Bit 8 (Sticky):

 Ignored.

 Shall be set to ZERO.

Bit 10 (System):

 Ignored.

 Shall be set to ZERO upon file creation only, otherwise maintained.

UDF 2.01 March50 April71

3.3.3 File Entry
struct FileEntry { /* ECMA 167 4/14.9 */
 struct tag DescriptorTag;
 struct icbtag ICBTag;
 Uint32 Uid;
 Uint32 Gid;
 Uint32 Permissions;
 Uint16 FileLinkCount;
 Uint8 RecordFormat;
 Uint8 RecordDisplayAttributes;
 Uint32 RecordLength;
 Uint64 InformationLength;
 Uint64 LogicalBlocksRecorded;
 struct timestamp AccessTime;
 struct timestamp ModificationTime;
 struct timestamp AttributeTime;
 Uint32 Checkpoint;
 struct long_ad ExtendedAttributeICB;
 struct EntityID ImplementationIdentifier;
 Uint64 UniqueID,
 Uint32 LengthofExtendedAttributes;
 Uint32 LengthofAllocationDescriptors;
 byte ExtendedAttributes[];
 byte AllocationDescriptors[];
}

NOTE: The total length of a FileEntry shall not exceed the size of one logical
block.

3.3.3.1 Uint32 Uid
 For operating systems that do not support the concept of a user identifier

the implementation shall ignore this field. For operating systems that do
support this field a value of 232 - 1 shall indicate an invalid UID, otherwise
the field contains a valid user identifier.

 For operating systems that do not support the concept of a user identifier

the implementation shall set this field to 232 - 1 to indicate an invalid UID,
unless otherwise specified by the user.

3.3.3.2 Uint32 Gid

 For operating systems that do not support the concept of a group identifier
the implementation shall ignore this field. For operating systems that do
support this field a value of 232 - 1 shall indicate an invalid GID, otherwise
the field contains a valid group identifier.

UDF 2.01 March50 April72

 For operating systems that do not support the concept of a group identifier
the implementation shall set this field to 232 - 1 to indicate an invalid GID,
unless otherwise specified by the user.

3.3.3.3 Uint32 Permissions

/* Definitions: */
/* Bit for a File for a Directory */
/* ------- ------------------------ ---------------------------- */
/* Execute May execute file May search directory */
/* Write May change file contents May create and delete files */
/* Read May examine file contents May list files in directory */
/* ChAttr May change file attributes May change dir attributes */
/* Delete May delete file May delete directory */

#define OTHER_Execute 0x00000001
#define OTHER_Write 0x00000002
#define OTHER_Read 0x00000004
#define OTHER_ChAttr 0x00000008
#define OTHER_Delete 0x00000010

#define GROUP_Execute 0x00000020
#define GROUP_Write 0x00000040
#define GROUP_Read 0x00000080
#define GROUP_ChAttr 0x00000100
#define GROUP_Delete 0x00000200

#define OWNER_Execute 0x00000400
#define OWNER_Write 0x00000800
#define OWNER_Read 0x00001000
#define OWNER_ChAttr 0x00002000
#define OWNER_Delete 0x00004000

The concept of permissions that deals with security is not completely portable
between operating systems. This document attempts to maintain consistency
among implementations in processing the permission bits by addressing the
following basic issues:

1. How should an implementation handle Owner, Group and Other
permissions when the operating system has no concept of User and
Group Ids?

2. How should an implementation process permission bits when
encountered, specifically permission bits that do not directly map to an
operating system supported permission bit?

3. What default values should be used for permission bits that do not
directly map to an operating system supported permission bit when
creating a new file?

Owner, Group and Other
In general, for operating systems that do not support User and Group Ids the
following algorithm should be used when processing permission bits:

When reading a specific permission, the logical OR of all three (owner,
group, other) permissions should be the value checked. For example a file

UDF 2.01 March50 April73

would be considered writable if the logical OR of OWNER_Write,
GROUP_Write and OTHER_Write was equal to one.

When setting a specific permission the implementation should set all three
(owner, group, other) sets of permission bits. For example to mark a file
as writable the OWNER_Write, GROUP_Write and OTHER_Write
should all be set to one.

Default Permission Values
For the operating systems covered by this document the following table describes
what default values should be used for permission bits that do not directly map to
an operating system supported permission bit when creating a new file.

Permissio
n

File/Director
y

Description DOS OS/2 Win
95

Win
NT

Mac
OS

UNIX &
OS/400

Read file The file may be read 1 1 1 1 1 U
Read directory The directory may be read, only if the

directory is also marked as Execute.
1 1 1 1 1 U

Write file The file’s contents may be modified U U U U U U
Write directory Files or subdirectories may be renamed,

added, or deleted, only if the directory is also
marked as Execute.

U U U U U U

Execute file The file may be executed. 0 0 0 0 0 U
Execute directory The directory may be searched for a specific

file or subdirectory.
1 1 1 1 1 U

Attribute file The file’s permissions may be changed. 1 1 1 1 1 Note 1
Attribute directory The directory’s permissions may be changed. 1 1 1 1 1 Note 1
Delete file The file may be deleted. Note 2 Note 2 Note

2
Note 2 Note 2 Note 2

Delete directory The directory may be deleted. Note 2 Note 2 Note
2

Note 2 Note 2 Note 2

U - User Specified, 1 - Set, 0 - Clear

NOTE 1: Under UNIX only the owner of a file/directory may change its
attributes. Under OS/400 if a file or directory is marked as writable (Write
permission set) then the Attribute permission bit should be set.

NOTE 2: The Delete permission bit should be set based upon the status of the
Write permission bit. Under DOS, OS/2 and Macintosh, if a file or directory is
marked as writable (Write permission set) then the file is considered deletable and
the Delete permission bit should be set. If a file is read only then the Delete
permission bit should not be set. This applies to file create as well as changing
attributes of a file.

Processing Permissions
Implementation shall process the permission bits according to the following table
that describes how to process the permission bits under the operating systems
covered by this document. The table addresses the issues associated with
permission bits that do not directly map to an operating system supported
permission bit.

UDF 2.01 March50 April74

Permission File/Directory Description DOS OS/2 Win

95
Win
NT

Mac
OS

UNIX OS/400

Read file The file may be read E E E E E E E
Read directory The directory may be read E E E E I E E
Write file The file’s contents may be modified E E E E E E E
Write directory Files or subdirectories may be created,

deleted or renamed
E E E E E E E

Execute file The file may be executed. I I I I I E I
Execute directory The directory may be searched for a

specific file or subdirectory.
E E E E E E E

Attribute file The file’s permissions may be
changed.

E E E E E I I

Attribute directory The directory’s permissions may be
changed.

E E E E E I I

Delete file The file may be deleted. E E E E E I I
Delete directory The directory may be deleted. E E E E E I I
E - Enforce, I - Ignore

The Execute bit for a directory, sometimes referred to as the search bit, has special
meaning. This bit enables a directory to be searched, but not have its contents
listed. For example assume a directory called PRIVATE exists which only has the
Execute permission and does not have the Read permission bit set. The contents
of the directory PRIVATE can not be listed. Assume there is a file within the
PRIVATE directory called README. The user can get access to the README
file since the PRIVATE directory is searchable.

To be able to list the contents of a directory both the Read and Execute permission
bits must be set for the directory. To be able to create, delete and rename a file or
subdirectory both the Write and Execute permission bits must be set for the
directory. To get a better understanding of the Execute bit for a directory reference
any UNIX book that covers file and directory permissions. The rules defined by
the Execute bit for a directory shall be enforced by all implementations. The
exception to this rule applies to Macintosh implementations. A Macintosh
implementation may ignore the status of the Read bit in determining the
accessibility of a directory

NOTE: To be able to delete a file or subdirectory the Delete permission bit for
the file or subdirectory must be set, and both the Write and Execute permission
bits must be set for the directory it occupies.

3.3.3.4 Uint64 UniqueID

NOTE: For some operating systems (i.e. Macintosh) this value needs to be less
than the max value of a Int32 (231 - 1). Under the Macintosh operating system this
value is used to represent the Macintosh directory/file ID. Therefore an
implementation should attempt to keep this value less than the max value of a
Int32 (231 - 1). The values 1-15 shall be reserved for the use of Macintosh
implementations.

UDF 2.01 March50 April75

3.3.3.5 byte Extended Attributes
 Section 3.2.1 describes how the value for this field is set. For file systems using a
VAT, the function of the LVHD UniqueID field in the LVID is taken over by the
VAT File Entry UniqueID field, see 3.2.1.1.

NOTE: For UDF 2.00 and higher, the Unique ID value used in the UDF Unique
ID Mapping Data is taken from the File Identifier Descriptor rather than from the
File Entry.

3.3.3.5 byte ExtendedAttributes[]
Certain extended attributes should be recorded in this field of the FileEntry for
performance reasons. Other extended attributes should be recorded in an ICB
pointed to by the field ExtendedAttributeICB. In the section on Extended
Attributes it will be specified which extended attributes should be recorded in this
field.

3.3.4 Extended Attributes

In order to handle some of the longer Extended Attributes (EAs) that may vary in
length, the following rules apply to the EA space.

1. All EAs with an attribute length greater than or equal to a logical block shall

be block aligned by starting and ending on a logical block boundary. The one
and only exception to this rule is the start of the first ECMA 167 EA.

2. Smaller EAs shall be constrained to an attribute length that is a multiple of 4
bytes.

3. Each Extended Attributes Space shall appear as a single contiguous logical
space constructed as follows:

ECMA 167 EAs
Non block aligned Implementation Use EAs
Block aligned Implementation Use EAs
Application Use EAs

NOTE: There may exist 2 Extended Attributes Spaces per file, one embeded in
the File Entry or Extended File Entry and the other as a separate space referenced
by the Extended Attribute ICB address in the File Entry or Extended File Entry.
Each Extended Attributes Space, if present, must have its own Extended Attribute
Header Descriptor (see the next section).

UDF 2.01 March50 April76

3.3.4.1 Extended Attribute Header Descriptor
struct ExtendedAttributeHeaderDescriptor { /* ECMA 167 4/14.10.1 */
 struct tag DescriptorTag;
 Uint32 ImplementationAttributesLocation;
 Uint32 ApplicationAttributesLocation;
}

 A value in one of the location fields highlighted above equal to or
greater than the length of the EA space shall be interpreted as an indication
that the corresponding attribute does not exist.

 If an attribute associated with one of the location fields
highlighted above does not exist, then the value of the corresponding
location field shall be set to #FFFFFFFF.

3.3.4.2 Alternate Permissions

struct AlternatePermissionsExtendedAttribute { /* ECMA 167 4/14.10.4 */
 Uint32 AttributeType;
 Uint8 AttributeSubtype;
 byte Reserved[3];
 Uint32 AttributeLength;
 Uint16 OwnerIdentification;
 Uint16 GroupIdentification;
 Uint16 Permission;
}

This structure shall not be recorded.

3.3.4.3 File Times Extended Attribute
struct FileTimesExtendedAttribute { /* ECMA 167 4/14.10.5 */
 Uint32 AttributeType;
 Uint8 AttributeSubtype;
 byte Reserved[3];
 Uint32 AttributeLength;
 Uint32 DataLength;
 Uint32 FileTimeExistence;
 byte FileTimes;
}

3.3.4.3.1 byte FileTimes

 If this field contains a file creation time it shall be interpreted as
the creation time of the associated file. If the main File Entry is an
Extended File Entry, the file creation time in this structure shall be

UDF 2.01 March50 April77

ignored and the file creation time from the main File Entry shall be
used.

 If the main File Entry is an Extended File Entry, this structure shall

not be recorded with a file creation time.

If the main File Entry is not an Extended File Entry and the File Times
Extended Attribute does not exist or does not contain the file creation time
then an implementation shall use the Modification Time field of the File
Entry to represent the file creation time.

3.3.4.4 Device Specification Extended Attribute

struct DeviceSpecificationExtendedAttribute { /* ECMA 167 4/14.10.7 */
 Uint32 AttributeType;
 Uint8 AttributeSubtype;
 byte Reserved[3];
 Uint32 AttributeLength;
 Uint32 ImplementationUseLength; /* (=IU_L) */
 Uint32 MajorDeviceIdentification;
 Uint32 MinorDeviceIdentification;
 byte ImplementationUse[IU_L];
}

The following paradigm shall be followed by an implementation that creates a
Device Specification Extended Attribute associated with a file :

If and only if a file has a DeviceSpecificationExtendedAttribute associated
with it, the contents of the FileType field in the icbtag structure shall be set
to 6 (indicating a block special device file), OR 7 (indicating a character
special device file).

If the contents of the FileType field in the icbtag structure do not equal 6
or 7, the DeviceSpecificationExtendedAttribute associated with a file shall
be ignored.

In the event that the contents of the FileType field in the icbtag structure
equals 6 or 7, and the file does not have a
DeviceSpecificationExtendedAttribute associated with it, access to the file
shall be denied.

For operating system environments that do not provide for the semantics
associated with a block special device file, requests to
open/read/write/close a file that has the
DeviceSpecificationExtendedAttribute associated with it shall be denied.

UDF 2.01 March50 April78

All implementations shall record a developer IDAs the first structure in the
ImplementationUse field that, an EntityID shall be recorded by all
implementations. This EntityID uniquely identifies the current
implementation. by a Developer ID, see 2.1.5.

3.3.4.5 Implementation Use Extended Attribute
struct ImplementationUseExtendedAttribute { /* ECMA 167 4/14.10.8 */
 Uint32 AttributeType;
 Uint8 AttributeSubtype;
 byte Reserved[3];
 Uint32 AttributeLength;
 Uint32 ImplementationUseLength; /* (=IU_L) */
 struct EntityID ImplementationIdentifier;
 byte ImplementationUse[IU_L];
}

The AttributeLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Implementation Use
Extended Attribute the Attribute Length field should be large enough to leave
padding space between the end of the Implementation Use field and the end of the
Implementation Use Extended Attribute.

The following sections describe how the Implementation Use Extended Attribute
is used under various operating systems to store operating system specific
extended attributes.

The structures defined in the following sections contain a header checksum field.
This field represents a 16-bit checksum of the Implementation Use Extended
Attribute header. The fields AttributeType through ImplementationIdentifier
inclusively represent the data covered by the checksum. The header checksum
field is used to aid in disaster recovery of the extended attributes space. C source
code for the header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended
attributes encountered on the media. Implementations shall create and support the
extended attributes for the operating system they currently support. For example,
a Macintosh implementation shall preserve any OS/2 extended attributes
encountered on the media. It shall also create and support all Macintosh extended
attributes specified in this document.

3.3.4.5.1 All Operating Systems

UDF 2.01 March50 April79

3.3.4.5.1.1 FreeEASpace
This extended attribute shall be used to indicate unused space within the
Extended Attributes Space. This extended attributes shall be stored as an
Implementation Use Extended Attribute whose ImplementationIdentifier
shall be set to:
 "*UDF FreeEASpace"

The ImplementationUse area for this extended attribute shall be structured
as follows:

FreeEASpace format

RBP Length Name Contents
0 2 Header Checksum Uint16
2 IU_L-2 Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total
size of other extended attributes without rewriting the complete Extended
Attributes Space. The FreeEASpace extended attribute may be
overwritten and the space re-used by any implementation that sees a need
to overwrite it.

3.3.4.5.1.2 DVD Copyright Management Information

This extended attribute shall be used to store DVD Copyright Management
Information. This extended attribute shall be stored as an Implementation
Use Extended Attribute whose ImplementationIdentifier shall be set to:
 "*UDF DVD CGMS Info"

The ImplementationUse area for this extended attribute shall be structured
as follows:

DVD CGMS Info format

RBP Length Name Contents
0 2 Header Checksum Uint16
2 1 CGMS Information byte
3 1 Data Structure Type Uint8
4 4 Protection System Information bytes

This extended attribute allows DVD Copyright Management Information
to be stored. The interpretation of this format shall be defined in the DVD
specification published by the DVD Consortium (Format/Logo Licensing
Corporation, see 6.9.3). 6.9.3. Support for this extended attribute is
optional.

UDF 2.01 March50 April80

3.3.4.5.2 MS-DOS, Windows 95, Windows NT
 Ignored.

 Not supported. Extended attributes for existing files on the media shall be

preserved.

3.3.4.5.3 OS/2
OS/2 supports an unlimited number of extended attributes, which shall be stored
as a named stream as defined in 3.3.8.23.3.8.2. To enhance performance the
following Implementation Use Extended Attribute will be created.

3.3.4.5.3.1 OS2EALength
This attribute specifies the OS/2 Extended Attribute Stream
(3.3.8.23.3.8.2) information length. Since this value needs to be reported
back to OS/2 under certain directory operations, for performance reasons it
should be recorded in the ExtendedAttributes field of the FileEntry. This
extended attribute shall be stored as an Implementation Use Extended
Attribute whose ImplementationIdentifier shall be set to:
 "*UDF OS/2 EALength"

The ImplementationUse area for this extended attribute shall be structured
as follows:

OS2EALength format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 4 OS/2 Extended Attribute Length Uint32

The value recorded in the OS2ExtendedAttributeLength field shall be
equal to the InformationLength field of the file entry for the OS2EA
stream.

3.3.4.5.4 Macintosh OS

The Macintosh OS requires the use of the following extended attributes.

3.3.4.5.4.1 MacVolumeInfo
This extended attribute contains Macintosh volume information which
shall be stored as an Implementation Use Extended Attribute whose
ImplementationIdentifier shall be set to:
 "*UDF Mac VolumeInfo"

The ImplementationUse area for this extended attribute shall be structured
as follows:

UDF 2.01 March50 April81

MacVolumeInfo format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 12 Last Modification Date timestamp

14 12 Last Backup Date timestamp
26 32 Volume Finder Information Uint32

The MacVolumeInfo extended attribute shall be recorded as an extended
attribute of the root directory FileEntry.

3.3.4.5.4.2 MacFinderInfo

This extended attribute contains Macintosh Finder information for the
associated file or directory. Since this information is accessed frequently,
for performance reasons it should be recorded in the ExtendedAttributes
field of the FileEntry.

The MacFinderInfo extended attribute shall be stored as an
Implementation Use Extended Attribute whose ImplementationIdentifier
shall be set to:
 "*UDF Mac FinderInfo"

The ImplementationUse area for this extended attribute shall be structured
as follows:

MacFinderInfo format for a directory
RBP Length Name Contents

0 2 Header Checksum Uint16
2 2 Reserved for padding Uint16 = 0
4 4 Parent Directory ID Uint32
8 16 Directory Information UDFDInfo

24 16 Directory Extended Information UDFDXInfo

MacFinderInfo format for a file
RBP Length Name Contents

0 2 Header Checksum Uint16
2 2 Reserved for padding Uint16 = 0
4 4 Parent Directory ID Uint32
8 16 File Information UDFFInfo

24 16 File Extended Information UDFFXInfo
40 4 Resource Fork Data Length Uint32
44 4 Resource Fork Allocated Length Uint32

The MacFinderInfo extended attribute shall be recorded as an extended
attribute of every file and directory within the Logical Volume.

UDF 2.01 March50 April82

The following structures used within the MacFinderInfo structure are
listed below for clarity. For complete information on these structures refer
to the Macintosh books called “Inside Macintosh”. The volume and page
number listed with each structure correspond to a specific “Inside
Macintosh” volume and page.

UDFPoint format (Volume I, page 139)
RBP Length Name Contents

0 2 V Int16
2 2 H Int16

UDFRect format (Volume I, page 141)

RBP Length Name Contents
0 2 Top Int16
2 2 Left Int16
4 2 Bottom Int16
6 2 Right Int16

UDFDInfo format (Volume IV, page 105)

RBP Length Name Contents
0 8 FrRect UDFRect
8 2 FrFlags Int16

10 4 FrLocation UDFPoint
14 2 FrView Int16

UDFDXInfo format (Volume IV, page 106)

RBP Length Name Contents
0 4 FrScroll UDFPoint
4 4 FrOpenChain Int32
8 1 FrScript Uint8
9 1 FrXflags Uint8

10 2 FrComment Int16
12 4 FrPutAway Int32

UDFFInfo format (Volume II, page 84)

RBP Length Name Contents
0 4 FdType Uint32
4 4 FdCreator Uint32
8 2 FdFlags Uint16

10 4 FdLocation UDFPoint
14 2 FdFldr Int16

UDF 2.01 March50 April83

UDFFXInfo format (Volume IV, page 105)
RBP Length Name Contents

0 2 FdIconID Int16
2 6 FdUnused bytes
8 1 FdScript Int8
9 1 FdXFlags Int8

10 2 FdComment Int16
12 4 FdPutAway Int32

NOTE: The above-mentioned structures have their original Macintosh
names preceded by “UDF” to indicate that they are actually different from
the original Macintosh structures. On the media the UDF structures are
stored little endian as opposed to the original Macintosh structures that are
in big endian format.

