
A Brief History
of the

BSD Fast Filesystem

Brought to you by

Dr. -arshall 1irk -c1usick

EuroBSD Conference
Copenhagen< Denmark
15th September 200B

Copyright 200B -arshall 1irk -c1usick.
Cll Rights ReserEed.

1

1979 ! Early Filesystem Work

G ImproEed reliability

G staged modi!cations to critical
!lesystem information

G modi!cations could be either
completed or repaired cleanly by fsck
after a crash

G Increased the block size of the !lesystem
from 512 to 11 bytes

G doubled performance because each disk
transfer accessed tJice as much data

G eliminated the need for indirect blocks
for many !les

G still utilized only about 4L of disk
bandJidth

2

1982 ! Birth of the Fast Filesystem

G Designed Jith a hybrid blocksize in Jhich
large blocks could be broken up into as
many as eight fragments

G Marge !les used large blocks

G Small !les could use as little as a single
fragment

G First deployed Jith default blocksize
41O512

G Still in use today on systems such as
Solaris and DarJin

P

1986 ! Dropping Disk-geometry Calculations

G Originally a cylinder group comprised one
or more consecutiEe cylinders on a disk

G The !lesystem could get an accurate EieJ
of the disk geometry and could compute
the rotational location of eEery sector

G By 1ST6< disks Jere hiding this
information and it Jas too complex to
compute it

G Cll the rotational layout code Jas
deprecated in faEor of laying out !les
using numerically close block numbers
(seXuential being EieJed as optimal)

G Cylinder group structure Jas retained only
as a conEenient Jay to manage logically-
close groups of blocks

4

1987 ! Filesystem Stacking

G From [ohn \eidemann at The UniEersity
of California at Mos Cngeles

G Based on DaEe Rosenthal^s original idea
(formerly of Sun -icrosystems)

G Filesystems easily Jidened:
G Cdding neJ `OP^s< for example

`OPbSTCRTTRCcS and
`OPbEcDTRCcS to add transactions

G Other !lesystems need not knoJ about
or respond to neJ `OP^s (kernel Jill
automatically return EOPcOTSUPP)

G Filesystems easily stacked:
G Umap !lesystem for cFS
G Moopback !lesystem

5

Stacking Mounts

G ClloJs !lesystem modules to be stacked

G dhen a reXuest is not implemented by a
layer it is passed doJn to the next loJer
layer.

G ReXuests that reach the bottom of the stack
Jithout being serEiced return Jith
EOPcOTSUPP

G ReXuests may be modi!ed and then passed
on to a loJer layer

local admin exportsoutside admin exports

EOPcOTSUP

FFS
UFS

uidOgid mapping

cFS serEer

6

Loopback Mounts

ClloJ arbitrary directories in the
!lesystem to be mounted anyJhere else

Implemented as a !lesystem layer

G Original !lesystem has a layer inserted
aboEe it

G This upper layer is mounted at neJ
mount point

G Mookups through this mount point are
redirected to the starting point in the
original !lesystem

B

Union Mounts

G ClloJs multiple mounted !lesystems to be
simultaneously accessible from the same
mount point

G Cll !lesystems except the topmost one are
treated as if they Jere mounted read-only

G Descent into a directory that exists in a
loJer layer !lesystem causes creation of
the corresponding directory in the top
layer !lesystem

T

Union Mount Naming

G Directory listing shoJs the sum of all !les
in all directories inEolEed in union mount

G If the same name appears in multiple
union mounted directories< only the object
from the topmost !lesystem in Jhich the
name appears is accessible

G ceJ !les are created in topmost mounted
!lesystem

G OEerJriting of existing !les in a loJer
layer causes a neJ Jritable copy to be
created in the topmost layer

G Mast !lesystem mounted is the !rst
!lesystem unmounted

S

Union Mount Examples

union mount Oa on Omnt Jith !les OaOx< OaOy< OaOz

union mount Ob on Omnt Jith !les ObOE< ObOJ< ObOx

ls Omnt fg E< J< x< y< z

File x is from Ob

Creat t appears in ObOt

Open y for reading operates on OaOy

Open y for Jriting copies OaOy to ObOy<
then Jrites !le ObOy

E< J< x< y< z

Oa x< y< z

Ob E< J< xtopmost layer

10

Union Mount Issues

G File remoEal in loJer layer done using
Jhiteout in top layer

G dhen creating a directory Jith the same
name as one in a loJer layer< it must be
marked opaXue

G Duplicate suppression is handled in the C-
library

G Implication of alloJing non-root users to
do their oJn mounts

11

Implementation

G Built using stackable Enode frameJork

G Union layer handles namespace
operationsh all others are passed to the
loJer layers

/b x, y, z

name

union
vnode

parent

vnode
layer
upper

vnode
layer
lower

cache

union
vnode

lookup

".."