3.3.4.5.5 UNIX

 Ignored.

 Not supported. Extended attributes for existing files on the media

shall be preserved.

3.3.4.5.6 OS/400
OS/400 requires the use of the following extended attributes.

3.3.4.5.6.1 OS400DirInfo

This attribute specifies the OS/400 extended directory information. Since
this value needs to be reported back to OS/400 for normal directory
information processing, for performance reasons it should be recorded in
the ExtendedAttributes field of the FileEntry. This extended attribute shall
be stored as an Implementation Use Extended Attribute whose
ImplementationIdentifier shall be set to:

 “*UDF OS/400 DirInfo”.

The ImplementationUse area for this extended attribute shall be structured
as follows:

OS400DirInfo format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 2 Reserved for padding Uint16 = 0
4 44 DirectoryInfo bytes

For complete information on the structure of the DirectoryInfo field
recorded in the OS400DirInfo format, refer to the following IBM
document:

UDF 2.01 March50 April84

IBM OS/400 UDF Implementation
Optical Storage Solutions, Department HTT
IBM
Rochester, Minnesota

3.3.4.6 Application Use Extended Attribute

struct ApplicationUseExtendedAttribute { /* ECMA 167 4/14.10.9 */
 Uint32 AttributeType; /* = 65536 */
 Uint8 AttributeSubtype;
 byte Reserved[3];
 Uint32 AttributeLength;
 Uint32 ApplicationUseLength; /* (=AU_L) */
 struct EntityID ApplicationIdentifier;
 byte ApplicationUse[AU_L];
}

The AttributeLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Application Use Extended
Attribute the Attribute Length field should be large enough to leave padding space
between the end of the ApplicationUse field and the end of the Application Use
Extended Attribute.

The structures defined in the following section contain a header checksum field.
This field represents a 16-bit checksum of the Application Use Extended Attribute
header. The fields AttributeType through ApplicationIdentifier inclusively
represent the data covered by the checksum. The header checksum field is used to
aid in disaster recovery of the extended attributes space. C source code for the
header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended
attributes encountered on the media. Implementations shall create and support the
extended attributes for the operating system they currently support. For example,
a Macintosh implementation shall preserve any OS/2 extended attributes
encountered on the media. It shall also create and support all Macintosh extended
attributes specified in this document.

3.3.4.6.1 All Operating Systems

3.3.4.6.1.1 FreeAppEASpace
This extended attribute shall be used to indicate unused space within the
Extended Attributes Space reserved for Application Use Extended
Attributes. This extended attribute shall be stored as an Application Use
Extended Attribute whose ApplicationIdentifier shall be set to:
 “*UDF FreeAppEASpace”

UDF 2.01 March50 April85

The ApplicationUse area for this extended attribute shall be structured as
follows:

FreeAppEASpace format

RBP Length Name Contents
0 2 Header Checksum Uint16
2 IU_L-2 Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total
size of other extended attributes without rewriting the complete Extended
Attributes Space. The FreeAppEASpace extended attribute may be
overwritten and the space re-used by any implementation who sees a need
to overwrite it.

3.3.5 Named Streams
Named streams provide a mechanism for associating related data of a file. It is similar in
concept to extended attributes. However, named streams have significant advantages
over extended attributes. They are not as limited in length. Space management is much
easier as each stream has its own space, rather than the common space of extended
attributes. Finding a particular stream does not involve searching the entire data space, as
it does for extended attributes.

Named streams are mainly intended for user data. For example, a database application
may store the records in the default or mainstream and indices in named streams. The
user would then see only one file for the database rather than many, and the application
can use the various streams almost as if they were independent files.

Named Streams are identified by an Extended File Entry. Extended File Entries are
required for files with associated named streams. Files without named streams should use
Extended File Entries. Files may have normal File Entries; normal File Entries would be
used where backward compatibility is desired, such as writing DVD Video discs.

There is a “System Stream Directory” which is the stream directory identified by the File
Set Descriptor. These streams are used to describe data related to the entire medium
instead of data that relates to a file. UDF defines several “system streams” that are to be
identified by the system stream directory.

The parent of the System Stream Directory shall be the system stream directory.

It is recommended that Named Streams be used to store metadata and application data
instead of Extended Attributes in new implementations.

UDF 2.01 March50 April86

3.3.5.1 Named Streams Restrictions
ECMA 167 3rd edition defines a new File Entry that contains a field for identifying a
stream directory. This new File Entry should be used in place of the old File Entry, and
should be used for describing the streams themselves. Old and new file entries may be
freely mixed. In particular, compatibility with old reader implementations can be
maintained for certain files.

Restrictions:

The stream directory ICB field of ICBs describing stream directories or named streams
shall be set to zero. [no hierarchical streams]

Each named stream shall be identified by exactly one FID in exactly one Stream
Directory. [no hard links among named streams or files and named streams]

Each Stream Directory ICB shall be identified by exactly one Stream Directory ICB field.
[no hard links to stream directories]. The sole exception is that the parent of the system
stream directory shall be the system stream directory.

Hard Links to files with named streams are allowed.

Named Streams and Stream Directories shall not have Extended Attributes.

The Section 3.2.1.1 describes how the Unique ID fieldfields of File Identifier Descriptors
and File Entries/Extended File Entries defining Named Streams and Stream Directories
shall be the same as the Unique ID of the main data streamare set.

The UID, GID, and permissions fields of the main File Entry shall apply to all named
streams associated with the main stream. At the time of creation of a named stream the
values of the UID, GID and permissions fields of the main file entry should be used as the
default values for the corresponding fields of the named stream. Implementations are not
required to maintain or check these fields in a named stream.

Implementations should not present streams marked with the metadata bit set in the FID
to the user. Streams marked with the metadata bit are intended solely for the use of the
file system implementation.

The parent entry FID in a stream directory points to the main Extended File Entry, so its
reference must be counted in the Link Count field of the Extended File Entry. The sole
exception is that the parent of the system stream directory shall be the system stream
directory.

NoteNOTE: There is a potential pitfall when deleting files/directories: if the link count
goes to one when a FID is deleted, implementations must check for the presence of a

UDF 2.01 March50 April87

stream directory. If present, there are no more FIDs pointing to this File Entry, so it and
all associated structures must be deleted.

The modification time field of the main Extended File Entry should be updated whenever
any associated named stream is modified. The Access Time field of the main Extended
File Entry should be updated whenever any associated named stream is accessed. The
SETUID and SETGID bits of the ICB Tag flags field in the main Extended File Entry
should be cleared whenever any associated named stream is modified.

The ICB for a Named Stream directory shall have a file type of 13. All named streams
shall have a file type of 5.

All systems shall make the main data stream available, even on implementations that do
not implement named streams.

3.3.5.2 SystemUDF Defined Named Streams (Metadata)
A set of named streams is defined by UDF for file system use. Some UDF named
streams are identified by the File Set Descriptor (System Stream Directory) and apply to
the entire file set (System Stream Directory). . These are called UDF Defined System
Streams and are defined in section 3.3.7. Others pertain to individual files or directories
and are identified by the streamStream Directory of that particular file or directory. These
are called UDF Defined Non-System Streams and are defined in 3.3.8.

UDF 2.01 March50 April88

All UDF named streamsDefined Named Streams shall have the Metadata bit set in the
File Identifier Descriptor in the Stream Directory, unless otherwise specified in this
document. All streams not generated by the file system implementation shall have this bit
set to zero.

All UDF named streams shall have a file type of 5 in the ICB identifying the stream.

The four characters *UDF are the first four characters of all UDF defined named streams
in this document. Implementations shall not use any identifier beginning with *UDF for
named streams that are not defined in this document. All identifiers for named streams
beginning with *UDF are reserved for future definition by OSTA.

3.3.6 Extended Attributes as named streams
An extended attribute may be recorded as a named stream instead. The extended attribute
is converted according to the following rules:

The stream is marked as a Metadata stream.

The EA header and Header Checksum are not recorded. If the EA included pad bytes
between the Header Checksum and the remaining data, these are also not recorded.
Any extended attribute of a file or directory can be converted to a stream of the same file
or directory by the following algorithm:

1. Create a stream for the file or directory containing the extended attribute. The
identifier specified for the Entity Identifier becomes the stream name.

2. Copy the data of the extended attribute into the stream.
3. Delete the extended attribute.

NOTE: Because conversion of some types of Extended Attributes to a named stream
appeared to be impossible and because it was never intended to allow automatic
conversion of any EA to a named stream, this section is amended for UDF revisions after
UDF 2.01. Conversion of any EA to a named stream is not allowed.

3.3.7 UDF Defined System Streams
This section contains the definition of UDF defined system streams.

Stream Name Stream Location Metadata Flag
“*UDF Unique ID Mapping Data” System Stream Directory (File Set Descriptor) 1
“*UDF Non-Allocatable Space” System Stream Directory (File Set Descriptor) 1
“*UDF Power Cal Table” System Stream Directory (File Set Descriptor) 1
“*UDF Backup” System Stream Directory (File Set Descriptor) 1

UDF 2.01 March50 April89

Since the streams listed above have the Metadata flag set, the implementation shall not
pass the name of the stream across the “plug-in file system interface” of a platform.

3.3.7.1 UniqueUnique ID Mapping Data Stream
The Unique ID Mapping Data allows an implementation to go directly to the ICB
hierarchy for the file/directory associated with a UDFUniqueUDF Unique ID, or to the
ICB hierarchy for the directory whichthat contains the file/directory associated with the
UDFUniqueID. UDF Unique ID. Note that for UDF release 2.00 and higher the UDF
Unique ID value used for this purpose is taken from the File Identifier Descriptor rather
than from the File Entry.

Unique ID Mapping Data is stored as a named stream of the System Stream Directory
(associated with the File Set Descriptor). The name of this stream shall be set to:

 “*UDF Unique ID Mapping Data”

The Metadata bit in the File Characteristics field of the File Identifier Descriptor for the
stream shall be set to 1 to indicate that the existence of this filestream should not be made
known to clients of a platform’s file system interface.

Rules for the presence and consistency of the Unique ID Mapping Data Stream:

• Shall be created for read-only media
• Shall be created by implementations whichwith batch write (e.g., pre-mastering tools)

a volume on write-once and rewritable media

For implementations which perform incremental updates of volumes on write-once or
rewritable media (e.g., on-line file systems), the following rules apply:

• May be created and maintained if not present
• Shall be maintained if present and volume is clean
• Should be repaired and maintained, but may be deleted, if present and volume is dirty

For these rules, a volume is clean if either a valid Close Logical Volume Integrity
Descriptor or a valid Virtual Allocation Table is recorded.

3.3.7.1.1 UDF Unique ID Mapping Data
The contents of the Unique ID Mapping streamStream are described by the tabletables
“UDF Unique ID Mapping Data” whichand “UDF Unique ID Mapping Entry”. The
mapping data contains some header fields before an array of “UDF Unique ID Mapping
Entry.” mapping entries. The fields of these structures are described below their
corresponding table.

UDF 2.01 March50 April90

UDF Unique ID Mapping Data
RBP Length Name Contents

0 32 Implementation Identifier EntityID
32 4 Flags Uint32
36 4 Mapping Entry Count (=MEC) Uint32
40 8 Reserved Bytes (= #00)
48 16*MEC Mapping Entries IDMappingEntry

Implementation Identifier is described in section 2.1.5.

Flags are defined as follows:

Bit 0, If
Bit 0

Index Bit

Bits 1 – 31 Reserved, shall be set to ZERO

Index Bit set to ONE, shall mean is called Index Mode. In Index Mode, the UDF
Unique ID, once decremented by 16 (the value NextUniqueID is initialized to),
can be used as an index into the array Mapping Entries. Blank entries, if present,
are all beyond the last array element with a UDF Unique ID.

Bits 1 – 31, reserved, shall be set to ZERO.

Mapping Entry Count is the size, in entries, of the array Mapping Entries.

Mapping Entries is an array of UDF Unique ID Mapping Entry structures. There is one
mapping entry for every non-stream, non-parent File Identifier Descriptor. Whenever the
volume is consistent, the array is always sorted in ascending order of UDF Unique ID.
Except as limited by the flags, blank entries are allowed anywhere in the array, and
entries are not required to have a UDF Unique ID value of one more than the preceding
entry. A blank entry has a value of ZERO in all fields.

3.3.7.1.2 UDF Unique ID Mapping Entry

UDF Unique ID Mapping Entry
RBP Length Name Contents
0 4 UDFUnique ID Uint32
4 4 Parent Logical Block Number Uint32
8 4 Object Logical Block Number Uint32
12 2 Parent Partition Reference Number Uint16
14 2 Object Partition Reference Number Uint16

UDF Unique ID is the value found in a the FID for the file or directoryidentifying
the object.

Parent Logical Block Number is the logical block number of the ICB identifying
the directory that contains the FID identifying the object.

UDF 2.01 March50 April91

Object Logical Block Number is the logical block number from the long_ad ICB
field of the ICB FID identifying this the object.

Parent Partition Reference Number is the partition reference number from the
long_ad of the ICB field in the parent in identifying the same directory containing
the FID for this file or directorythat contains the FID identifying the object.

Object Partition Reference Number is the partition reference number from the
long_ad of the ICB field of the FID identifying the object.

In Index Mode, the first entry has a UDF Unique ID of 16 and subsequent entries are
required to have a UDF Unique ID value of one more than the preceding entry.

If not in Index Mode, invalid entries may be removed in order to shrink the array.
Invalid entries are represented by having a value of zero in all fields, except the UDF
Unique ID field. Invalid entries are the result of objects that were deleted from the
medium or entries at the end of the Mapping Entries array that are not yet in use.

There shall only be valid entries for non-stream, non-parent FIDs.

NOTE: The UDF Unique ID value of a mapping entry for an object needs not be equal to
the Unique ID value found in the File Entry of the object.

The correctness of a mapping entry can be verified performing the following steps:

1. Read the File Entry of the parent directory of the object using the Parent Logical
Block Number and the Parent Partition Reference Number of the mapping entry.

2. Find in the parent directory a FID with this UDFUniqueID. a UDF Unique ID
value equal to the UDF Unique ID of the mapping entry.

3. The long_ad ICB field of this FID shall contain logical block number and partition
reference number values equal to the Object Logical Block Number and Object
Partition Reference Number values of the mapping entry respectively.

3.3.7.2 Non-Allocatable Space Stream
ECMA 167 does not provide for a mechanism to describe defective areas on media or
areas not usable due to allocation outside of the file system. The Non-Allocatable Space
Stream provides a method to describe space not usable by the file system. The Non-
Allocatable Space Stream shall be recorded only on media systems that do not do defect
management (eg. CD-RW)volumes with a sparable partition map recorded.

The Non-Allocatable Space Stream shall be generated at format time. All space indicated
by the Non-Allocatable Space Stream shall also be marked as allocated in the free space
map. The Non-Allocatable Space Stream shall be recorded as a named stream in the
system stream directory of the File Set Descriptor. The stream name shall be:

UDF 2.01 March50 April92

“*UDF Non-Allocatable Space”

The stream shall be marked with the attributes Metadata (bit 4 of file characteristics set to
ONE) and System (bit 10 of ICB flags field set to ONE). This stream shall have The
stream's allocation descriptors shall identify all Non-Allocatable sectors identified by its
allocation extents. non-allocatable packets. The allocation extents shall indicate that each
extent is descriptors shall have allocation type 1 (allocated but not recorded.). This
liststream shall include both defective sectorspackets found at format time and space
allocated for sparing at format time.

NOTE: For packetized media all blocks of a packet containing a defect should be
allocated to the Non-Allocatable Space Stream.

3.3.7.3 Power Calibration Stream
One of the potential limitations on the effective use of the packet-write capabilities of
CD-Recordable drives is the limited number (100) of power calibration areas available on
current CD-R media. These power calibration areas are used to establish the appropriate
power calibration settings with which data can be successfully and reliably written to the
CD-R disc currently in the drive. The appropriate settings for a specific drive can vary
significantly from disc to disc, between two different drives of the same make and model,
and even using the same disc, drive and system configuration, but under different
environmental conditions.

Because of this, most current CD-R drives recalibrate themselves the first time a write is
attempted after a media change has occurred. This imposes no restriction on recording to
discs using the disc-at-once or track-at-once modes, since in each of these modes the disc
will fill (either by consuming the total available data capacity or total number of
recordable tracks) in less than 100 separate writes. When using packet-write though, the
disc could be written to thousands of times over an extended period before the disc is full.

Suppose, for instance, one wanted to incrementally back-up any new and/or modified
files at the end of each work day (though the drive might also be used intermittently to do
other projects during the day). These back-ups may require writing as little as a megabyte
(or even less) each day. If one of the power calibration areas is used to calibrate the drive
before writing to the disc every day, within five months the power calibration areas will
all have been used, but only a small fraction of the total disc capacity will have been
consumed. It is likely that such a result would be both unexpected and unacceptable to
the user of such a product.

The industry is attempting to provide ways to reduce the frequency with which the power
calibration area of a CD-Recordable disc must be used. At least one current CD-R drive
model tries to remember the power calibration values last used for recording data on each
of a small number of recently encountered discs. Most CD-Recordable drives provide a

UDF 2.01 March50 April93

mechanism for the host software to retrieve from the drive the most recent power
calibration settings used by the drive to record data on the current disc, and to restore and
use such information at some future time.

The Power Calibration Table described herein would be used to store on the disc the
power calibration information thus obtained for future use by compatible
implementations. The table consists of a header followed by a list of records containing
power calibration settings which have been used by various drives and/or hosts, under
various conditions, to record data on this disc, as well as other relevant information which
may be used to determine which of the recorded calibration settings may be appropriate
for use in a future situation. While every effort has been made to anticipate and include
all necessary information to make effective use of the recorded power calibration
information possible, it is up to the individual implementation to determine if, when and
how such information will actually be used.

The Power Calibration Table may be recorded as a system stream of the File Set
Descriptor according to the rules of 3.3.53.3.5. The name of the stream shall be as
follows:

 “*UDF Power Cal Table”

Implementations that do not support the Power Calibration Table shall not delete this
stream. Further, any implementation which supports and/or uses the Power Calibration
Table shall not delete or modify any records from such table which the implementation,
through its use thereof, did not clearly and specifically obsolete or update.

UDF 2.01 March50 April94

The stream shall be formatted as follows:

3.3.7.3.1 Power Calibration Table Stream

RBP Length Name Contents
0 32 Implementation Identifier EntityID [UDF

2.1.5]
32 4 Number of Records Uint32 [1/7.1.5]
36 * Power Calibration Table Records bytes

Implementation Identifier:

See UDF section 2.1.5.
Number of Records:

Shall specify the number of records contained in the power calibration table
Power Calibration Table Records:

A series of power calibration table records for drives which have written to this disc.
The length of this table is variable, but shall be a multiple of four bytes. Recording of
data in any unstructured field shall be left justified and padded on the right with #20
bytes.

Power Calibration Table Record Layout
RBP Length Name Contents

0 2 Record Length Uint16 [1/7.1.3]

2 2 Drive Unique Area Length [DUA_L] Uint16 [1/7.1.3]

4 32 Vendor ID bytes

36 16 Product ID bytes

52 4 Firmware Revision Level bytes

56 16 Serial Number/Device Unique ID bytes

72 8 Host ID bytes

80 12 Originating Time Stamp Timestamp [1/7.3]

92 12 Updated Time Stamp Timestamp [1/7.3]

104 2 Speed Uint16 [1/7.1.3]

106 6 Power Calibration Values bytes

112 [DUA_L] Drive Unique Area bytes

Record Length – The length of this Power Calibration Table Record in bytes, including
the optional variable length Drive Unique Area. Shall be a multiple of four bytes.

Drive Unique Area Length – The length of the optional Drive Unique Area recorded at
the end of this record in bytes. Shall be a multiple of four bytes.

UDF 2.01 March50 April95

Vendor ID – The Vendor ID reported by the drive.

Product ID – The Product ID reported by the drive.

Firmware Revision Level – The Firmware Revision Level reported by the drive.

Serial Number/Device Unique ID – A serial number or other unique identifier for the
specific drive, of the model specified by the vendor and product Ids given, which has
successfully used the power calibration values reported herein to record data on this disc.

Host ID – The host serial number, ethernet ID, or other value (or combination of values)
used by an implementation to identify the specific host computer to which the drive was
attached when it successfully used the power calibration values reported herein to record
data on this disc. An implementation shall attempt to provide a unique value for each
host, but is not required to guarantee the value’s uniqueness.

Originating Time Stamp – The date and time at which the power calibration values
recorded herein were initially verified to have been successfully used.

Updated Time Stamp – The date and time at which the power calibration values recorded
herein were most recently verified to have been successfully used.

Speed – The recording speed, as reported by the drive, at which power calibration values
recorded herein were successfully used. This value is the number of kilobytes per second
(bytes per second / 1000) that the data was written to the disc by the drive (truncating any
fractions). For example, a speed of 176 means data was written to the disc at 176
Kbytes/second, which is the basic CD-DA (Digital Audio) data rate (a.k.a. “1X” for
CD-DA). A speed of 353 means data was written to the disc at 353 Kbytes/second, or
twice the basic CD-DA data rate (a.k.a. “2X” for CD-DA). CD-ROM recording rates
should be adjusted upward (roughly 15%) to the corresponding CD-DA rates to determine
the correct speed value (e.g. A “1X” CD-ROM data rate should be recorded as a “1X”
CD-DA, which is a speed of 176). Note that these are raw data rates and do not reflect all
overhead resulting from (additional) headers, error correction data, etc.

Power Calibration Values – The vendor-specific power calibration values reported by the
drive.

Drive Unique Area – Optional area for recording unrestricted information unique to the
drive (such as drive operating temperature), which certain implementations may use to
enhance the use of the recorded power calibration information or the operation of the

UDF 2.01 March50 April96

associated drive. The drive manufacturer shall define recording of data in this field. This
area shall be an integral multiple of four bytes in length.

3.3.7.4 UDF Backup Time
The name of this stream shall be set to:

 “*UDF Backup”

This stream shall have the following contents, which should be embedded in the
ICB:

UDF Backup Time
RBP Length Name Contents

0 12 Backup Time timestamp

Backup Time is the latest time that a backup of this volume was performed.

3.3.8 UDF Defined Non-System Streams
This section defines the following non-system streams:

Stream Name Stream Location Metadata Flag
“*UDF Macintosh Resource Fork” Any file 0
“*UDF OS/2 EA” Any file or directory 0
“*UDF NT ACL” Any file or directory 0
“*UDF UNIX ACL” Any file or directory 0

3.3.8.1 Macintosh Resource Fork Stream
Because the Resource Fork is referenced by an explicit interface, UDF implementations
are not provided the authoritative name for this stream. For the purpose of interchange,
the name shall be set to:

 “*UDF Macintosh Resource Fork”

The Metadata bit in the File Characteristics field of the File Identifier Descriptor shall be
set to 0 to indicate that the existence of this file should be made known to clients of a
platform’s file system interface.

3.3.8.2 OS/2 EA Stream
All OS/2 definable extended attributes shall be stored as a named stream whose name
shall be set to:
 “*UDF OS/2 EA”

UDF 2.01 March50 April97

The OS2EA Stream contains a table of OS/2 Full EAs (FEA) as shown below.

FEA format
RBP Length Name Contents

0 1 Flags Uint8
1 1 Length of Name (=L_N) Uint8
2 2 Length of Value (=L_V) Uint16
4 L_N Name bytes

4+L_N L_V Value bytes

For a complete description of Full EAs (FEA) please reference the following IBM
document:

“Installable File System for OS/2 Version 2.0”
OS/2 File Systems Department
PSPC Boca Raton, Florida
February 17, 1992

3.3.8.3 Access Control Lists
Certain operating systems support the concept of Access Control Lists (ACLs) for
enforcing file access restrictions. In order to facilitate support for ACL’s UDF has
defined a set of system level named streams, whose purpose is to store the ACL
associated with a given file object.

ACLs under UDF are stored as named streams, following the rules of section 3.3.5. The
contents of the named stream ACL shall be opaque and are not defined by this document.
Interpretation of the contents of the named ACL shall be left to the operating system for
which the ACL is intended. The following names shall be used to identify the ACLs and
shall be reserved. These names shall not be used for application named streams.

 “*UDF NT ACL”

This name shall identify the named stream ACL for the Windows NT operating system.

 “*UDF UNIX ACL”

This name shall identify the named stream ACL for the UNIX operating system.

UDF 2.01 March50 April98

4. User Interface Requirements
4.1 Part 3 – Volume Structure

Part 3 of ECMA 167 contains various Identifiers which, depending upon the
implementation, may have to be presented to the user.

• VolumeIdentifier
• VolumeSetIdentifier
• LogicalVolumeID

 These identifiers, which are stored in CS0, may have to go through some form of
translation to be displayable to the user. Therefore when an implementation must
perform an OS specific translation on the above listed identifiers the
implementation shall use the algorithms described in section 4.2.2.1.

C source code for the translation algorithms may be found in the appendices of
this document.

4.2 Part 4 – File System

4.2.1 ICB Tag
struct icbtag { /* ECMA 167 4/14.6 */
 Uint32 PriorRecordedNumberofDirectEntries;
 Uint16 StrategyType;
 byte StrategyParameter[2];
 Uint16 MaximumNumberofEntries;
 byte Reserved; /* == #00 */
 Uint8 FileType;
 Lb_addr ParentICBLocation;
 Uint16 Flags;
}

4.2.1.1 FileType
Any open/close/read/write requests for file(s) that have any of the following
values in this field shall result in an Access Denied error condition under non-
UNIX operating system environments:

FileType values – 0 (Unknown), 6 (block device), 7 (character device), 9
(FIFO), and 10 (C_ISSOCK).

Any open/close/read/write requests to a file of type 12 (SymbolicLink) shall access
the file/directory to which the symbolic link is pointing.

UDF 2.01 March50 April99

4.2.2 File Identifier Descriptor

struct FileIdentifierDescriptor { /* ECMA 167 4/14.4 */
 struct tag DescriptorTag;
 Uint16 FileVersionNumber;
 Uint8 FileCharacteristics;
 Uint8 LengthofFileIdentifier;
 struct long_ad ICB;
 Uint16 LengthofImplementationUse;
 byte ImplementationUse[];
 char FileIdentifier[];
 byte Padding[];
}

4.2.2.1 char FileIdentifier[]
Since most operating systems have their own specifications as to characteristics of
a legal FileIdentifier, this becomes a problem with interchange. Therefore since
all implementations must perform some form of FileIdentifier translation it would
be to the users advantage if all implementations used the same algorithm.

The problems with FileIdentifier translations fall within one or more of the
following categories:

• Name Length –Most operating systems have some fixed limit for
the length of a file identifier.

• Invalid Characters – Most operating systems have certain

characters considered as being illegal within a file identifier name.

• Displayable Characters – Since UDF supports the Unicode

character set standard characters within a file identifier may be
encountered which are not displayable on the receiving system.

• Case Insensitive – Some operating systems are case insensitive in

regards to file identifiers. For example OS/2 preserves the original
case of the file identifier when the file is created, but uses a case
insensitive operations when accessing the file identifier. In OS/2
“Abc” and “ABC” would be the same file name.

• Reserved Names – Some operating systems have certain names that

cannot be used for a file identifier name.

The following sections outline the FileIdentifier translation algorithm for each
specific operating system covered by this document. This algorithm shall be used

UDF 2.01 March50 April100

by all OSTA UDF compliant implementations. The algorithm only applies when
reading an illegal FileIdentifier. The original FileIdentifier name on the media
should not be modified. This algorithm shall be applied by any implementation
that performs some form of FileIdentifier translation to meet operating system file
identifier restrictions.

All OSTA UDF compliant implementations shall support the UDF translation
algorithms, but may support additional algorithms. If multiple algorithms are
supported the user of the implementation shall be provided with a method to
select the UDF translation algorithms. It is recommended that the default
displayable algorithm be the UDF defined algorithm.

The primary goal of these algorithms is to produce a unique file name that meets
the specific operating system restrictions without having to scan the entire
directory in which the file resides.

C source code for the following algorithms may be found in the appendices of this
document.

NOTE: In the definition of the following algorithms anytime a d-character is
specified in quotes, the Unicode hexadecimal value will also be specified. The
following algorithms reference “CS0 Hex representation”, which corresponds to
using the Unicode values #0030 - #0039, and #0041 - #0046 to represent a value
in hex. In addition, the following algorithms reference “CS0 Base41
representation”, which corresponds to augmenting the CS0 Hex representation to
use #0047 - #005A, #0023, #005F, #007E, #002D and #0040 to represent digits
16-40.

The following algorithms could still result in name-collisions being reported to
the user of an implementation. However, the rationale includes the need for
efficient access to the contents of a directory and consistent name translations
across logical volume mounts and file system driver implementations, while
allowing the user to obtain access to any file within the directory (through
possibly renaming a file).

Some name transformations in section 4.2.2.1 result in two namespaces being
visible at once in a given directory – the space of primary names, those which are
physically recorded in a directory; and the space of generated names, those which
are derived from the primary names. This is distinct from transformations that
take an otherwise illegal name and render it into a legal form, the illegal name not
being considered part of the namespace of the directory on that system. For UDF
implementations using such transforms, the implementation should search a
directory in two passes: pass one should match against the primary namespace and
pass two should match against the generated namespace. A match in the primary
namespace should be preferred to a match against the generated namespace.

UDF 2.01 March50 April101

Definitions:
A FileIdentifier shall be considered as being composed of two parts, a file name
and file extension.

The character ‘.’ (#002E) shall be considered as the separator for the FileIdentifier
of a file; characters appearing subsequent to the last ‘.’ (#002E) shall be
considered as constituting the file extension if and only if it is less than or equal to
5 characters in length, otherwise the file extension shall not exist. Characters
appearing prior to the file extension, excluding the last ‘.’ (#002E), shall be
considered as constituting the file name.

NOTE: Even though OS/2, Macintosh, and UNIX do not have an official
concept of a filename extension it is common file naming conventions to
end a file with “.” Followed by a 1 to 5 character extension. Therefore the
following algorithms attempt to preserve the file extension up to a
maximum of 5 characters.

4.2.2.1.1 MS-DOS

Due to the restrictions imposed by the MS DOS operating system environments
on the FileIdentifier associated with a file the following methodology shall be
employed to handle FileIdentifier(s) under the above-mentioned operating system
environments.

Exception: Implementations on non-MS-DOS systems that may normally provide
dual namespaces (8.3 and non-8.3) using this transformation may omit or provide
a mechanism for disabling its use.

Restrictions: The file name component of the FileIdentifier shall not exceed 8
characters. The file extension component of the FileIdentifier shall not exceed 3
characters.

1. FileIdentifier Lookup: Upon request for a “lookup” of a FileIdentifier,
a case-insensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid MS-DOS file
identifier then do not apply the following steps.

3. Remove Spaces: All embedded spaces within the identifier shall be
removed.

4. Invalid Characters: A FileIdentifier that contains characters considered
invalid within a file name or file extension (as defined above), or not
displayable in the current environment, shall have them translated into
“_” (#005F). (the file identifier on the media is NOT modified).
Multiple sequential invalid or non-displayable characters shall be
translated into a single “_” (#005F) character. Reference the appendix
on invalid characters for a complete list.

UDF 2.01 March50 April102

5. Leading Periods: In the event that there do not exist any characters
prior to the first “.” (#002E) character, leading “.” (#002E) characters
shall be disregarded up to the first non “.” (#002E) character, in the
application of this heuristic.

6. Multiple Periods: In the event that the FileIdentifier contains multiple
“.” (#002E) characters, all characters appearing subsequent to the last
‘.’ (#002E) shall be considered as constituting the file extension if and
only if it is less than or equal to 5 characters in length, otherwise the
file extension shall not exist. Characters appearing prior to the file
extension, excluding the last ‘.’ (#002E), shall be considered as
constituting the file name. All embedded “.” (#002E) characters
within the file name shall be removed.

7. Long Extension: In the event that the number of characters constituting
the file extension at this step in the process is greater than 3, the file
extension shall be regarded as having been composed of the first 3
characters amongst the characters constituting the file extension at this
step in the process.

8. Long Filename: In the event that the number of characters constituting
the file name at this step in the process is greater than 8, the file name
shall be truncated to 4 characters.

9. FileIdentifier CRC: Since through the above process character
information from the original FileIdentifier is lost the chance of
creating a duplicate FileIdentifier in the same directory increases. To
greatly reduce the chance of having a duplicate FileIdentifier the file
name shall be modified to contain a CRC of the original FileIdentifier.
The file name shall be composed of the first 4 characters constituting
the file name at this step in the process, followed by the separator ‘#’
(#0023), followed by the 3 digit CS0 Base41 representation of the 16-
bit CRC of the UNICODE expansion of the original filename.

10. The new file identifier shall be translated to all upper case.

4.2.2.1.2 OS/2

Due to the restrictions imposed by the OS/2 operating system environment, on the
FileIdentifier associated with a file the following methodology shall be employed
to handle FileIdentifier(s) under the above-mentioned operating system
environment:

1. FileIdentifier Lookup: Upon request for a “lookup” of a FileIdentifier,
a case-sensitive comparison may be performed. If the case-sensitive
comparison is not done or if it fails, a case-insensitive comparison
shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid OS/2 file
identifier then do not apply the following steps.

UDF 2.01 March50 April103

3. Invalid Characters: A FileIdentifier that contains characters considered
invalid within an OS/2 file name, or not displayable in the current
environment shall have them translated into “_” (#005F). Multiple
sequential invalid or non-displayable characters shall be translated into
a single “_” (#005F) character. Reference the appendix on invalid
characters for a complete list.

4. Trailing Periods and Spaces: All trailing “.” (#002E) and “ “ (#0020)
shall be removed.

5. FileIdentifier CRC: Since through the above process character
information from the original FileIdentifier is lost the chance of
creating a duplicate FileIdentifier in the same directory increases. To
greatly reduce the chance of having a duplicate FileIdentifier the file
name shall be modified to contain a CRC of the original FileIdentifier.

If there is a file extension then the new FileIdentifier shall be
composed of up to the first (254 – (length of (new file extension) + 1
(for the ‘.’)) – 5 (for the #CRC)) characters constituting the file name
at this step in the process, followed by the separator ‘#’ (#0023);
followed by a 4 digit CS0 Hex representation of the 16-bit CRC of the
original CS0 FileIdentifier, followed by ‘.’ (#002E) and the file
extension at this step in the process.

Otherwise if there is no file extension the new FileIdentifier shall be
composed of up to the first (254 – 5 (for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator ‘#’ (#0023); followed by a 4 digit CS0 Hex representation of
the 16-bit CRC of the original CS0 FileIdentifier.

4.2.2.1.3 Macintosh

Due to the restrictions imposed by the Macintosh operating system environment,
on the FileIdentifier associated with a file the following methodology shall be
employed to handle FileIdentifier(s) under the above-mentioned operating system
environment:

1. FileIdentifier Lookup: Upon request for a “lookup” of a FileIdentifier,
a case-sensitive comparison may be performed. If the case-sensitive
comparison is not done or if it fails, a case-insensitive comparison
shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid Macintosh file
identifier then do not apply the following steps.

3. Invalid Characters: A FileIdentifier that contains characters considered
invalid within a Macintosh file name, or not displayable in the current
environment, shall have them translated into “_” (#005F). Multiple
sequential invalid or non-displayable characters shall be translated into

UDF 2.01 March50 April104

a single “_” (#005F) character. Reference the appendix on invalid
characters for a complete list

4. Long FileIdentifier – In the event that the number of characters
constituting the FileIdentifier at this step in the process is greater than
31 (maximum name length for the Macintosh operating system), the
new FileIdentifier will consist of the first 26 characters of the
FileIdentifier at this step in the process.

5. FileIdentifier CRC Since through the above process character
information from the original FileIdentifier is lost the chance of
creating a duplicate FileIdentifier in the same directory increases. To
greatly reduce the chance of having a duplicate FileIdentifier the file
name shall be modified to contain a CRC of the original FileIdentifier.

If there is a file extension then the new FileIdentifier shall be
composed of up to the first (31 – (length of (new file extension) + 1
(for the ‘.’)) – 5 (for the #CRC)) characters constituting the file name
at this step in the process, followed by the separator ‘#’ (#0023);
followed by a 4 digit CS0 Hex representation of the 16-bit CRC of the
original CS0 FileIdentifier, followed by ‘.’ (#002E) and the file
extension at this step in the process.

Otherwise if there is no file extension the new FileIdentifier shall be
composed of up to the first (31 – 5(for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator ‘#’ (#0023); followed by a 4 digit CS0 Hex representation of
the 16-bit CRC of the original CS0 FileIdentifier.

4.2.2.1.4 Windows 95 & Windows NT

Due to the restrictions imposed by the Windows 95 and Windows NT operating
system environments, on the FileIdentifier associated with a file the following
methodology shall be employed to handle FileIdentifier(s) under the above-
mentioned operating system environment:

1. FileIdentifier Lookup: Upon request for a “lookup” of a FileIdentifier,
a case-sensitive comparison may be performed. If the case-sensitive
comparison is not done or if it fails, a case-insensitive comparison
shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid file identifier for
Windows 95 or Windows NT then do not apply the following steps.

3. Invalid Characters: A FileIdentifier that contains characters considered
invalid within a file name of the supported operating system, or not
displayable in the current environment shall have them translated into
“_” (#005F). Multiple sequential invalid or non-displayable characters
shall be translated into a single “_” (#005F) character. Reference the
appendix on invalid characters for a complete list.

UDF 2.01 March50 April105

4. Trailing Periods and Spaces: All trailing “.” (#002E) and “ “ (#0020)
shall be removed.

5. FileIdentifier CRC: Since through the above process character
information from the original FileIdentifier is lost the chance of
creating a duplicate FileIdentifier in the same directory increases. To
greatly reduce the chance of having a duplicate FileIdentifier the file
name shall be modified to contain a CRC of the original FileIdentifier.

If there is a file extension then the new FileIdentifier shall be
composed of up to the first (255 – (length of (new file extension) + 1
(for the ‘.’)) – 5 (for the #CRC)) characters constituting the file name
at this step in the process, followed by the separator ‘#’ (#0023);
followed by a 4 digit CS0 Hex representation of the 16-bit CRC of the
original CS0 FileIdentifier, followed by ‘.’ (#002E) and the file
extension at this step in the process.

Otherwise if there is no file extension the new FileIdentifier shall be
composed of up to the first (255 – 5 (for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator ‘#’ (#0023); followed by a 4 digit CS0 Hex representation of
the 16-bit CRC of the original CS0 FileIdentifier.

4.2.2.1.5 UNIX

Due to the restrictions imposed by UNIX operating system environments, on the
FileIdentifier associated with a file the following methodology shall be employed
to handle FileIdentifier(s) under the above-mentioned operating system
environment:

1. FileIdentifier Lookup: Upon request for a “lookup” of a FileIdentifier,
a case-sensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid UNIX file
identifier for the current system environment then do not apply the
following steps.

3. Invalid Characters: A FileIdentifier that contains characters considered
invalid within a UNIX file name for the current system environment,
or not displayable in the current environment shall have them
translated into “_” (#005E). Multiple sequential invalid or non-
displayable characters shall be translated into a single “_” (#005E)
character. Reference the appendix on invalid characters for a complete
list

4. Long FileIdentifier – In the event that the number of characters
constituting the FileIdentifier at this step in the process is greater than
MAXNameLength (maximum name length for the specific UNIX
operating system), the new FileIdentifier will consist of the first

UDF 2.01 March50 April106

MAXNameLength-5 characters of the FileIdentifier at this step in the
process.