/a v, w, x

12

1988 ! Raising the Blocksize

G Default blocksize raised to T1O11

G Small !les use a minimum of tJo disk
sectors

G cearly doubled throughput at a cost of
only 1.4L additional Jasted disk space

1P

1990 ! Dynamic Block Reallocation

G dith the adEent of disk caches and tag
Xueueing it became desirable to begin
laying !les out contiguously

G Size of !le unknoJn Jhen !rst opened

G If alJays assume big and place in
biggest aEailable space< then soon haEe
only small areas of contiguous space
aEailable

G If alJays assume small and place in
areas of fragmented space< then
beginning of large !les Jill be poorly
laid out

14

Implementation of Dynamic Block Reallocation

G Dynamic block reallocation places !le in
small areas of free space< then moEes them
to larger areas of free space if it groJs

G small !les use the small chunks of free
space

G large !les get laid out contiguously in
the large areas of free space

G Mittle increase in IOO load as the buffer
cache generally holds the !le until its !nal
location is knoJn

G Free space remains largely unfragmented
eE en after years of use (15L Eersus 40L
degredation after three years)

15

1996 ! Soft Updates

G -etadata that must be maintained

G directories

G inodes

G bitmaps

G Rules

1) ceEer point to a structure before it is
initialized

2) ceEer reuse a resource before
nullifying all preEious pointers to it

P) ceEer reset an old pointer to a liEe
resource before the neJ pointer has
been set

16

Keeping Metadata Consistent 1

G Synchronous Jrites
G Bene!ts: simple and effectiEe
G DraJbacks: createOdelete intensiEe

applications run sloJly< sloJ recoEery
after a crash

G con- òlatile RC-
G Bene!ts: usually runs all operations at

memory speed< Xuick recoEery after a
crash

G DraJbacks: expensiEe hardJare<
someJhat complex recoEery

G Ctomic Updates (logging)
G Bene!ts: createOremoEe do not sloJ

doJn under under heaEy load< Xuick
recoEery after a crash

G DraJbacks: extra IOO generated< little
speed-up for light loads

1B

Keeping Metadata Consistent 2

G Partial ordering of buffer Jrites

G Bene!ts: 25L reduction in synchronous
Jrites

G DraJbacks: still disk limited for
createOdelete intensiEe applications<
sloJ recoEery after a crash

G Soft updates

G Bene!ts: most operations run at
memory speed< reduced system IOO<
instant recoEery after a crash

G DraJbacks: complex code and
increased memory loading

1T

Tracking File Removal Dependencies

Ordering constraints

1) came in on-disk directory must be
deleted

2) Deallocate (zero out) on-disk inode

P) Release !le^s blocks to free-space bitmap

\oJ soft updates maintains this ordering

1) iero out directory entry in kernel buffer
and hang a dependency structure on
buffer to be noti!ed Jhen buffer is
Jritten.

2) dhen noti!ed that directory buffer is
Jritten< saEe list of inode^s blocks< then
zero out inode in kernel buffer and hang a
dependency structure (containing the list
of blocks) on buffer to be noti!ed Jhen
buffer is Jritten.

P) dhen noti!ed that inode buffer is
Jritten< release list of saEed blocks to
free-space bitmap.