5. FileIdentifier CRC Since through the above process character
information from the original FileIdentifier is lost the chance of
creating a duplicate FileIdentifier in the same directory increases. To
greatly reduce the chance of having a duplicate FileIdentifier the file
name shall be modified to contain a CRC of the original FileIdentifier.

If there is a file extension then the new FileIdentifier shall be
composed of up to the first (MAXNameLength – (length of (new file
extension) + 1 (for the ‘.’)) – 5 (for the #CRC)) characters constituting
the file name at this step in the process, followed by the separator ‘#’
(#0023); followed by a 4 digit CS0 Hex representation of the 16-bit
CRC of the original CS0 FileIdentifier, followed by ‘.’ (#002E) and
the file extension at this step in the process.

Otherwise if there is no file extension the new FileIdentifier shall be
composed of up to the first (MAXNameLength – 5 (for the #CRC))
characters constituting the file name at this step in the process.
Followed by the separator ‘#’ (#0023); followed by a 4 digit CS0 Hex
representation of of the 16-bit CRC of the original CS0 FileIdentifier.

4.2.2.1.6 OS/400
Due to the restrictions imposed by OS/400 operating system environments, on the
FileIdentifier associated with a file the following methodology shall be employed to
handle FileIdentifier(s) under the above mentioned operating system environment.

1. FileIdentifier Lookup: Upon request for a “lookup” of a FileIdentifier, a case-
sensitive comparison may be performed. If the case-sensitive comparison is not
done or if it fails, a case-insensitive comparision shall be performed.

2. Validate FileIdentifier: If the FileIdentifier is a valid file identifier for OS/400
then do not apply the following steps.

3. Invalid Characters: A FileIdentifier that contains characters considered invalid
within an OS/400 file name, or not displayable in the current environment shall
have them translated into “_” (#005F). Multiple sequential invalid or non-
displayable characters shall be translated into a single “_” (#005F) character.

4. Trailing Spaces: All trailing “ “(#0020) shall be removed.

5. FileIdentifier CRC: Since through the above process character information from
the original FileIdentifier is lost the chance of creating a duplicate FileIdentifier in
the same directory increases. To greatly reduce the chance of having a duplicate
FileIdentifier the filename shall be modified to contain a CRC of the original
FileIdentifier.

UDF 2.01 March50 April107

If there is a file extension then the new FileIdentifier shall be composed of up to
the first (255 – (length of (new file extension) + 1 (for the ‘.’)) – 5 (for the
#CRC)) characters constituting the file name at this step in the process, followed
by the separator “#” (#0023); followed by a 4 digit CS0 Hex representation of the
16 –bit CRC of the original CS0 FileIdentifier, followed by “.” (#002E) and the
file extension at this step in the process.

Otherwise if there is no file extension the new FileIdentifier shall be composed of
up to the first (255 – 5 (for the new #CRC)) characters constituting the file name
at this step in the process. Followed by the separator “#” (#0023); followed by a 4
digit CS0 hex representation of the 16-bit CRC of the original CS0 FileIdentifier.

NoteNOTE: Invalid characters for OS/400 are only the forward slash “/” (#002F)
character. Non-displayable characters for OS/400 are any characters that do not
translate to code page 500 (EBCDIC Multilingual).

UDF 2.01 March50 April108

5. Informative
5.1 Descriptor Lengths

The following table summarizes the UDF limitations on the lengths of the Descriptors
described in ECMA 167.

Descriptor Length in bytes
Anchor Volume Descriptor Pointer 512
Volume Descriptor Pointer 512
Implementation Use Volume Descriptor 512
Primary Volume Descriptor 512
Partition Descriptor 512
Logical Volume Descriptor no max
Unallocated Space Descriptor no max
Terminating Descriptor 512
Logical Volume Integrity Descriptor no max
File Set Descriptor 512
File Identifier Descriptor Maximum of a

Logical Block Size
Allocation Extent Descriptor 24
Indirect Entry 52
Terminal Entry 36
File Entry Maximum of a

Logical Block Size
Extended File Entry Maximum of a

Logical Block Size
Extended Attribute Header Descriptor 24
Unallocated Space Entry Maximum of a

Logical Block Size
Space Bit Map Descriptor no max
Partition Integrity Entry N/A

5.2 Using Implementation Use Areas
5.2.1 Entity Identifiers

Refer to section 2.1.5 on Entity Identifiers defined earlier in this document.

5.2.2 Orphan Space

Orphan space may exist within a logical volume, but it is not recommended since
some type of logical volume repair facility may reallocate it. Orphan space is

UDF 2.01 March50 April109

defined as space that is not directly or indirectly referenced by any of the non-
implementation use descriptors defined in ECMA 167.

NOTE: Any allocated extent for which the only reference resides within an
implementation use field is considered orphan space.

5.3 Boot Descriptor
T.B.D.

5.4 Clarification of Unrecorded Sectors
ECMA 167 section 3/8.1.2.2 states

Any unrecorded constituent sector of a logical sector shall be interpreted as containing all
#00 bytes. Within the sector containing the last byte of a logical sector, the interpretation
of any bytes after that last byte is not specified by this Part.

A logical sector is unrecorded if the standard for recording allows detection that a sector
has been unrecorded and all of the logical sector’s constituent sectors are unrecorded. A
logical sector should either be completely recorded or unrecorded.

For the purposes of interchange, UDF must clarify the correct interpretation of
this section.

This part specifies that an unrecorded sector logically contains #00 bytes.
However, the converse argument that a sector containing only #00 bytes is
unrecorded is not implied, and such a sector is not an “unrecorded” sector for the
purposes of ECMA. Only the standard governing the recording of sectors on the
media can provide the rule for determining if a sector is unrecorded. For example,
a blank check condition would provide correct determination for a WORM
device.

The following additional ECMA 167 sections reference the rule defined 3/8.1.2.2:
3/8.4.2, 3/8.8.2, 4/3.1, 4/8.3.1 and 4/8.10. By derivation, UDF 6.6paragraph 6.6
(strategy 4096) is also affected. Since unrecorded sectors/blocks are terminating
conditions for sequences of descriptors, an implementation must be careful to
know that the underlying storage media provides a notion of unrecorded sectors
before assuming that not writing to a sector is detectable. Otherwise, reliance on
the incorrect converse argument mentioned above may result. Explicit termination
descriptors must be used when an appropriate unrecorded sector would be
undetectable.

UDF 2.01 March50 April110

5.5 Technical Contacts
Technical questions regarding this document may be emailed to the OSTA File
Interchange Committee at info@osta.org. Also technical questions may be faxed
to the attention of the OSTA File Interchange Committee at 1-805-962-1542.

OSTA may also be contacted through the following address:

 File Interchange Committee Chairman

OSTA
311 East Carrillo Street
Santa Barbara, CA 93101
(805) 963-3853

Also monitor the OSTA web site at www.osta.org for additional information.

UDF 2.01 March50 April111

UDF 2.01 March50 April112

6. Appendices

6.1 UDF Entity Identifier Definitions

Entity Identifier Description
“*OSTA UDF Compliant” Indicates the contents of the specified logical volume or file set

is compliant with domain defined by this document.
“*UDF LV Info” Contains additional Logical Volume identification information.
“*UDF FreeEASpace” Contains free unused space within the implementation extended

attributes space.
“*UDF FreeAppEASpace” Contains free unused space within the application extended

attributes space.
“*UDF DVD CGMS Info” Contains DVD Copyright Management Information
“*UDF OS/2 EALength” Contains OS/2 extended attribute length.
“*UDF Mac VolumeInfo” Contains Macintosh volume information.
“*UDF Mac FinderInfo” Contains Macintosh finder information.
“*UDF Virtual Partition” Describes UDF Virtual Partition
“*UDF Sparable Partition” Describes UDF Sparable Partition
“*UDF OS/400 DirInfo” OS/400 Extended directory information
“*UDF Sparing Table” Contains information for handling defective areas on the media
“*UDF Metadata Partition” Describes UDF Metadata Partition

UDF 2.01 March50 April113

6.2 UDF Entity Identifier Values

Entity Identifier Byte Value
"*OSTA UDF Compliant" #2A, #4F, #53, #54, #41, #20, #55, #44, #46, #20, #43, #6F,

#6D, #70, #6C, #69, #61, #6E, #74
“*UDF LV Info” #2A, #55, #44, #46, #20, #4C, #56, #20, #49, #6E, #66, #6F
"*UDF FreeEASpace" #2A, #55, #44, #46, #20, #46, #72, #65, #65, #45, #41, #53,

#70, #61, #63, #65
"*UDF FreeAppEASpace" #2A, #55, #44, #46, #20,

#46, #72, #65, #65, #41, #70, #70,
#45, #41, #53, #70, #61, #63, #65

“*UDF DVD CGMS Info” #2A, #55, #44, #46, #20, #44, #56, #44, #20,
#43, #47, #4D, #53, #20, #49, #6E, #66, #6F

“*UDF OS/2 EALength” #2A, #55, #44, #46, #20, #4F, #53, #2F, #32, #20, #45, #41,
#4C, #65, #6E, #67, #74, #68

“*UDF OS/400 DirInfo” #2A, #55, #44, #46, #20, #4F, #53, #2F, #34, #30, #30, #20,
#44, #69, #72, #49, #6E, #66, #6F

"*UDF Mac VolumeInfo" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #56, #6F, #6C,
#75, #6D, #65, #49, #6E, #66, #6F

"*UDF Mac FinderInfo" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #49, #69, #6E,
#64, #65, #72, #49, #6E, #66, #6F

“*UDF Virtual Partition” #2A, #55, #44, #46, #20, #56, #69, #72, #74, #75, #61, #6C,
#20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

“*UDF Sparable Partition” #2A, #55, #44, #46, #20, #53, #70, #61, #72, #61, #62, #6C,
#65, #20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

“*UDF Sparing Table” #2A, #55, #44, #46, #20, #53, #70, #61, #72, #69, #6E, #67,
#20, #54, #61, #62, #6C, #65

“*UDF Metadata Partition” #2A, #55, #44, #46, #20, #4D, #65, #74, #61, #64, #61, #74,
#61, #20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

UDF 2.01 March50 April114

6.3 Operating System Identifiers
The following tables define the current allowable values for the OS Class and OS
Identifier fields in the IdentifierSuffix of Entity Identifiers.

The OS Class field will identify under which class of operating system the
specified descriptor was recorded. The valid values for this field are as follows:

Value Operating System Class
0 Undefined
1 DOS
2 OS/2
3 Macintosh OS
4 UNIX
5 Windows 9x
6 Windows NT
7 OS/400
8 BeOS
9 Windows CE

10-255 Reserved

The OS Identifier field will identify under which operating system the specified
descriptor was recorded. The valid values for this field are as follows:

OS
Class

OS
Identifier

Operating System Identified

0 Any Value Undefined
1 0 DOS/Windows 3.x
2 0 OS/2
3 0 Macintosh OS 9 and older.
3 1 Macintosh OS X and later releases.
4 0 UNIX - Generic
4 1 UNIX - IBM AIX
4 2 UNIX - SUN OS / Solaris
4 3 UNIX - HP/UX
4 4 UNIX - Silicon Graphics Irix
4 5 UNIX - Linux
4 6 UNIX - MKLinux
4 7 UNIX - FreeBSD
5 0 Windows 9x – generic (includes Windows 98/ME)
6 0 Windows NT – generic (includes Windows

2000,XP,Server 2003, and later releases based on the
same code base)

7 0 OS/400

UDF 2.01 March50 April115

8 0 BeOS - generic
9 0 Windows CE - generic

For the most up to date list of values for OS Class and OS Identifier please contact OSTA
and request a copy of the UDF Entity Identifier Directory. This directory will also
contain Implementation Identifiers of ISVs who have provided the necessary information
to OSTA.

NOTE: If you wish to add to this list please contact the OSTA Technical Committee
Chairman at the OSTA address listed in section 5.3 Technical ContactsPOINTS OF
CONTACT on the first page of this document.

UDF 2.01 March50 April116

6.4 OSTA Compressed Unicode Algorithm
/***
 * OSTA compliant Unicode compression, uncompression routines.
 * Copyright 1995 Micro Design International, Inc.
 * Written by Jason M. Rinn.
 * Micro Design International gives permission for the free use of the
 * following source code.
 */
#include <stddef.h>

/***
 * The following two typedef's are to remove compiler dependancies.
 * byte needs to be unsigned 8-bit, and unicode_t needs to be
 * unsigned 16-bit.
 */
typedef unsigned short unicode_t;
typedef unsigned char byte;

/***
 * Takes an OSTA CS0 compressed unicode name, and converts
 * it to Unicode.
 * The Unicode output will be in the byte order
 * that the local compiler uses for 16-bit values.
 * NOTE: This routine only performs error checking on the compID.
 * It is up to the user to ensure that the unicode buffer is large
 * enough, and that the compressed unicode name is correct.
 *
 * RETURN VALUE
 *
 * The number of unicode characters which were uncompressed.
 * A -1 is returned if the compression ID is invalid.
 */
int UncompressUnicode(
int numberOfBytes, /* (Input) number of bytes read from media. */
byte *UDFCompressed, /* (Input) bytes read from media. */
unicode_t *unicode) /* (Output) uncompressed unicode characters. */
{
 unsigned int compID;
 int returnValue, unicodeIndex, byteIndex;

 /* Use UDFCompressed to store current byte being read. */
 compID = UDFCompressed[0];

 /* First check for valid compID. */
 if (compID != 8 && compID != 16)
 {
 returnValue = -1;
 }
 else
 {
 unicodeIndex = 0;
 byteIndex = 1;

 /* Loop through all the bytes. */
 while (byteIndex < numberOfBytes)
 {
 if (compID == 16)
 {
 /*Move the first byte to the high bits of the unicode char. */
 unicode[unicodeIndex] = UDFCompressed[byteIndex++] << 8;
 }
 else
 {
 unicode[unicodeIndex] = 0;
 }
 if (byteIndex < numberOfBytes)
 {
 /*Then the next byte to the low bits. */
 unicode[unicodeIndex] |= UDFCompressed[byteIndex++];
 }
 unicodeIndex++;

UDF 2.01 March50 April117

 }
 returnValue = unicodeIndex;
 }
 return(returnValue);
}

/***
 * DESCRIPTION:
 * Takes a string of unicode wide characters and returns an OSTA CS0
 * compressed unicode string. The unicode MUST be in the byte order of
 * the compiler in order to obtain correct results. Returns an error
 * if the compression ID is invalid.
 *
 * NOTE: This routine assumes the implementation already knows, by
 * the local environment, how many bits are appropriate and
 * therefore does no checking to test if the input characters fit
 * into that number of bits or not.
 *
 * RETURN VALUE
 *
 * The total number of bytes in the compressed OSTA CS0 string,
 * including the compression ID.
 * A -1 is returned if the compression ID is invalid.
 */
int CompressUnicode(
int numberOfChars, /* (Input) number of unicode characters. */
int compID, /* (Input) compression ID to be used. */
unicode_t *unicode, /* (Input) unicode characters to compress. */
byte *UDFCompressed) /* (Output) compressed string, as bytes. */
{
 int byteIndex, unicodeIndex;

 if (compID != 8 && compID != 16)
 {
 byteIndex = -1; /* Unsupported compression ID ! */
 }
 else
 {
 /* Place compression code in first byte. */
 UDFCompressed[0] = compID;

 byteIndex = 1;
 unicodeIndex = 0;
 while (unicodeIndex < numberOfChars)
 {
 if (compID == 16)
 {
 /* First, place the high bits of the char
 * into the byte stream.
 */
 UDFCompressed[byteIndex++] =
 (unicode[unicodeIndex] & 0xFF00) >> 8;
 }
 /*Then place the low bits into the stream. */
 UDFCompressed[byteIndex++] = unicode[unicodeIndex] & 0x00FF;
 unicodeIndex++;
 }
 }

 return(byteIndex);
}

UDF 2.01 March50 April118

6.5 CRC Calculation

The following C program may be used to calculate the CRC-CCITT checksum
used in the TAG descriptors of ECMA 167.

/*
 * CRC 010041
 */
static unsigned short crc_table[256] = {
 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
 0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
 0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
 0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
 0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
 0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
 0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
};

unsigned short
cksum(s, n)
 register unsigned char *s;
 register int n;
{
 register unsigned short crc=0;

 while (n-- > 0)
 crc = crc_table[(crc>>8 ^ *s++) & 0xff] ^ (crc<<8);

 return crc;
}

/* UNICODE Checksum */
unsigned short
unicode_cksum(s, n)
 register unsigned short *s;
 register int n;
{
 register unsigned short crc=0;
 while (n-- > 0) {
/* Take high order byte first--corresponds to a big endian byte stream. */
 crc = crc_table[(crc>>8 ^ (*s>>8) & 0xff] ^ (crc<<8);
 crc = crc_table[(crc>>8 ^ (*s++ & 0xff)) & 0xff] ^ (crc<<8);
 }

UDF 2.01 March50 April119

 return crc;
}

#ifdef MAIN
unsigned char bytes[] = { 0x70, 0x6A, 0x77 };

main()
{
 unsigned short x;

 x = cksum(bytes, sizeof bytes);
 printf("checksum: calculated=%4.4x, correct=%4.4x\en", x, 0x3299);
 exit(0);
}
#endif

UDF 2.01 March50 April120

The CRC table in the previous listing was generated by the following program:

#include <stdio.h>

/*
 * a.out 010041 for CRC-CCITT
 */

main(argc, argv)
 int argc; char *argv[];
{
 unsigned long crc, poly;
 int n, i;

 sscanf(argv[1], "%lo", &poly);
 if(poly & 0xffff0000){
 fprintf(stderr, "polynomial is too large\en");
 exit(1);
 }

 printf("/*\en * CRC 0%o\en */\en", poly);
 printf("static unsigned short crc_table[256] = {\en");
 for(n = 0; n < 256; n++){
 if(n % 8 == 0)
 printf(" ");
 crc = n << 8;
 for(i = 0; i < 8; i++){
 if(crc & 0x8000)
 crc = (crc << 1) ^ poly;
 else
 crc <<= 1;
 crc &= 0xFFFF;
 }
 if(n == 255)
 printf("0x%04X ", crc);
 else
 printf("0x%04X, ", crc);
 if(n % 8 == 7)
 printf("\en");
 }
 printf("};\en");
 exit(0);
}

All the above CRC code was devised by Don P. Mitchell of AT&T Bell Laboratories and
Ned W. Rhodes of Software Systems Group.
It has been published in "Design and Validation of Computer Protocols,"
Prentice Hall, Englewood Cliffs, NJ, 1991, Chapter 3, ISBN 0-13-539925-4.
Copyright is held by AT&T.

AT&T gives permission for the free use of the above source code.

UDF 2.01 March50 April121

6.6 Algorithm for Strategy Type 4096
This section describes a strategy for constructing an ICB hierarchy. For strategy type
4096 the root ICB hierarchy shall contain 1 direct entry and 1 indirect entry. To indicate
that there is 1 direct entry a 1 shall be recorded as a Uint16 in the StrategyParameter field
of the ICB Tag field. A value of 2 shall be recorded in the MaximumNumberOfEntries
field of the ICB Tag field.

The indirect entry shall specify the address of another ICB which shall also contain 1
direct entry and 1 indirect entry, where the indirect entry specifies the address of another
ICB of the same type. See the figure below:

NOTE: This strategy builds an ICB hierarchy that is a simple linked list of direct entries.

 DE
 IE

DE
 IE

DE
 IE

UDF 2.01 March50 April122

6.7 Identifier Translation Algorithms
The following sample source code examples implement the file identifier translation
algorithms described in this document.

The following basic algorithms may also be used to handle OS specific translations of the
VolumeIdentifier, VolumeSetIdentifier, LogicalVolumeID and FileSetID.

6.7.1 DOS Algorithm

/* OSTA UDF compliant file name translation routine for DOS and */
/* Windows short namespaces. */
/* Define constants for namespace translation */
#define DOS_NAME_LEN 8
#define DOS_EXT_LEN 3
#define DOS_LABEL_LEN 11
#define DOS_CRC_LEN 4
#define DOS_CRC_MODULUS 41

/* Define standard types used in example code. */
typedef BOOLEAN int;
typedef short INT16;
typedef unsigned short UINT16;
typedef UINT16 UNICODE_CHAR;
#define FALSE 0
#define TRUE 1
static char crcChar[] =
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ#_~-@";

/* FUNCTION PROTOTYPES */
UNICODE_CHAR UnicodeToUpper(UNICODE_CHAR value);
BOOLEAN IsFileNameCharLegal(UNICODE_CHAR value);
BOOLEAN IsVolumeLabelCharLegal(UNICODE_CHAR value);
INT16 NativeCharLength(UNICODE_CHAR value);
BOOLEAN IsDeviceName(UNICODE_CHAR* name, UINT16 nameLen);

/***/
/* UDFDOSName() */
/* Translate udfName to dosName using OSTA compliant algorithm. */
/* dosName must be a Unicode string buffer at least 12 characters */
/* in length. */
/***/
UINT16 UDFDOSName(UNICODE_CHAR* dosName, UNICODE_CHAR* udfName,
UINT16 udfNameLen)
{

INT16 index;
INT16 targetIndex;
INT16 crcIndex;
INT16 extLen;
INT16 nameLen;
INT16 charLen;
INT16 overlayBytes;
INT16 bytesLeft;
UNICODE_CHAR current;
BOOLEAN needsCRC;
UNICODE_CHAR ext[DOS_EXT_LEN];

needsCRC = FALSE;

/* Start at the end of the UDF file name and scan for a period */
/* ('.'). This will be where the DOS extension starts (if */
/* any). */
index = udfNameLen;
while (index-- > 0) {

if (udfName[index] == '.')
break;

}

if (index < 0) {

/* There name was scanned to the beginning of the buffer */
/* and no extension was found. */
extLen = 0;

UDF 2.01 March50 April123

nameLen = udfNameLen;
}
else {

/* A DOS extension was found, process it first. */
extLen = udfNameLen - index - 1;
nameLen = index;
targetIndex = 0;
bytesLeft = DOS_EXT_LEN;

while (++index < udfNameLen && bytesLeft > 0) {
/* Get the current character and convert it to upper */
/* case. */
current = UnicodeToUpper(udfName[index]);
if (current == ' ') {

/* If a space is found, a CRC must be appended to */
/* the mangled file name. */
needsCRC = TRUE;

}
else {

/* Determine if this is a valid file name char and */
/* calculate its corresponding BCS character byte */
/* length (zero if the char is not legal or */
/* undisplayable on this system). */
charLen = (IsFileNameCharLegal(current)) ?

NativeCharLength(current) : 0;

/* If the char is larger than the available space */
/* in the buffer, pretend it is undisplayable. */
if (charLen > bytesLeft)

charLen = 0;

if (charLen == 0) {
/* Undisplayable or illegal characters are */
/* substituted with an underscore ("_"), and */
/* required a CRC code appended to the mangled */
/* file name. */
needsCRC = TRUE;
charLen = 1;
current = '_';

/* Skip over any following undiplayable or */
/* illegal chars. */
while (index +1 <udfNameLen &&

 (!IsFileNameCharLegal(udfName[index + 1]) ||
 NativeCharLength(udfName[index + 1]) == 0))

 index++;
}
/* Assign the resulting char to the next index in */
/* the extension buffer and determine how many BCS */
/* bytes are left. */
ext[targetIndex++] = current;
bytesLeft -= charLen;

}
}

/* Save the number of Unicode characters in the extension */
extLen = targetIndex;

/* If the extension was too large, or it was zero length */
/* (i.e. the name ended in a period), a CRC code must be */
/* appended to the mangled name. */
if (index < udfNameLen || extLen == 0)

needsCRC = TRUE;
}

/* Now process the actual file name. */
index = 0;
targetIndex = 0;
crcIndex = 0;
overlayBytes = -1;
bytesLeft = DOS_NAME_LEN;
while (index < nameLen && bytesLeft > 0) {

/* Get the current character and convert it to upper case. */
current = UnicodeToUpper(udfName[index]);
if (current ==' ' ||current == '.') {

/* Spaces and periods are just skipped, a CRC code */
/* must be added to the mangled file name. */
needsCRC = TRUE;

}
else {

UDF 2.01 March50 April124

/* Determine if this is a valid file name char and */
/* calculate its corresponding BCS character byte */
/* length (zero if the char is not legal or */
/* undisplayable on this system). */
charLen = (IsFileNameCharLegal(current)) ?
NativeCharLength(current) : 0;

/* If the char is larger than the available space in */
/* the buffer, pretend it is undisplayable. */
if (charLen > bytesLeft)

charLen = 0;

if (charLen == 0) {

/* Undisplayable or illegal characters are */
/* substituted with an underscore ("_"), and */
/* required a CRC code appended to the mangled */
/* file name. */
needsCRC = TRUE;
charLen = 1;
current = '_';

/* Skip over any following undiplayable or illegal */
/* chars. */
while (index +1 <nameLen &&

(!IsFileNameCharLegal(udfName[index + 1]) ||
NativeCharLength(udfName[index + 1]) == 0))

index++;

/* Terminate loop if at the end of the file name. */
if (index >= nameLen)

break;
}

/* Assign the resulting char to the next index in the */
/* file name buffer and determine how many BCS bytes */
/* are left. */
dosName[targetIndex++] = current;
bytesLeft -= charLen;

/* This figures out where the CRC code needs to start */
/* in the file name buffer. */
if (bytesLeft >= DOS_CRC_LEN) {

/* If there is enough space left, just tack it */
/* onto the end. */
crcIndex = targetIndex;

}
else {

/* If there is not enough space left, the CRC */
/* must overlay a character already in the file */
/* name buffer. Once this condition has been */
/* met, the value will not change. */

if (overlayBytes < 0) {

/* Determine the index and save the length of */
/* the BCS character that is overlayed. It */
/* is possible that the CRC might overlay */
/* half of a two-byte BCS character depending */
/* upon how the character boundaries line up. */
overlayBytes = (bytesLeft + charLen > DOS_CRC_LEN)?1 :0;
crcIndex = targetIndex - 1;

}
}

}

/* Advance to the next character. */
index++;

}

/* If the scan did not reach the end of the file name, or the */
/* length of the file name is zero, a CRC code is needed. */
if (index < nameLen || index == 0)

needsCRC = TRUE;

/* If the name has illegal characters or and extension, it */
/* is not a DOS device name. */
if (needsCRC == FALSE && extLen == 0) {

/* If this is the name of a DOS device, a CRC code should */
/* be appended to the file name. */
if (IsDeviceName(udfName, udfNameLen))

UDF 2.01 March50 April125

needsCRC = TRUE;
}

/* Append the CRC code to the file name, if needed. */
if (needsCRC) {

/* Get the CRC value for the original Unicode string */
UINT16 udfCRCValue = CalculateCRC(udfName, udfNameLen);

/* Determine the character index where the CRC should */
/* begin. */
targetIndex = crcIndex;

/* If the character being overlayed is a two-byte BCS */
/* character, replace the first byte with an underscore. */
if (overlayBytes > 0)

dosName[targetIndex++] = '_';

/* Append the encoded CRC value with delimiter. */
dosName[targetIndex++] = '#';
dosName[targetIndex++] =

crcChar[udfCRCValue / (DOS_CRC_MODULUS * DOS_CRC_MODULUS)];
udfCRCValue %= DOS_CRC_MODULUS * DOS_CRC_MODULUS;
dosName[targetIndex++] =
crcChar[udfCRCValue / DOS_CRC_MODULUS];
udfCRCValue %= DOS_CRC_MODULUS;
dosName[targetIndex++] = crcChar[udfCRCValue];

}

/* Append the extension, if any. */
if (extLen > 0) {

/* Tack on a period and each successive byte in the */
/* extension buffer. */
dosName[targetIndex++] = '.';

for (index = 0; index < extLen; index++)

dosName[targetIndex++] = ext[index];
}

/* Return the length of the resulting Unicode string. */
return (UINT16)targetIndex;

}

/***/
/* UDFDOSVolumeLabel() */
/* Translate udfLabel to dosLabel using OSTA compliant algorithm. */
/* dosLabel must be a Unicode string buffer at least 11 characters */
/* in length. */
/***/
UINT16 UDFDOSVolumeLabel(UNICODE_CHAR* dosLabel, UNICODE_CHAR*
udfLabel, UINT16 udfLabelLen)
{

INT16 index;
INT16 targetIndex;
INT16 crcIndex;
INT16 charLen;
INT16 overlayBytes;
INT16 bytesLeft;
UNICODE_CHAR current;
BOOLEAN needsCRC;
needsCRC = FALSE;

/* Scan end of label to see if there are any trailing spaces. */
index = udfLabelLen;
while (index-- > 0) {

if (udfLabel[index] != ' ')
break;

}

/* If there are trailing spaces, adjust the length of the */
/* string to exclude them and indicate that a CRC code is */
/* needed. */
if (index +1 !=udfLabelLen) {

udfLabelLen = index + 1;
needsCRC = TRUE;

}

index = 0;
targetIndex = 0;
crcIndex = 0;

UDF 2.01 March50 April126

overlayBytes = -1;
bytesLeft = DOS_LABEL_LEN;
while (index < udfLabelLen && bytesLeft > 0) {

/* Get the current character and convert it to upper case. */
current = UnicodeToUpper(udfLabel[index]);
if (current == '.') {

/* Periods are just skipped, a CRC code must be added */
/* to the mangled file name. */
needsCRC = TRUE;

}
else {

/* Determine if this is a valid file name char and */
/* calculate its corresponding BCS character byte */
/* length (zero if the char is not legal or */
/* undisplayable on this system). */
charLen = (IsVolumeLabelCharLegal(current)) ?
NativeCharLength(current) : 0;

/* If the char is larger than the available space in */
/* the buffer, pretend it is undisplayable. */
if (charLen > bytesLeft)
charLen = 0;
if (charLen == 0) {

/* Undisplayable or illegal characters are */
/* substituted with an underscore ("_"), and */
/* required a CRC code appended to the mangled */
/* file name. */
needsCRC = TRUE;
charLen = 1;
current = '_';

/* Skip over any following undiplayable or illegal */
/* chars. */
while (index +1 <udfLabelLen &&

(!IsVolumeLabelCharLegal(udfLabel[index + 1]) ||
NativeCharLength(udfLabel[index + 1]) == 0))

index++;

/* Terminate loop if at the end of the file name. */
if (index >= udfLabelLen)

break;
}

/* Assign the resulting char to the next index in the */
/* file name buffer and determine how many BCS bytes */
/* are left. */
dosLabel[targetIndex++] = current;
bytesLeft -= charLen;

/* This figures out where the CRC code needs to start */
/* in the file name buffer. */
if (bytesLeft >= DOS_CRC_LEN) {

/* If there is enough space left, just tack it */
/* onto the end. */
crcIndex = targetIndex;

}
else {

/* If there is not enough space left, the CRC */
/* must overlay a character already in the file */
/* name buffer. Once this condition has been */
/* met, the value will not change. */
if (overlayBytes < 0) {

/* Determine the index and save the length of */
/* the BCS character that is overlayed. It */
/* is possible that the CRC might overlay */
/* half of a two-byte BCS character depending */
/* upon how the character boundaries line up. */
overlayBytes = (bytesLeft + charLen > DOS_CRC_LEN)
?1 :0;
crcIndex = targetIndex - 1;

}
}

}

/* Advance to the next character. */
index++;

}

/* If the scan did not reach the end of the file name, or the */
/* length of the file name is zero, a CRC code is needed. */

UDF 2.01 March50 April127

if (index < udfLabelLen || index == 0)
needsCRC = TRUE;

/* Append the CRC code to the file name, if needed. */
if (needsCRC) {

/* Get the CRC value for the original Unicode string */
UINT16 udfCRCValue = CalculateCRC(udfName, udfNameLen);

/* Determine the character index where the CRC should */
/* begin. */
targetIndex = crcIndex;

/* If the character being overlayed is a two-byte BCS */
/* character, replace the first byte with an underscore. */
if (overlayBytes > 0)

dosLabel[targetIndex++] = '_';

/* Append the encoded CRC value with delimiter. */
dosLabel[targetIndex++] = '#';
dosLabel[targetIndex++] =
crcChar[udfCRCValue / (DOS_CRC_MODULUS * DOS_CRC_MODULUS)];
udfCRCValue %= DOS_CRC_MODULUS * DOS_CRC_MODULUS;
dosLabel[targetIndex++] =
crcChar[udfCRCValue / DOS_CRC_MODULUS];
udfCRCValue %= DOS_CRC_MODULUS;
dosLabel[targetIndex++] = crcChar[udfCRCValue];

}

/* Return the length of the resulting Unicode string. */
return (UINT16)targetIndex;

}

/***/
/* UnicodeToUpper() */
/* Convert the given character to upper-case Unicode. */
/***/
UNICODE_CHAR UnicodeToUpper(UNICODE_CHAR value)
{

/* Actual implementation will vary to accommodate the target */
/* operating system API services. */
/* Just handle the ASCII range for the time being. */
return (value >= 'a' && value <= 'z') ?

value - ('a' - 'A') : value;
}

/***/
/* IsFileNameCharLegal() */
/* Determine if this is a legal file name id character. */
/***/
BOOLEAN IsFileNameCharLegal(UNICODE_CHAR value)
{

/* Control characters are illegal. */
if (value <' ')

return FALSE;

/* Test for illegal ASCII characters. */
switch (value) {

case '\\':
case '/':
case ':':
case '*':
case '?':
case '\"':
case '<':
case '>':
case '|':
case ';':
case '^':
case ',':
case '&':
case '+':
case '=':
case '[':
case ']':

return FALSE;

default:
return TRUE;

UDF 2.01 March50 April128

}
}

/***/
/* IsVolumeLabelCharLegal() */
/* Determine if this is a legal volume label character. */
/***/
BOOLEAN IsVolumeLabelCharLegal(UNICODE_CHAR value)
{

/* Control characters are illegal. */
if (value <' ')

return FALSE;

/* Test for illegal ASCII characters. */
switch (value) {

case '\\':
case '/':
case ':':
case '*':
case '?':
case '\"':
case '<':
case '>':
case '|':
case '.':
case ';':
case '^':
case ',':
case '&':
case '+':
case '=':
case '[':
case ']':

return FALSE;

default:
return TRUE;

}
}

/***/
/* NativeCharLength() */
/* Determines the corresponding native length (in bytes) of the */
/* given Unicode character. Returns zero if the character is */
/* undisplayable on the current system. */
/***/
INT16 NativeCharLength(UNICODE_CHAR value)
{

/* Actual implementation will vary to accommodate the target */
/* operating system API services. */

/* This is an example of a conservative test. A better test */
/* will utilize the platform’s language/codeset support to */
/* determine how wide this character is when converted to the */
/* active variable width character set. */
return 1;

}

/***/
/* IsDeviceName() */
/* Determine if the given Unicode string corresponds to a DOS */
/* device name (e.g. "LPT1", "COM4", etc.). Since the set of */
/* valid device names with vary from system to system, and */
/* a means for determining them might not be readily available, */
/* this functionality is only suggested as an optional */
/* implementation enhancement. */
/***/
BOOLEAN IsDeviceName(UNICODE_CHAR* name, UINT16 nameLen)
{

/* Actual implementation will vary to accommodate the target */
/* operating system API services. */
/* Just return FALSE for the time being. */
return FALSE;

}

UDF 2.01 March50 April129

UDF 2.01 March50 April130

6.7.2 OS/2, Macintosh,Windows 95, Windows NT and UNIX Algorithm
/***
 * OSTA UDF compliant file name translation routine for OS/2,
 * Windows 95, Windows NT, Macintosh and UNIX.
 * Copyright 1995 Micro Design International, Inc.
 * Written by Jason M. Rinn.
 * Micro Design International gives permission for the free use of the
 * following source code.
 */

/***
 * To use these routines with different operating systems.
 *
 * OS/2
 * Define OS2
 * Define MAXLEN = 254
 *
 * Windows 95
 * Define WIN_95
 * Define MAXLEN = 255
 *
 * Windows NT
 * Define WIN_NT
 * Define MAXLEN = 255
 *
 * Macintosh:
 * Define MAC.
 * Define MAXLEN = 31.
 *
 * UNIX
 * Define UNIX.
 * Define MAXLEN as specified by unix version.
 */

#define ILLEGAL_CHAR_MARK 0x005F
#define CRC_MARK 0x0023
#define EXT_SIZE 5
#define TRUE 1
#define FALSE 0
#define PERIOD 0x002E
#define SPACE 0x0020

/***
 * The following two typedef's are to remove compiler dependancies.
 * byte needs to be unsigned 8-bit, and unicode_t needs to
 * be unsigned 16-bit.
 */
typedef unsigned int unicode_t;
typedef unsigned char byte;

/*** PROTOTYPES ***/
int IsIllegal(unicode_t ch);
unsigned short unicode_cksum(register unsigned short *s, register int n);

/* Define a function or macro which determines if a Unicode character is
 * printable under your implementation.
 */
int UnicodeIsPrint(unicode_t);

/***
 * Translates a long file name to one using a MAXLEN and an illegal
 * char set in accord with the OSTA requirements. Assumes the name has
 * already been translated to Unicode.
 *
 * RETURN VALUE
 *
 * Number of unicode characters in translated name.
 */
int UDFTransName(
unicode_t *newName,/*(Output)Translated name. Must be of length MAXLEN*/

UDF 2.01 March50 April131

unicode_t *udfName, /* (Input) Name from UDF volume.*/
int udfLen, /* (Input) Length of UDF Name. */
{
 int index, newIndex = 0, needsCRC = FALSE;
 int extIndex, newExtIndex = 0, hasExt = FALSE;
#ifdef (OS2 | WIN_95 | WIN_NT)
 int trailIndex = 0;
#endif
 unsigned short valueCRC;
 unicode_t current;
 const char hexChar[] = "0123456789ABCDEF";

 for (index = 0; index < udfLen; index++)
 {
 current = udfName[index];

 if (IsIllegal(current) || !UnicodeIsPrint(current))
 {
 needsCRC = TRUE;
 /* Replace Illegal and non-displayable chars with underscore. */
 current = ILLEGAL_CHAR_MARK;
 /* Skip any other illegal or non-displayable characters. */
 while(index+1 < udfLen && (IsIllegal(udfName[index+1])
 || !UnicodeIsPrint(udfName[index+1])))
 {
 index++;
 }
 }

 /* Record position of extension, if one is found. */
 if (current == PERIOD && (udfLen - index -1) <= EXT_SIZE)
 {
 if (udfLen == index + 1)
 {
 /* A trailing period is NOT an extension. */
 hasExt = FALSE;
 }
 else
 {
 hasExt = TRUE;
 extIndex = index;
 newExtIndex = newIndex;
 }
 }

#ifdef (OS2 | WIN_95 | WIN_NT)
 /* Record position of last char which is NOT period or space. */
 else if (current != PERIOD && current != SPACE)
 {
 trailIndex = newIndex;
 }
#endif

 if (newIndex < MAXLEN)
 {
 newName[newIndex++] = current;
 }
 else
 {
 needsCRC = TRUE;
 }
 }

#ifdef (OS2 | WIN_95 | WIN_NT)
 /* For OS2, 95 & NT, truncate any trailing periods and\or spaces. */
 if (trailIndex != newIndex - 1)
 {
 newIndex = trailIndex + 1;
 needsCRC = TRUE;
 hasExt = FALSE; /* Trailing period does not make an extension. */
 }
#endif