1S

1999 ! Snapshots

G Create a copy-on-Jrite image of a
!lesystem partition

1) Suspend processes initiating system
calls that modify the !lesystem

2) ClloJ all modi!cations in progress to
complete

P) drite out all dirty buffers to disk

4) Create an empty jjsnapshot^̂ !le the
size of the !lesystem partition

5) -ark the blocks that are currently in
use

6) Resume Jrite operations on the
!lesystem

B) On each disk Jrite< check to see if it
has been copied making a copy if the
Jrite is for an in-use block that has
not yet been copied

20

Snapshot Implementation

G Each Inode block pointer represents a disk
block

G Copied blocks point to the location of the
copied block

G Those marked jjused^̂ Jill read the
underlying block< but cause a copy to be
created if Jritten

G Those marked jjfree^̂ Jill read or Jrite
the underlying block

\eader

. . .

triple
double
single

used

used
free
free
free

used

used
free
free

used
used

Inode

21

2001 ! Raising the Blocksize, Again

G Default blocksize raised to 161O21

G Small !les use a minimum of four disk
sectors

G cearly doubled throughput at a cost of
only 2.SL additional Jasted disk space

22

2002 ! Background Fsck

G Disk state is alJays Ealid but behind in-
memory state

G Only inconsistencies:

G Blocks marked in use that are free

G Inodes marked in use that are free

G It is safe to run immediately after a crash
though eEentually lost space must be
reclaimed

2P

Background Block Recovery

G Block recoEery on an actiEe system:

1) Snapshot the !lesystem

2) Run standard !lesystem check
program on the snapshot

P) Cdd a system call to add lost blocks
and inodes to the !lesystem map

24

Other Uses for Snapshots

G MiE e dumps

1) Snapshot the !lesystem

2) Run standard dump on the snapshot

G -id-day backups

1) Snapshot the !lesystem eEery tJo
hours

2) -ount each snapshot in a Jell knoJn
location

P) Users can recoEer !les from earlier in
the day by copying them out of the
snapshot

25

2003 ! Multi-terabyte support

G Original fast !lesystem used P2-bit
pointers to reference a !le^s blocks

G The P2-bit block pointers of the original
!lesystem run out of space in the 1 to 4
terabyte range

G Considered other alternatiEes but chose to
extend the original !lesystem

G ClloJed reuse of most of existing code
base Jhich alloJed Xuick deEelopment
and deployment

G Became stable and reliable rapidly

G Same code base supported both P2-bit
block and 64-bit block !lesystem
formats so bug !xes and feature or
performance enhancements usually
applied to both !lesystem formats

26

Extended Attributes

G Extended attributes added at the same time
as multi-terabyte support

G Extended attributes are a piece of auxiliary
data storage associated Jith an inode that
can be used to store auxiliary data that is
separate from the contents of the !le

G By integrating the extended attributes into
the inode itself< fsync() can proEide the
same integrity guarantees as are made for
the contents of the !le itself

2B

2004 ! Access-control Lists

G Extended attributes Jere !rst used to
support an access control list (CCM)

G speci!c list of the users that are
permitted to access the !le

G a list of the permissions that each user
is granted

2T

Implementation of Access-control Lists

G Replaced an earlier implementation using
a single auxiliary !le per !lesystem
indexed by inode number Jhich had tJo
problems:

G !xed size of the space per inode meant
only short user lists

G dif!cult to atomically commit changes
to the CCM

G Both problems !xed by using extended
attributes:

G extended attribute can be P21< so long
list of users possible

G atomic update is easy since it can be
updated Jith one Jrite of inode

2S

2005 ! Mandatory-access Controls

G Extended attributes next used for
mandatory access control (-CC)

G -CC frameJork permits dynamically
introduced system-security modules to
modify system security functionality

G -CC frameJork proEides control oEer
kernel entry points affecting access
control and object creation

G dhen hit< -CC frameJork then calls
out to security modules to offer them
the opportunity to modify security
behaEior

G Filesystem does not codify hoJ the labels
are used or enforcedh it just stores the
labels associated and produces them Jhen
a security modules needs to do a
permission check

P0

2006 ! Symmetric Multi-processing

G In the late 1SS0^s< the FreeBSD Project
began the long hard task of conEerting
their kernel to support symmetric multi-
processing

G Start Jith giant lock around kernel

G Piece-by-piece add multi-threaded locking
and remoEe from giant lock

2004 ! `node interface

2005 ! Disk subsystem

2006 ! Fast !lesystem

P1

The End

-ay the Source Be dith koul

P2