UDF 2.01 March50 April132

 if (needsCRC)
 {
 unicode_t ext[EXT_SIZE];
 int localExtIndex = 0;
 if (hasExt)
 {
 int maxFilenameLen;
 /* Translate extension, and store it in ext. */
 for(index = 0; index<EXT_SIZE && extIndex + index +1 < udfLen;
 index++)
 {
 current = udfName[extIndex + index + 1];

 if (IsIllegal(current) || !UnicodeIsPrint(current))
 {
 needsCRC = 1;
 /* Replace Illegal and non-displayable chars
 * with underscore.
 */
 current = ILLEGAL_CHAR_MARK;
 /* Skip any other illegal or non-displayable
 * characters.
 */
 while(index + 1 < EXT_SIZE
 && (IsIllegal(udfName[extIndex + index + 2])
 || !isprintUnicodeIsPrint(udfName[extIndex + index +
2])))
 {
 index++;
 }
 }
 ext[localExtIndex++] = current;
 }

 /* Truncate filename to leave room for extension and CRC. */
 maxFilenameLen = ((MAXLEN - 5) - localExtIndex - 1);
 if (newIndex > maxFilenameLen)
 {
 newIndex = maxFilenameLen;
 }
 else
 {
 newIndex = newExtIndex;
 }
 }
 else if (newIndex > MAXLEN - 5)
 {
 /*If no extension, make sure to leave room for CRC. */
 newIndex = MAXLEN - 5;
 }
 newName[newIndex++] = CRC_MARK; /* Add mark for CRC. */

 /*Calculate CRC from original filename from FileIdentifier. */
 valueCRC = unicode_cksum(udfName, udfLen);
 /* Convert 16-bits of CRC to hex characters. */
 newName[newIndex++] = hexChar[(valueCRC & 0xf000) >> 12];
 newName[newIndex++] = hexChar[(valueCRC & 0x0f00) >> 8];
 newName[newIndex++] = hexChar[(valueCRC & 0x00f0) >> 4];
 newName[newIndex++] = hexChar[(valueCRC & 0x000f)];

 /* Place a translated extension at end, if found. */
 if (hasExt)
 {
 newName[newIndex++] = PERIOD;
 for (index = 0;index < localExtIndex ;index++)
 {
 newName[newIndex++] = ext[index];
 }
 }
 }
 return(newIndex);

UDF 2.01 March50 April133

}

#ifdef (OS2 | WIN_95 | WIN_NT)
/***
 * Decides if a Unicode character matches one of a list
 * of ASCII characters.
 * Used by OS2 version of IsIllegal for readability, since all of the
 * illegal characters above 0x0020 are in the ASCII subset of Unicode.
 * Works very similarly to the standard C function strchr().
 *
 * RETURN VALUE
 *
 * Non-zero if the Unicode character is in the given ASCII string.
 */
int UnicodeInString(
unsigned char *string, /* (Input) String to search through. */
unicode_t ch) /* (Input) Unicode char to search for. */
{
 int found = FALSE;
 while (*string != '\0' && found == FALSE)
 {
 /* These types should compare, since both are unsigned numbers. */
 if (*string == ch)
 {
 found = TRUE;
 }
 string++;
 }
 return(found);
}
#endif /* OS2 */

/***
 * Decides whether the given character is illegal for a given OS.
 *
 * RETURN VALUE
 *
 * Non-zero if char is illegal.
 */
int IsIllegal(unicode_t ch)
{
#ifdef MAC
 /* Only illegal character on the MAC is the colon. */
 if (ch == 0x003A)
 {
 return(1);
 }
 else
 {
 return(0);
 }

#elif defined UNIX
 /* Illegal UNIX characters are NULL and slash. */
 if (ch == 0x0000 || ch == 0x002F)
 {
 return(1);
 }
 else
 {
 return(0);
 }

#elif defined (OS2 | WIN_95 | WIN_NT)
 /* Illegal char's for OS/2 according to WARP toolkit. */
 if (ch < 0x0020 || UnicodeInString("\\/:*?\"<>|", ch))
 {
 return(1);
 }
 else
 {
 return(0);

UDF 2.01 March50 April134

 }
#endif
}

UDF 2.01 March50 April135

6.8 Extended Attribute Checksum Algorithm

/*
 * Calculates a 16-bit checksum of the Implementation Use
 * Extended Attribute header or Application Use Extended Attribute
 * header. The fields AttributeType through ImplementationIdentifier
 * (or ApplicationIdentifier) inclusively represent the
 * data covered by the checksum (48 bytes).
 *
 */

Uint16 ComputeEAChecksum(byte *data)
{
 Uint16 checksum = 0;
 Uint count;

 for(count = 0; count < 48; count++)
 {
 checksum += *data++;
 }

 return(checksum);
}

UDF 2.01 March50 April136

6.9 Requirements for DVD-ROM
This appendix defines the requirements and restrictions for UDF formatted DVD-ROM
discs.

• DVD-ROM discs shall be mastered with the UDF file system

• DVD-ROM discs shall consist of a single volume and a single partition.

NOTE:. The disc may also include the ISO 9660 file system. If the disc contains both
UDF and ISO 9660 file systems it shall be known as a UDF Bridge disc. This UDF
Bridge disc will allow playing DVD-ROM media in computers, which may only support
ISO 9660. As UDF computer implementations are provided, the need for ISO 9660 will
disappear, and future discs should contain only UDF.

If you intend to do any DVD development with UDF, please make sure that you fill out
the OSTA UDF Developer Registration Form located in appendix 6.11.6.16. For planned
operating system, check the Other box and write in DVD.

6.9.1 Constraints imposed on UDF by DVD-Video
This section describes the restrictions and requirements for UDF formatted DVD-Video
discs for dedicated DVD content players. DVD-Video is one specific application of
DVD-ROM using the UDF format for the home consumer market. Due to limited
computing resources within a DVD player, restrictions and requirements were created so
that a DVD player would not have to support every feature of the UDF specification.

All DVD-Video discs shall be mastered to contain all required data as specified by
ECMA 167 (2nd edition) and UDF 1.02. This will ease playing of DVD-Video in
computer systems. Examples of such data include the time, date, permission bits, and a
free space map (indicating no free space). While DVD player implementations may
ignore these fields, a UDF computer system implementation will not. Both entertainment-
based and computer-based content can reside on the same disc.

NOTE: DVD-Video discs mastered according to UDF 2.0x50 may not be compatible
with DVD-Video players. DVD-Video players expect media in UDF 1.02 format.

In an attempt to reduce code size and improve performance, all division described is
integer arithmetic; all denominators shall be 2n, such that all divisions may be carried out
via logical shift operations.

• A DVD player shall only support UDF and not ISO 9660.

• Originating systems shall constrain individual files to be less than or equal to 230 -
Logical Block Size bytes in length.

UDF 2.01 March50 April137

• The data of each file shall be recorded as a single extent. Each File Entry shall be
recorded using the ICB Strategy Type 4.

• File and directory names shall be compressed as 8 bits per character using OSTA
Compressed Unicode format.

• A DVD player shall not be required to follow symbolic links to any files.

• The DVD-Video files shall be stored in a subdirectory named "VIDEO_TS" directly
under the root directory. Directory names are standardized in the DVD Specifications
for Read-Only Disc document.

 NOTE: The DVD Specifications for Read-Only Disc is a document,
developedpublished by the DVD Consortium, thatFormat/Logo Licensing
Corporation, see6.9.3. This document describes the names of all DVD-Video files and
a DVD-Video directory, which will be stored on the media, and additionally,
describes the contents of the DVD-Video files.

• The file named "VIDEO_TS.IFO" in the VIDEO_TS subdirectory shall be read first.

All the above constraints apply only to the directory and files that the DVD player needs
to access. There may be other files and directories on the media which are not intended
for the DVD player and do not meet the above listed constraints. These other files and
directories are ignored by the DVD player. This is what enables the ability to have both
entertainment-based and computer-based content on the same disc.

6.9.2 How to read a UDF DVD-Video disc
This section describes the basic procedures that a DVD player would go through to read a
UDF formatted DVD-Video disc.

6.9.2.1 Step 1. Volume Recognition Sequence

Find an ECMA 167 Descriptor in a volume recognition area, which shall start at
logical sector 16.

6.9.2.2 Step 2. Anchor Volume Descriptor Pointer
The Anchor Volume Descriptor Pointer, which is located at an anchor point, must be
found. Duplicate anchor points shall be recorded at logical sector 256 and logical
sector n, where n is the highest numbered logical sector on the disc.

A DVD player only needs to look at logical sector 256; the copy at logical sector n is
redundant and only needed for defect tolerance. The Anchor Volume Descriptor
Pointer contains three things of interest:

1. Static structures that may be used to identify and verify integrity of the disc.
2. Location of the Main Volume Descriptor Sequence (absolute logical sector

number)
3. Length of the Main Volume Descriptor Sequence (bytes)

UDF 2.01 March50 April138

The data located in bytes 0-3 and 5 of the Anchor Volume Descriptor Pointer may be
used for format verification if desired. Verifying the checksum in byte 4 and CRC in
bytes 8-11 are good additional verifications to perform. MVDS_Location and
MVDS_Length are read from this structure.

6.9.2.3 Step 3. Volume Descriptor Sequence

Read logical sectors:

MVDS_Location through MVDS_Location + (MVDS_Length - 1) / SectorSize

The logical sector size shall be 2048 bytes for DVD media. If this sequence cannot
be read, a Reserve Volume Descriptor Sequence should be read.

The Partition Descriptor shall be a descriptor with a tag identifier of 5. The partition
number and partition location shall be recorded in logical sector number.

Partition_Location and Partition_Length are obtained from this structure.

The Logical Volume Descriptor shall be a descriptor with a tag identifier of 6. The
location and length of the File Set Descriptor shall be recorded in the Logical
Volume Descriptor.

FSD_Location, and FSD_Length are returned from this structure.

6.9.2.4 Step 4. File Set Descriptor
The File Set Descriptor is located at logical sector numbers:

Partition_Location + FSD_Location through
Partition_Location + FSD_Location + (FSD_Length - 1) / BlockSize

RootDir_Location and RootDir_Length shall be read from the File Set Descriptor in
logical block number.

6.9.2.5 Step 5. Root Directory File Entry
RootDir_Location and RootDir_Length define the location of a File Entry. The File
Entry describes the data space and permissions of the root directory.

The location and length of the Root Directory is returned.

6.9.2.6 Step 6. Root Directory
Parse the data in the root directory extent to find the VIDEO_TS subdirectory.

Find the VIDEO_TS File Identifier Descriptor. The name shall be in 8 bit
compressed UDF format. Verify that VIDEO_TS is a directory.

UDF 2.01 March50 April139

Read the File Identifier Descriptor and find the location and length of a File Entry
describing the VIDEO_TS directory.

6.9.2.7 Step 7. File Entry of VIDEO_TS
The File Entry found in the step above describes the data space and permissions of
the VIDEO_TS directory.

The location and length of the VIDEO_TS directory is returned.

6.9.2.8 Step 8. VIDEO_TS directory
The extent found in the step above contains sets of File Identifier Descriptors. In this
pass, verify that the entry points to a file and is named VIDEO_TS.IFO.

6.9.2.9 Step 9. File Entry of VIDEO_TS.IFO
The File Entry found in the step above describes the data space and permissions of
the VIDEO_TS.IFO file.

The location and length of the VIDEO_TS.IFO file is returned.

Further files can be found in the same manner as the VIDEO_TS.IFO file when
needed.

6.9.3 Obtaining DVD Documents
To obtain a copy of the DVD Specifications for Read-Only Disc document as well as
other DVD related material, contact:

DVD ForumFormat/Logo Licensing Corporation
Office of Secretary
1-1, Shibaura 1-ChomeShiba Shimizu Bldg. 5F
2-3-11 Shibadaimon, Minato-ku
Tokyo 105-80010012
Japan

 TEL: +81-3-5444-95805777-2883
 FAX: +81-3-5444-9436 5777-2884

UDF 2.01 March50 April140

6.10 Recommendations for CD Media
CD Media (CD-R and CD-RW) requires special consideration due to its nature. CD was
originally designed for read-only applications, which affects the way in which it is
written. The following guidelines are established to ensure interchange.

Each file and directory shall be described by a single direct ICB. The ICB should be
written after the file data to allow for data underruns during writing, which will cause
logical gaps in the file data. The ICB can be written afterward which will correctly
identify all extents of the file data. The ICB shall be written in the data track, the file
system track (if it exists), or both.

6.10.1 Use of UDF on CD-R media
ECMA 167 requires an Anchor Volume Descriptor Pointer (AVDP) at sector 256 and
either N or (N - 256), where N is the last recorded Physical Address on the media. UDF
requires that the AVDP be recorded at both sector 256 and sector (N - 256) when each
session is closed (2.2.3). The file system may be in an intermediate state before closing
and still be interchangeable, but not strictly in compliance with ECMA 167. In the
intermediate state, only one AVDP exists. It should exist at sector 256, but if this is not
possible due to a track reservation, it shall exist at sector 512.

Implementations should place file system control structures into virtual space and file
data into real space. Reader implementations may cache the entire VAT; the. The size of
the VAT should be considered by any UDF originating software. Computer based
implementations are expected to handle VAT sizes of at least 64K bytes; dedicated player
implementations may handle only smaller sizes.

The VAT may be located by using READ TRACK INFORMATION (for unfinished
media) or READ TOC or READ CD RECORDED CAPACITY for finished media. See
X3T10-1048D (SCSI-3 Multi Media Commands).

6.10.1.1 Requirements
• Writing shall use Mode 1 or Mode 2 Form 1 sectors. On one disc, either Mode 1 or

Mode 2 Form 1 shall be used; a mixture of Mode 1 and Mode 2 Form 1 sectors on
one disc is not allowed.
NOTE: According to the Multisession CD Specification, all data sessions on a disc
must be of the same type (Mode 1, or Mode 2 Form 1).

• If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data
files and by the UDF structures shall have the following value:

File number = 0
Channel number = 0
Submode = 08h
Coding information = 0

UDF 2.01 March50 April141

• An intermediate state is allowed on CD-R media in which only one AVDP is
recorded; this single AVDP shall be at sector 256 or sector 512 and according to the
multi-session rules below.

• Sequential file system writing shall be performed with variable packet writing. This
allows maximum space efficiency for large and small updates. Variable packet
writing is more compatible with CD-ROM drives, as current models do not support
method 2 addressing required by fixed packets.

• The Logical Volume Integrity descriptor shall be recorded and the volume marked as
open. Logical volume integrity can be verified by finding the VAT ICB at the last
recorded Physical Address. If the VAT ICB is present, the volume is clean; otherwise
it is dirty.

• The Partition Header descriptor, if recorded, shall specify no Unallocated Space
Table, no Unallocated Space Bitmap, no Partition Integrity Table, no Freed Space
Table, and no Freed Space Bitmap. The drive is capable of reporting free space
directly, eliminating the need for a separate descriptor.

• Each surface shall contain 0 or 1 read only partitions, 0 or 1 write once partitions, and
0 or 1 virtual partitions. CD-R media should contain 1 write once partition and 1
virtual partition.

6.10.1.2 UDF “Bridge” formats
ISO 9660 requires a Primary Volume Descriptor (PVD) at sector 16. If an ISO 9660 file
system is desired, it may contain references to the same files as those referenced by
ECMA 167 structures, or reference a different set of files, or a combination of the two.

It is assumed that early implementations will record some ISO 9660 structures but that as
implementations of UDF become available, the need for ISO 9660 structures will
decrease.

If an ISO 9660 bridge disc contains Mode 2 Form 1 sectors, then the CD-ROM XA
extensions for ISO 9660 must be used.

6.10.1.3 End of session data
A session is closed to enable reading by CD-ROM drives. The last complete session on
the disc shall conform completely to ECMA 167 and have two AVDPs recorded. This
shall be accomplished by writing data according to End of session data table below.
Although not shown in the following example, the data may be written in multiple
packets.

UDF 2.01 March50 April142

End of session data
Count Description

1 Anchor Volume Descriptor Pointer
255 Implementation specific. May contain user

data, file system structures, and/or link areas.
1 VAT ICB.

The implementation specific data may contain repeated copies of the VAT and VAT ICB.
Compatibility with drives that do not accurately report the location of the last sector will
be enhanced. Implementations shall ensure that enough space is available to record the
end of session data. Recording the end of session data brings a volume into compliance
with ECMA 167.

6.10.2 Use of UDF on CD-RW media
CD-RW media is randomly readable and block writable. This means that while any
individual sector may be read, writing must occur in blocks containing multiple sectors.
CD-RW systems do not provide for sparing of bad areas. Writing rules and sparing
mechanisms have been defined.

6.10.2.1 Requirements
• Writing which conforms to this section of the standard shall be performed using fixed

length packets.

• Writing shall be performed using Mode 1 or Mode 2, Form 1 sectors. On one disc,
either Mode 1 or Mode 2 Form 1 shall be used.
NOTE: According to the Multisession CD Specification, all data sessions on a disc
must be of the same type (Mode 1, or Mode 2 Form 1).

• If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data
files and by the UDF structures shall have the following value:

File number = 0
Channel number = 0
Submode = 08h
Coding information = 0

UDF 2.01 March50 April143

• The host shall perform read/modify/write to enable the apparent writing of single 2K
sectors.

• The packet length shall be set when the disc is formatted. The packet length shall be
32 sectors (64 KB).

• The hostDefective packets known at format time shall maintain a list of defects onbe
allocated by the disc using a Non-Allocatable Space Stream (see 3.3.7.23.3.7.2).

• Sparing shall be managed by the host via the sparable partition and a sparing table.

• Discs shall be formatted prior to use.

6.10.2.2 Formatting
Formatting shall consist of writing a lead-in, user data area, and lead-out. These areas
may be written in any order. A verification pass may follow this physical format.
DefectsDefective packets found during the verification pass shall be enumerated in the
Non-Allocatable Space Stream (see 3.3.7.2).3.3.7.2). Finally, file system root structures
shall be recorded. These mandatory file system and root structures include the Volume
Recognition Sequence, Anchor Volume Descriptor Pointers, a Volume Descriptor
Sequence, a File Set Descriptor and a Root Directory.
The Anchor Volume Descriptor Pointers shall be recorded at sectors 256 and N - 256,
where N is the Physical Address of the last addressable sector.
Allocation for sparing shall occur during the format process. The sparing allocation may
be zero in length.
The free space descriptors shall be recorded and shall reflect space allocated to defective
areas and sector sparing areas.
The format may include all available space on the medium. However, if requested by the
user, a subset may be formatted to save formatting time. That smaller format may be later
“grown” to the full available space.

UDF 2.01 March50 April144

6.10.2.3 Growing the Format
If the medium is partially formatted, it may be later grown to a larger size. This operation
consists of:
• Optionally erase the lead-in of the last session.

• Optionally erase the lead-out of the last session.

• Write packets beginning immediately after the last recorded packet.

• Update the sparing table to reflect any new spare areas

• Adjust the partition map as appropriate

• Update the free space map to show new available area

• Move the last AVDP to the new N - 256

• Write the lead-in (which reflects the new track size)

• Write the lead-out

6.10.2.4 Host Based Defect Management
The host shall perform defect management operations. The CD format was defined
without any defect management; to be compatible with existing technology and
components, the host must manage defects. There are two levels of defect management:
Marking bad sectors at format time and on-line sparing. The host shall keep the tables on
the media current.

6.10.2.5 Read Modify Write Operation
CD-RW media requires large writable units, as each unit incurs a 14KB overhead. The
file system requires a 2KB writable unit. The difference in write sizes is handled by a
read-modify-write operation by the host. An entire packet is read, the appropriate
portions are modified, and the entire packet written to the CD.
Note that packets may not be aligned to 32 sector boundaries.

6.10.2.6 Levels of Compliance
6.10.2.6.1 Level 1
The disc shall be formatted with exactly one lead-in, program area, and lead-out. The
program area shall contain exactly one track.

6.10.2.6.2 Level 2
The last session shall contain the UDF file system. All prior sessions shall be contained
in one read-only partition.

UDF 2.01 March50 April145

6.10.2.6.3 Level 3
No restrictions shall apply.

6.10.3 Multisession and Mixed Mode
The Volume Recognition Sequence and Anchor Volume Descriptor Pointer locations are
specified by ECMA 167 to be at a location relative to the beginning of the disc. The
beginning of a disc shall be determined from a base address S for the purposes of finding
the VRS and AVDP.
‘S’ is the Physical Address of the first data sector in the first recorded data track in the
last existent session of the volume. ‘S’ is the same value currently used in multisession
ISO 9660 recording. The first track in the session shall be a data track.

‘N’ is the physical sector number of the last recorded data sector on a disc.
If random write mode is used, the media may be formatted with zero or one audio
sessions followed by exactly one writable data session containing one track. Other
session configurations are possible but not described here. There shall be no more than
one writable partition or session at one time, and this session shall be the last session on
the disc.

6.10.3.1 Volume Recognition Sequence
The following descriptions are added to UDF (see also ECMA 167 Part 2) in order to
handle a multisession disc.

• The volume recognition area of the UDF Bridge format shall be the part of the

volume space starting at sector S + 16.
• The volume recognition space shall end in the track in which it begins. As a result of

this definition, the volume recognition area always exists in the last session of a disc.
• When recorded in Random Access mode, a duplicate Volume Recognition Sequence

should be recorded beginning at sector N - 16.

6.10.3.2 Anchor Volume Descriptor Pointer
Anchor Volume Descriptor Pointers (AVDP) shall be recorded at the following logical
sector numbers: S + 256 and N - 256. The AVDP at sector N - 256 shall be recorded
before closing a session; it may not be recorded while a session is open.

6.10.3.3 UDF Bridge format
The UDF Bridge format allows UDF to be added to a disc that may contain another file
system. A UDF multisession Bridge disc shall contain a UDF file system in its last
session. The last session shall follow the rules described in “Multisession and Mixed
Mode” section above. The disc may contain sessions that are based on ISO 9660, audio,
vendor unique, or a combination of file systems. The UDF Bridge format allows CD
enhanced discs to be created.

A new Main and Reserve Volume Descriptor Sequence may exist in each added session,
and may be different than earlier VDSs.

UDF 2.01 March50 April146

If the last session on a CD does not contain a valid UDF file system, the disc is not a UDF
disc. Only the UDF structures in the last session, and any UDF structures and data
referenced through them, are valid.

The UDF session may contain pointers to data or metadata in other sessions, pointers to
data or metadata only within the UDF session, or a combination of both. Some examples
of UDF Bridge discs are shown below.

Multisession UDF disc

CD enhanced disc

256 sectors
16 sectors

1st Recorded Track in the last session
LSN=SLSN=0

256 sectors
16 sectors

Access to LSN=256 Access to LSN=16+x

: Anchor point

: Volume recognition area

First Session

N - 256

1st session 2nd session

UDF Session

Playable by conventional CD-Player Used by UDF

UDF 2.01 March50 April147

ISO 9660 converted to UDF

Foreign format converted to UDF

6.11 Real-Time Files
A Real-Time file is a file that requires a minimum data-transfer rate when writing or
reading, for example, audio and video data. For these files special read and write
commands are needed. For example for CD and DVD devices these special commands
can be found in the Mount Fuji 4 specification.

A Real-Time file shall be identified by file type 249 in the File Type field of the file's ICB
Tag.

1st session 3rd session

9660 Session UDF Session

Written by conventional 9660 formatter software

Managed by UDF

9660 Session

2nd session

1st session 3rd session

Data Session UDF Session

Written by another file system

Managed by UDF

Data Session

2nd session

UDF 2.01 March50 April148

6.12 Requirements for DVD-R/-RW/RAM interchangeability

This appendix defines the requirements and restrictions on volume and file structures for
writable DVD media, including but not limited to DVD-RAM discs (6.12.1), DVD-RW
discs (6.12.2) and DVD-R discs (6.12.3), to support the interchange of information
between users of both computer systems and consumer appliances. These requirements
do not apply to the discs that are used in a computer system environment only and have
no interchangeability with consumer appliances. The common requirements for these
DVD discs are summarized as follows:

1. The volume and file structure shall comply with UDF 2.00.
2. The Minimum UDF Read Revision and Minimum UDF Write Revision shall be

2.00.
3. The length of logical sector and logical block shall be 2048 bytes.
4. A Main Volume Descriptor Sequence and a Reserve Volume Descriptor Sequence

shall be recorded.

6.12.1 Requirements for DVD-RAM

The requirements for DVD-RAM discs are based on UDF 2.00. The volume and file
structure is simplified as for overwritable discs using non-sequential recording.

For Volume Structure:
1. A partition on a DVD-RAM disc shall be an overwritable partition specified as

access type 4.
2. Virtual Partition Map and Virtual Allocation Table shall not be recorded.
3. Sparable Partition Map and Sparing Table shall not be recorded.

For File Structure:
4. Unallocated Space Table or Unallocated Space Bitmap shall be used to indicate

a space set. Freed Space Table and Freed Space Bitmap shall not be recorded.
5. Non-Allocatable Space Stream shall not be recorded.

6.12.2 Requirements for DVD-RW

The requirements for DVD-RW discs under Restricted Overwrite mode are based on
UDF 2.00. The volume and file structure is simplified as for rewritable discs using non-
sequential recording.

For Volume Structure:
1. A disc shall consist of a single volume with a single sparable partition per side.
2. A Sparable Partition Map and Sparing Table shall be recorded.
3. Length of a packet shall be 16 sectors (32 KB) and the first sector number of a

packet shall be an integral multiple of 16.
4. Virtual Partition Map and Virtual Allocation Table shall not be recorded.

UDF 2.01 March50 April149

For File Structure:
5. Unallocated Space Bitmap shall be used to indicate a space set. Unallocated

Space Table, Freed Space Table and Freed Space Bitmap shall not be recorded.
6. Non-Allocatable Space Stream shall be recorded.
7. ICB Strategy type 4 shall be used.
8. Short Allocation Descriptors or the embedded data shall be recorded in the

Allocation Descriptors field of the File Entry or Extended File Entry. Long
Allocation Descriptors shall not be recorded in this field.

6.12.3 Requirements for DVD-R

The requirements for DVD-R discs under Disc at once recording mode and under
Incremental recording mode are based on UDF 2.00. The volume and file structure is
simplified as for write once discs using sequential recording.

For Volume Structure:
1. Length of a packet shall be an integral multiple of 16 sectors (32 KB) and the

first sector number of a packet shall be an integral multiple of 16.
2. Sparable Partition Map and Sparing Table shall not be recorded.
3. Under Incremental recording mode, only one Open Integrity Descriptor shall be

recorded in the Logical Volume Integrity Sequence.
4. Under Incremental recording mode, Virtual Partition Map shall be recorded.

For File Structure:
5. Unallocated Space Table, Unallocated Space Bitmap, Freed Space Table and

Freed Space Bitmap shall not be recorded.
6. Only one File Set Descriptor shall be recorded.
7. Non-Allocatable Space Stream shall not be recorded.
8. Under Incremental recording mode, Virtual Allocation Table and VAT ICB shall

be recorded.
9. Under Incremental recording mode, ICB Strategy type 4 shall be used.
10. Under Incremental recording mode, the VAT entries in VAT shall be assigned as

follows:
- The virtual address 0 shall be used for File Set Descriptor.
- The virtual address 1 shall be used for the ICB of the root directory.
- The virtual addresses in the range of 2 to 255 shall be assigned for the

File Entry of DVD_RTAV directory and File Entries of files under the
DVD_RTAV directory.

6.12.4 Requirements for Real-Time file recording on DVD discs

DVD Video Recording specification defines the DVD specific sub-directory
"DVD_RTAV" and all DVD specific files under the DVD_RTAV directory. DVD
specific files consist of Real-Time files with the file type 249 and the related information
files.

UDF 2.01 March50 April150

For Volume Structure:
1. For DVD-RAM/RW discs, a disc shall consist of a single volume with a single

partition per side. For DVD-R discs, a disc shall consist of a single volume with
a write once partition and a virtual partition per side.

2. For DVD-RW discs, First Sparing Table and Second Sparing Table shall be
recorded.

For File Structure:

3. For DVD-RAM/RW discs, only Unallocated Space Bitmap shall be used.
4. For DVD-RW discs, the extent of Unallocated Space Bitmap should have the

length of Space Bitmap Descriptor for the available Data Recordable area.
5. Consumer Content Recorders record all their data in a special subdirectory,

DVD_RTAV, located in the root directory. The DVD_RTAV directory and its
contents have special file system restrictions which are defined in DVD
Specifications published from DVD Format/Logo Licensing Corporation, see
6.9.3. An implementation or application should not create or modify files in this
directory unless it meets the restrictions defined by DVD Specifications
specified above.

UDF 2.01 March50 April151

6.13 Recommendations for DVD+R and DVD+RW Media

DVD+R and DVD+RW Media require special consideration due to their nature. The
following guidelines are established to ensure interchange.

6.13.1 Use of UDF for incremental writing on DVD+R media

ECMA 167 requires an Anchor Volume Descriptor Pointer (AVDP) at sector 256 and
either N or (N - 256), where n is the last recorded Physical Address on the media. The file
system may be in an intermediate state before closing and still be interchangeable, but not
strictly in compliance with ECMA 167. In the intermediate state, only one AVDP exists.
It should exist at sector 256 or, if not possible due to a reserved Fragment, it shall exist at
sector 512. Before the second AVDP has been recorded, the file system is in an
intermediate state and is not strictly in compliance with ECMA 167.

Implementations should place file system control structures into virtual space and file
data into real space. Reader implementations may cache the entire VAT. The size of the
VAT should be considered by any UDF originating software.

The VAT may be located by using READ TRACK INFORMATION command. See
SCSI-3 Multi Media Commands.

6.13.1.1 Requirements
• An intermediate state is allowed on DVD+R media in which only one AVDP is

recorded; this single AVDP shall be at sector 256 or sector 512 and according to the
multisession rules below.

• The Logical Volume Integrity descriptor shall be recorded and the volume marked as
open. Logical volume integrity can be verified by finding the VAT ICB at the last
recorded Physical Address. If the VAT ICB is present, the volume is clean; otherwise
it is dirty.

• The Partition Header descriptor, if recorded, shall specify no Unallocated Space
Table, no Unallocated Space Bitmap, no Partition Integrity Table, no Freed Space
Table, and no Freed Space Bitmap. The drive is capable of reporting free space
directly, eliminating the need for a separate descriptor.

• Each surface shall contain 0 or 1 read only partitions, 0 or 1 write once partitions, and
0 or 1 virtual partitions. DVD+R media should contain 1 write once partition and 1
virtual partition.

6.13.1.2 “Bridge” formats
ISO 9660 requires a Primary Volume Descriptor (PVD) at sector 16. If an ISO 9660 file
system is desired, it may contain references to the same files as those referenced by
ECMA 167 structures, or reference a different set of files, or a combination of the two.

UDF 2.01 March50 April152

6.13.1.3 End of session data

A session is closed to enable reading by DVD-ROM drives. The last complete session on
the disc shall conform completely to ECMA 167 and have two AVDPs recorded. This
shall be accomplished by writing data according to End of session data table below.

End of session data
Count Description

1 Anchor Volume Descriptor Pointer
255 Implementation specific. May contain user

data, file system structures, and/or link areas.
1 VAT ICB.

The implementation specific data may contain repeated copies of the VAT and VAT ICB.
Compatibility with drives that do not accurately report the location of the last sector will
be enhanced. Implementations shall ensure that enough space is available to record the
end of session data. Recording the end of session data brings a volume into compliance
with ECMA 167.

6.13.1.4 Multisession in DVD+R

The Volume Recognition Sequence and Anchor Volume Descriptor Pointer locations are
specified by ECMA 167 to be at a location relative to the beginning of the disc. The
beginning of a disc shall be determined from a base address S for the purposes of finding
the VRS and AVDP.
‘S’ is the logical sector number of the first data sector in the last existent session of the
volume.
‘N’ is the logical sector number of the last recorded data sector on a disc.

There shall be no more than one writable partition or session at one time, and this session
shall be the last session on the disc.

6.13.1.4.1 Volume Recognition Sequence

The following descriptions are added to UDF (see also ECMA 167 Part 2) in order to
handle a multisession disc.

• The volume recognition area of the UDF Bridge format shall be the part of the

volume space starting at sector S + 16.
• The volume recognition space shall end in the Session in which it begins. As a result

of this definition, the volume recognition area always exists in the last session of a
disc.

UDF 2.01 March50 April153

6.13.1.4.2 Anchor Volume Descriptor Pointer
The Anchor Volume Descriptor Pointers (AVDP) shall be recorded at the following
logical sector numbers: S + 256 and N - 256. The AVDP at sector N - 256 shall be
recorded before closing a session; it may not be recorded while a session is open.

6.13.1.4.3 UDF Bridge format

The UDF Bridge format allows UDF to be added to a disc that may contain another file
system. A UDF Bridge disc shall contain a UDF file system in its last session. The last
session shall follow the rules described in “Multisession in DVD+R” section above. The
disc may contain sessions that are based on ISO 9660, vendor unique, or a combination of
file systems.

A new Main and Reserve Volume Descriptor Sequence may exist in each added session,
and may be different than earlier VDSs.

If the last session on a CD does not contain a valid UDF file system, the disc is not a UDF
disc. Only the UDF structures in the last session, and any UDF structures and data
referenced through them, are valid.

The UDF session may contain pointers to data or metadata in other sessions, pointers to
data or metadata only within the UDF session, or a combination of both. Some examples
of UDF Bridge discs are shown below.

Multisession UDF disc

256 sectors
16 sectors

Last Session
LSN=SLSN=0

256 sectors
16 sectors

Access to LSN=256Access to LSN=16+x

: Anchor point

: Volume recognition area

First Session

N - 256

UDF 2.01 March50 April154

ISO 9660 converted to UDF
1st session 3rd session

9660 Session UDF Session

Written by conventional 9660 formatter software

Managed by UDF

9660 Session

2nd session

Foreign format converted to UDF

6.13.2 Use of UDF on DVD+RW 4.7 GBytes Basic Format media

DVD+RW 4.7 GBytes Basic Format media are random readable and writable, where
needed the DVD+RW drive performs Read-Modify-Write cycles to accomplish this. For
DVD+RW 4.7 GBytes Basic Format media the drive does not perform defect
management. The DVD+RW 4.7 GBytes Basic Format provides the following features:

• A Physical Sector Size of 2048 Bytes

• 2048 Byte user data transfer

• Random read and write access

• Background physical formatting

• The Media Type is Overwritable (partition access type 4)

1st session 3rd session

Data Session UDF Session

Written by another file system

Managed by UDF

Data Session

2nd session

UDF 2.01 March50 April155

6.13.2.1 Requirements

• The packet length shall be 16 sectors (32 KB).

• Defective packets known at format time shall be allocated by the Non-Allocatable
Space Stream (see 3.3.7.2).

• Sparing shall be managed by the host via the sparable partition and a sparing table.

6.13.2.2 Background Physical Formatting

Physical formatting is performed by the drive in background. In implementing the host
applications, the following requirements for the drive should be considered:
• After some minimal amount of formatting has been performed, the operation

continues in background.

• At the initialization of the file system, after the Background Physical Formatting has
been started, the host must record the first AVDP at sector 256. The second AVDP
must be recorded after the Background physical Formatting has been finished. Before
the second AVDP has been recorded, the file system is in an intermediate state and is
not strictly in compliance with ECMA 167. The disc can be ejected before the
background formatting has finished, and in that case only one AVDP exists. Note that
at an early eject the drive must format all non-recorded areas up to the highest sector
number recorded by the host, this could cause a significant delay in the early eject
process. Implementations are recommended to allocate the lowest numbered blocks
available while background physical formatting is in progress.

• The background physical formatting status shall not influence the recording of the
LVID. At early eject the LVID shall be recorded in the same way as it will be
recorded on rewritable media that do not support background physical formatting.

The physical formating may be followed by a verification pass. Defects found during the
verification pass shall be enumerated in the Non-Allocatable Space Stream, see 3.3.7.2.

Finally, file system root structures shall be recorded. These mandatory file system and
root structures include the Volume Recognition Sequence, the Anchor Volume Descriptor
Pointers, the Volume Descriptor Sequences, a File Set Descriptor and a Root Directory.
Allocation for sparing shall occur during the formatting process. The sparing allocation
may be zero in length.

The unallocated space descriptors shall be recorded and shall reflect the space allocated to
not-spared defective areas and sector sparing areas.

The format may include all available space on the medium. However, formatting may be
interrupted upon request by the user. Formatting may later be continued to the full space.

UDF 2.01 March50 April156

6.14 Recommendations for Mount Rainier formatted media

The following guidelines are established to ensure interchange of Mount Rainier (MRW)
formatted media.

6.14.1 Properties of CD-MRW and DVD+MRW media and drives

The following is a list of key properties of MRW media and drives:
• A Physical Sector Size of 2048 Bytes

• The drive performs Read/Modify/Write cycles when needed. Data transfer between
the host and the MRW drive is in multiples of 2048 bytes.

• Random access read and write is possible

• Drive level defect management

• The drive performs background physical formatting

• The Media Type is Overwritable (partition access type 4)

• A Non-Allocatable Space List, Non-Allocatable Space Stream and Sparing table shall
not be used on MRW formatted media

6.14.2 Background Physical Formatting

At the initialization of the file system, after the Background Physical Formatting has been
started, the host must record the first AVDP at sector 256. The second AVDP must be
recorded after the Background physical Formatting has been finished. Before the second
AVDP has been recorded, the file system is in an intermediate state and is not strictly in
compliance with ECMA 167. The disc can be ejected before the background formatting is
finished, in that case only one AVDP exists on the MRW disc. Note that at an early eject
the drive must format all non-recorded areas up to the highest sector number recorded by
the host, this could cause a significant delay in the early eject process. Implementations
are recommended to allocate the lowest numbered blocks available while background
physical formatting is in progress.
The background physical formatting shall not influence the recording of the LVID. At
early eject the LVID shall be recorded in the same way as it will be recorded on
rewritable media that do not support background physical formatting.

UDF 2.01 March50 April157

6.126.15 UDF Media Format Revision History
The following table shows when changes to the UDF Specification have taken place that
affect the UDF format that can be recorded on a piece of media. The Document Change
Notices (DCNs), which document a specific change, are referenced in the table. The
column Update in UDF Revision describes which revision of the UDF specification that
the change was included. The fields Minimum UDF Read Revision and Minimum UDF
Write Revision relate to the Revision Access Control fields described in 2.2.6.4.

Description DCN Updated in
UDF

Revision

Minimum
UDF Read
Revision

Minimum
UDF Write

Revision
Allocation Extent Descriptor 2-002 1.02 1.02 1.02
Path Component File Version Number 2-003 1.02 1.02 1.02
Parent Directory Entries 2-004 1.02 1.02 1.02
Device Specification Extended Attribute 2-005 1.02 1.01 1.02
Maximum Logical Extent Length 2-006 1.02 1.02 1.02
Unallocated Space Entry 2-008 1.02 1.01 1.02
DVD Copyright Management Information 2-009 1.02 1.02 1.02
Logical Volume Identifier 2-010 1.02 1.01 1.02
Extent Length Field of an Allocation Descriptor 2-012 1.02 1.01 1.02
Non-relocatable & Contiguous Flags 2-013 1.02 1.01 1.02
Revision of Requirements for DVD-ROM 2-014 1.02 1.02 1.02
Revision Access Control 2-015 1.02 1.01 1.02
Volume Set Identifier 2-017 1.02 1.01 1.02
UniqueIDs for Extended Attributes 2-018 1.02 1.02 1.02
Clarification of Dstrings 2-019 1.02 1.01 1.02
Application FreeEASpace Extended Attribute 2-020 1.02 1.02 1.02
Update of Identifier Suffix to 1.02 2-021 1.02 1.02 1.02
Update of Identifier Suffix to 1.50 2-025 1.50 1.50 1.50
Virtual Partition Map Entry 2-026 1.50 1.50 1.50
Allocation of Sparable Partition Map 2-027 1.50 1.50 1.50
Addition of Virtual Allocation Table 2-028 1.50 1.50 1.50
Addition of Sparing Table 2-029 1.50 1.50 1.50
Addition of Non-Allocatable Space List 2-030 1.50 1.02 1.50
Reccommmendations for CD Media 2-031 1.50 1.50 1.50
Change 1.50 to 2.00 2-033 2.00 1.02 2.00
Clarified Domain flags 2-034 2.00 1.02 2.00
Unicode 2.0 Support 2-035 2.00 1.02 2.00
Named Streams 2-036 2.00 2.00 2.00
Unique ID Table as a Named Stream 2-037 2.00 1.02 2.00
Mac Resource Fork as a Named Stream 2-038 2.00 2.00 2.00
Location Field of the Extended Attribute Header 2-043 2.00 1.02 2.00
Access Control Lists 2-044 2.00 2.00 2.00
Descriptor Tags spanning block boundaries 2-047 2.00 1.02 2.00
Power Calibration Stream 2-048 2.00 1.02 2.00
Support for CD-R Multisession Required 2-050 2.00 1.50 2.00
Value of fields in LVID for virtual partition on CD-R 2-051 2.00 1.50 2.00
System stream to indicate volume backup time 2-055 2.00 2.00 2.00
New VAT 2-056 2.00 2.00 2.00
Restricting Virtual Addresses 2-057 2.00 1.50 2.00
File Times Extended Attribute 2-058 2.00 1.02 2.00
OS/2 EA Stream 2-061 2.00 2.00 2.00
Non-Allocatable Space Stream 2-062 2.00 1.02 2.00

UDF 2.01 March50 April158

Desciption DCN Updated in
UDF

Revision

Minimum
UDF Read
Revision

Minimum
UDF Write

Revision
Tag serial number & disaster recovery 5000 2.01 1.02 1.02
Change to DOS name transform algorithm 5002 2.01 - 1.02
Directory search order for dual namespaces 5004 2.01 1.02 1.02
Termination in strategy 4096 clarification 5006 2.01 1.02 1.02
Compression Ids 254/255 clarification 5007 2.01 2.00 2.00
Mac Resource Fork can only be in files 5008 2.01 2.00 2.00
Requirements for CD media 5009 2.01 1.50 1.50
AVDP Placement 5013 2.01 1.50 1.50
Non relocatable bit clarification 5014 2.01 1.02 1.02
Various editorial corrections 5015 2.01 - -
PCA stream fix 5018 2.01 2.00 2.00
Parent of system stream directory 5019 2.01 2.00 2.00
OS/400 updates 5020 2.01 2.00 2.00
Missing EntityID definitions 5021 2.01 2.00 2.00
Various editorial corrections 5024 2.01 - -
New OS types 5025 2.01 2.00 2.00
PVD Application Identifier field clarification 5026 2.01 1.02 1.02
Descriptor CRC length 5027 2.01 1.02 1.02
POSIX permissions clarifications 5029 2.01 2.00 2.00
Clarification of 3,2,1,1 5030 2.01 2.00 2.00
Volume recognition sequence 5031 2.01 1.02 2.00
Path length 5032 2.01 1.02 1.02
FID LengthOfImplementationUse 5034 2.01 1.02 1.02
Editorial – non-allocatable space stream 5035 2.01 - -
Allocation extent descriptor CRC length 5036 2.01 2.00 2.00
File types 248 to 255 5037 2.01 2.00 2.00
Real-time files on DVD-RAM 5038 2.01 2.00 2.00
Packet length specification 5039 2.01 2.00 2.00
Overlapping structures with conflicting field 5040 2.01 2.00 2.00
Information length reconstruction 5041 2.01 2.00 2.00
Timezone interpretation 5042 2.01 1.02 1.02
Missing partition descriptor and sparable partition 5044 2.01 1.02 1.02
Basic restrictions & requirements PD correction 5045 2.01 1.50 1.50
PVD and LVD volume sequence number 5046 2.01 1.02 1.02
Additions to 5.1 informative table 5047 2.01 2.00 2.00
Clarify uniqueID use for EAs/streams 5048 2.01 2.00 2.00

UDF 2.01 March50 April159

Description DCN Updated in
UDF

Revision

Minimum
UDF Read
Revision

Minimum
UDF Write

Revision
FID File Identifier length and Unicode uniqueness 5049 2.50 1.02 2.01
Disallow overlapping partitions 5061 2.50 1.02 1.02
Strategy 4096 only for WORM media 5062 2.50 1.02 1.02
UDF Unique ID Mapping Data 5063 2.50 2.50 2.50
Extended Attribute block alignment 5064 2.50 1.02 1.02
UDF Defined Named Streams section 5065 2.50 2.00 2.00
File Identifier translation code repair 5066 2.50 1.02 1.02
Correction of is_fileset_soft_protected rule 5069 2.50 2.00 2.00
Disallow hard linked directories 5070 2.50 1.02 2.50
Requirements for DVD-RAM/RW/R interchangeability 5071 2.50 2.00 2.00
Unique ID for System Stream Directory 5072 2.50 2.50 2.50
Shared description for some LVID and VAT fields 5074 2.50 2.01 2.01
Recommendations for Mount Rainier formatted media 5075 2.50 1.02 1.02
Recommendations for DVD+R and DVD+RW 5076 2.50 1.50 1.50
Section 3.3.6 put out of order 5077 2.50 2.00 2.00
UDF UniqueID clarifications 5078 2.50 2.00 2.00
Clarify partition Access Type 3 and 4 5079 2.50 2.01 2.01
Icbtag Parent ICB Location issue 5081 2.50 1.02 2.50
Clarification of Volume Recognition Sequence 5082 2.50 1.02 2.01
Metadata Partition Map 5086 2.50 2.50 2.50
Partition Alignment & ECC Block Size Definition 5089 2.50 1.02 2.50
Non-allocatable space stream usage clarifications 5090 2.50 1.50 1.50

UDF 2.01 March50 April160

6.136.16 Developer Registration Form
Any developer that plans on implementing ECMA 167 according to this document should
complete the developer registration form on the following page. By becoming a
registered OSTA developer you receive the following benefits:

• You will receive a list of the current OSTA registered developers and their
associated Implementation Identifiers.Developer IDs. The developers on this
list are encouraged to interchange media to verify data interchange among
implementations.

• Notification of OSTA Technical Committee meetings. You may attend a
limited number of these meetings without becoming an official OSTA
member.

• You can be added to the OSTA UDF email reflector. This reflector provides
you the opportunity to post technical questions on the OSTA Universal Disk
Format Specification.

• You will receive an invitation to participate in the development of the next
revision of this document.

For the latest information on OSTA and UDF visit the OSTA web site at, see POINTS
OF CONTACT on the following address:first page of this document.

http://www.osta.org

UDF 2.01 March50 April161

 OSTA Universal
Disk Format Specification
 Developer

Registration Form

Name: __

Company: ___

Address: ___

__

__

City: ___

State/Province: ___

 Zip/Postal Code: ___

Country: __

Phone: _________________________ FAX: __________________________________

Email: __

Please indicate on which operating systems you plan to support UDF:
O DOS O OS/2 O Macintosh O Linux
O UNIX/POSIX O OS/400 O Windows 9x O Windows NT/2000 O Windows XP
O Other ___

Please indicate which media types you plan to support:
O Magneto Optical O WORM O Phase Change
O CD-ROM O CD-R O CD-RW O CD-MRW
O DVD-ROM O DVD-R O DVD-RW O DVD-RAM
O DVD-Video
O DVD+RW O DVD-RW O DVD-Audio
O DVD+RW O DVD+R O DVD+MRW
O Other ___

Please indicate what value you plan to use inas the Implementation Identifier field of
the Entity Identifier descriptorEntityID “*Developer ID” to identify your
implementation, see 2.1.5:
 __

NOTE: The identifierDeveloper ID should be something that uniquely identifies your company as well as your
product.

UDF 2.01 March50 April162

O Please add my email address to the OSTA File Interchange Committee email reflector.

O Please send an OSTA Membership kit.

FAX Completed form to OSTA at 1-805-962-1541, or mail to:
 OSTA, 311 E. Carrillo Street, Santa Barbara, CA 93101E-mail or fax
completed form to OSTA. For address, see POINTS OF CONTACT on the first page of
this document.

4
4096, 9, 44, 9654, 107, 118

A
Access Control Lists, 8495
ACL, 8495
AD. See Allocation Descriptor
Allocation Descriptor, 9, 45, 50, 5154, 59, 60
Allocation Extent Descriptor, 5261
Anchor Volume Descriptor Pointer, 8, 2324
Application Entity Identifier, 1819
AVDP. See Anchor Volume Descriptor Pointer

B
BeOS, 100110, 111

C
CD-R, 3, 4, 5, 31, 126, 127, 128, 130CD-R, 4, 5, 32,

138, 139, 140, 142, 149, 150
CD-RW, 126, 128138, 140, 152
charspec, 12
Checksum, 68, 69, 70, 72, 74, 121
CRC, 20, 38, 50, 104, 106
Checksum, 78, 79, 80, 82, 84, 133
CRC, 21, 47, 59, 115, 117
CS0, 11, 12, 16, 22, 23, 24, 29, 40, 85, 8725, 30, 49,

96, 98

D
Defect management, 31, 35, 79, 13032, 37, 142
Descriptor Tag, 20, 38, 5021, 47, 59
Domain, 1, 14, 15, 16, 17
DOS, 56, 57, 58, 62, 63, 69, 88, 100, 136
DOS, 66, 67, 68, 72, 73, 78, 99, 110, 159
Dstrings, 12
DVD, 68, 98, 99, 122, 123, 124, 125, 134
DVD, 78, 108, 109, 134, 135, 136, 137, 155
DVD Copyright Management Information, 68, 98,

13478, 108, 155
DVD-Video, 122, 123134, 135

E
EA. See Extended Attribute

ECMA 167, 1
EFE. See Extended File Entry
Entity Identifier, 8, 14, 21, 2315, 22, 24, 25, 2726, 28,

39, 41, 44, 4730, 48, 50, 60, 67, 73, 98, 9953, 56,
57, 70, 77, 83, 108, 109

Extended Attributes, 3, 28, 64, 67, 68, 69, 70, 72, 73,
74, 9877, 78, 79, 80, 82, 83, 84, 108

Extended File Entry, 7, 43, 48, 5552, 57, 64, 65, 66,
74, 75, 9576, 84, 85, 86, 106

Extent Length, 8, 134155

F
FE. See File Entry
FID. See File Identifier Descriptor
File Entry, 9, 15, 47, 6056, 70
File Identifier Descriptor, 15, 42, 44, 56, 8651, 53, 66,

97
File Set Descriptor, 7, 9, 15, 17, 25, 38, 39, 41, 74,

76, 77, 79, 80, 95, 124, 129
File Set Descriptor Sequence, 25
Free Space, 26, 27, 31, 35, 79, 122, 127, 129, 13047,

48, 50, 84, 86, 87, 89, 91, 106, 136, 141
File Set Descriptor Sequence, 26
Free Space, 27, 28, 32, 37, 89, 134, 139, 141, 142
Freed Space Bitmap, 127139
Freed Space Table, 127139
FSD. See File Set Descriptor

H
HardWriteProtect, 17, 25, 39, 4126, 48, 50

I
ICB, 9, 42, 44, 56, 57, 64, 85, 86ICB, 9, 51, 53, 54,

66, 67, 74, 96, 97
ICB Tag, 9, 44, 57, 8553, 67, 96
Implementation Use Volume Descriptor, 15, 29, 9530,

106
ImplementationIdentifier, 21, 2322, 24, 25, 28, 41, 47,

4826, 30, 50, 60, 67, 68, 6956, 57, 70, 7377, 78,
79, 80, 83

Information Control Block. See ICB
Information Length, 34, 3536, 37
interchange level, 21, 22, 4023, 49
IUVD. See Implementation Use Volume Descriptor

UDF 2.01 March50 April163

L
Logical Block Size, 8, 9, 2425
Logical Sector Size, 8
Logical Volume, 6, 8, 9, 24, 25, 27, 31, 34, 87, 9525,

26, 28, 32, 37, 98, 106, 108
Logical Volume Descriptor, 9, 15, 24, 25, 2726, 29
Logical Volume Header Descriptor, 5564
Logical Volume Identifier, 9, 34, 40, 13436, 37, 49,

155
Logical Volume Integrity Descriptor, 15, 2516, 26,

5027, 59
LV. See Logical Volume
LVD. See Logical Volume Descriptor
LVID. See Logical Volume Integrity Descriptor

M
Macintosh, 3, 28, 35, 56, 58, 62, 64, 67, 69, 70, 7166,

68, 72, 73, 88, 90, 91, 98, 100, 116, 136
Metadata, 39, 74, 75, 76, 77, 79, 80, 81, 82, 83, 132
Multisession, 3, 12699, 101, 102, 108, 110, 128, 131,

132, 134159
Metadata, 48, 84, 85, 86, 87, 94, 144
Multisession, 3, 138, 140, 143, 144, 155

N
Named Stream, 76, 13486, 155
Non-Allocatable Space, 36, 37, 79, 12938, 39, 89,

141, 153

O
Orphan Space, 95106
OS/2, 3, 56, 57, 58, 62, 63, 67, 69, 73, 83, 84, 86, 88,

89, 98, 99, 100, 116, 120, 136
OS/400, 56, 58, 62, 63, 72, 73, 93, 94, 98, 99, 100,

136
OS/2, 3, 66, 67, 68, 72, 73, 77, 79, 83, 94, 95, 97, 99,

100, 108, 109, 110, 128, 132, 159
OS/400, 66, 68, 72, 73, 82, 83, 104, 105, 108, 109,

110, 159
Overwritable, 8, 9

P
packet, 4, 6, 31, 32, 35, 3633, 37, 127, 128, 129,

13038, 39, 139, 140, 141, 142
Partition Descriptor, 8, 15, 95, 124106, 136
Partition Header Descriptor, 4150
Partition Integrity Entry, 9, 15, 5016
partition map, 45, 6, 31, 32, 33, 34, 35, 36, 13037, 38,

142
partition number, 6, 31, 12432, 136
partition reference number, 4, 795, 89
Pathname, 5262
PD. See Partition Descriptor
power calibration, 79, 80, 81, 8290, 92, 93
Primary Volume Descriptor, 8, 15, 2122

PVD. See Primary Volume Descriptor

R
Read-Only, 8
Real-Time file, 45, 13354, 145
Records, 9, 5310, 62
Rewritable, 4, 8, 9, 41, 5150, 61

S
session, 4, 5, 126, 127, 128, 130, 131, 132session, 4,

5, 138, 139, 140, 142, 143, 144
SizeTable, 2627
SoftWriteProtect, 17, 25, 4126, 50
Space Bit Map, 95106
Sparable Partition Map, 3132
sparing, 31, 32, 35, 3633, 37, 79, 128, 129, 13038, 39,

90, 140, 141, 142
Sparing Table, 16, 32, 35, 36, 98, 9933, 37, 38, 108,

109
strategy, 9, 39, 4448, 54
Stream, 4, 28, 34, 35, 51, 55, 57, 58, 59, 69, 74, 75,

76, 77, 79, 80, 83, 84
Stream, 4, 60, 64, 67, 68, 69, 79, 84, 85, 86, 87, 89,

91, 94, 95
Stream Directory, 55, 74, 7564, 84, 85
Symbolic Link, 8596
System stream, 134155
System Stream Directory, 74, 75, 76, 7984, 85, 89

T
TagSerialNumber, 20, 3821, 47
Timestamp, 8, 13, 26, 5427, 63

U
UDF Bridge, 122, 131, 132134, 143, 144
UDF Entity Identifier, 98, 99, 101108, 109, 111
UDFUniqueID, 55, 77, 7964, 65, 87
Unallocated Space Bitmap, 127139
Unallocated Space Descriptor, 9, 2627
Unallocated Space Entry, 9, 49, 95, 13458, 106, 155
Unallocated Space Table, 127139
Unicode, 11, 12, 86, 87, 10297, 98, 112
UniqueID, 26, 47, 48, 55, 60, 64, 134
UNIX27, 56, 58, 72, 9257, 64, 70, 74, 155
UNIX, 66, 68, 82, 103
unrecorded sector, 96107
USD. See Unallocated Space Descriptor
User Interface, 2, 8596

V
VAT, 6, 31, 63, 126, 127, 128VAT, 6, 32, 73, 138,

139, 140, 149, 150
VDS. See Volume Descriptor Sequence
Virtual Allocation Table, 6
virtual partition, 31, 12732, 139, 149

UDF 2.01 March50 April164

Virtual Partition Map, 3132
Volume Descriptor Sequence, 7, 9, 123, 124, 129,

131135, 136, 141, 143
Volume Recognition Sequence, 7, 8, 19, 123, 129,

13120, 135, 141, 143
Volume Set, 8, 9, 21, 22, 29, 13423, 30, 155
VRS. See Volume Recognition Sequence

W
Windows, 56, 57, 58, 69, 88
Windows 95, 56, 57, 58, 91, 100, 136
Windows, 66, 67, 68, 78, 99
Windows 95, 66, 67, 68, 102, 110, 159
Windows CE, 100110, 111
Windows NT, 56, 57, 58, 69, 91, 100, 116, 136
Windows NT, 66, 67, 68, 78, 102, 110, 128, 159
WORM, 8, 9, 25, 39, 44, 96, 13626, 48, 107, 159

	Introduction
	Document Layout
	Compliance
	General References
	References
	Definitions
	Terms
	Acronyms

	Basic Restrictions & Requirements
	Part 1 - General
	Character Sets
	OSTA CS0 Charspec
	Dstrings
	Timestamp
	Entity Identifier
	Descriptor Tag Serial Number at Formatting Time
	Volume Recognition Sequence

	Part 3 - Volume Structure
	Descriptor Tag
	Primary Volume Descriptor
	Anchor Volume Descriptor Pointer
	Logical Volume Descriptor
	Unallocated Space Descriptor
	Logical Volume Integrity Descriptor
	Implemention Use Volume Descriptor
	Virtual Partition Map
	Sparable Partition Map
	Metadata Partition Map
	Virtual Allocation Table
	Sparing Table
	Metadata Partition
	Partition Descriptor

	Part 4 - File System
	Descriptor Tag
	File Set Descriptor
	Partition Header Descriptor
	File Identifier Descriptor
	ICB Tag
	File Entry
	Unallocated Space Entry
	Space Bitmap Descriptor
	Partition Integrity Entry
	Allocation Descriptors
	Allocation Extent Descriptor
	Pathname

	Part 5 - Record Structure

	System Dependent Requirements
	Part 1 - General
	Timestamp

	Part 3 - Volume Structure
	Logical Volume Header Descriptor

	Part 4 - File System
	File Identifier Descriptor
	ICB Tag
	File Entry
	Extended Attributes
	Named Streams
	Extended Attributes as named streams
	UDF Defined System Streams
	UDF Defined Non-System Streams

	User Interface Requirements
	Part 3 – Volume Structure
	Part 4 – File System
	ICB Tag
	File Identifier Descriptor

	Informative
	Descriptor Lengths
	Using Implementation Use Areas
	Entity Identifiers
	Orphan Space

	Boot Descriptor
	Clarification of Unrecorded Sectors
	Technical Contacts

	Appendices
	UDF Entity Identifier Definitions
	UDF Entity Identifier Values
	Operating System Identifiers
	OSTA Compressed Unicode Algorithm
	CRC Calculation
	Algorithm for Strategy Type 4096
	Identifier Translation Algorithms
	DOS Algorithm
	OS/2, Macintosh,Windows 95, Windows NT and UNIX Algorithm

	Extended Attribute Checksum Algorithm
	Requirements for DVD-ROM
	Constraints imposed on UDF by DVD-Video
	How to read a UDF DVD-Video disc
	Obtaining DVD Documents

	Recommendations for CD Media
	Use of UDF on CD-R media
	Use of UDF on CD-RW media
	Multisession and Mixed Mode

	Real-Time Files
	Requirements for DVD-R/-RW/RAM interchangeability
	Requirements for DVD-RAM
	Requirements for DVD-RW
	Requirements for DVD-R
	Requirements for Real-Time file recording on DVD discs

	Recommendations for DVD+R and DVD+RW Media
	Use of UDF for incremental writing on DVD+R media
	Use of UDF on DVD+RW 4.7 GBytes Basic Format media

	Recommendations for Mount Rainier formatted media
	Properties of CD-MRW and DVD+MRW media and drives
	Background Physical Formatting

	UDF Media Format Revision History
	Developer Registration Form

