
Writing NetBSD drivers
with the bus space(9) framework

Radoslaw Kujawa – rkujawa@NetBSD.org

The NetBSD Foundation

October 15, 2012

Table of Contents I

1 Introduction
Why was this tutorial created?
What won’t be covered here?
What is a driver anyway?
What do you need to write a driver?

2 The NetBSD driver model
The NetBSD kernel basics
Kernel autoconfiguration framework

3 Example driver from scratch
Development environment
Quick introduction to GXemul

Our hardware - a fake PCI card
Adding a new driver to the NetBSD kernel
Matching the PCI device
Attaching to the PCI device

Table of Contents II

Variable types used with bus space

Mapping the hardware resources
Accessing the hardware registers

4 Interacting with userspace
Device files
Using ioctls
An example user space program

5 A few tips
Avoiding common pitfalls
Basic driver debugging

6 Summary
The end

Section 1

Introduction

Why was this tutorial created?

I Introductory-level documentation is scarce

I Writing device drivers is often considered black magic

I Reading the man pages won’t give you the big picture

I BSD systems are always in need of new drivers

I Device drivers are fun ,

What won’t be covered here?

We don’t have much time, so several advanced topics were
omitted:

I Interrupt handling

I Direct Memory Access and the bus dma framework

I Power management

I Driver detachment

I Drivers as kernel modules

I Examples for buses other than PCI

I Pretty much everything else...

However, once you finish this tutorial, you should be able to pursue
this knowledge yourself.

What is a driver anyway?

I The interface between user space and hardware, implemented
as a part of the kernel

I The NetBSD drivers are written mostly in C

I Sometimes they have machine dependent assembler parts, but
this is a rare case

What do you need to write a driver?

I C programming skills

I Hardware documentation or the ability to reverse engineer the
hardware

I A reference driver implementation will help but is not essential

I A NetBSD installation and kernel source, or a cross-build
environment (the latter is usually preferred for development of
drivers)

I A lot of time, coffee and patience ,

Why is writing the device drivers considered difficult?

I It’s not as difficult as you may expect, in fact during this
tutorial we’ll prove that it’s quite easy

I You need to think on a very low level
• Good understanding of computer architecture is a must

I Often documentation is the main problem – writing the driver
is not possible if you don’t understand how the device works
• No access to documentation (uncooperative hardware vendors,

vendors out of business)
• Documentation is incomplete or plain wrong
• Reverse engineering can solve these problems but it’s a very

time consuming process

Section 2

The NetBSD driver model

The NetBSD kernel basics

I NetBSD has a classic monolithic UNIX-like kernel - all drivers
are running in the same address space

I Thanks to the above, communication between drivers and
other kernel layers is simple

I However, it also means that one badly written driver can
affect the whole kernel

I Numerous in-kernel frameworks standardise the way drivers
are written (bus space, autoconf, etc.)

The NetBSD source directory structure

I We’ll only cover parts interesting for a device driver
programmer

I src/sys/ - kernel source directory

I src/sys/dev/ - machine-independent device drivers

I src/sys/arch/ - port-specific or architecture-specific parts
(such as the low-level system initialisation procedures or
machine-dependent drivers)

I src/sys/arch/$PORTNAME/conf/ - kernel configuration files
for a given port

Kernel autoconfiguration framework - autoconf(9)

I Autoconfiguration is the process of matching hardware devices
with an appropriate device driver

I The kernel message buffer (dmesg) contains information
about autoconfiguration of devices

I driver0 at bus0: Foo hardware

• Instance 0 of the driver has attached to instance 0 of the
particular bus

• Such messages often carry additional bus-specific information
about the exact location of the device (like the device and
function number on the PCI bus)

I driver0: some message

• Additional information about the driver state or device
configuration

Autoconfiguration as seen in the dmesg

NetBSD 6.99.12 (GENERIC) #7: Fri Oct 5 18:43:21 CEST 2012

rkujawa@saiko.local:/Users/rkujawa/netbsd-eurobsdcon2012/src/sys/arch/cobalt/compile/obj/GENERIC

Cobalt Qube 2

total memory = 32768 KB

avail memory = 27380 KB

mainbus0 (root)

com0 at mainbus0 addr 0x1c800000 level 3: ns16550a, working fifo

com0: console

cpu0 at mainbus0: QED RM5200 CPU (0x28a0) Rev. 10.0 with built-in FPU Rev. 1.0

cpu0: 48 TLB entries, 256MB max page size

cpu0: 32KB/32B 2-way set-associative L1 instruction cache

cpu0: 32KB/32B 2-way set-associative write-back L1 data cache

mcclock0 at mainbus0 addr 0x10000070: mc146818 compatible time-of-day clock

panel0 at mainbus0 addr 0x1f000000

gt0 at mainbus0 addr 0x14000000

pci0 at gt0

pchb0 at pci0 dev 0 function 0: Galileo GT-64011 System Controller, rev 1

pcib0 at pci0 dev 9 function 0

pcib0: VIA Technologies VT82C586 PCI-ISA Bridge, rev 57

viaide0 at pci0 dev 9 function 1

viaide0: VIA Technologies VT82C586 (Apollo VP) ATA33 controller

viaide0: primary channel interrupting at irq 14

atabus0 at viaide0 channel 0

viaide0: secondary channel interrupting at irq 15

atabus1 at viaide0 channel 1

wd0 at atabus0 drive 0

wd0: <netbsd-cobalt.img>

wd0: 750 MB, 1524 cyl, 16 head, 63 sec, 512 bytes/sect x 1536192 sectors

Autoconfiguration as seen in the dmesg

The bus space(9) framework

I “The goal of the bus space functions is to allow a single
driver source file to manipulate a set of devices on different
system architectures, and to allow a single driver object file to
manipulate a set of devices on multiple bus types on a single
architecture.”

I Provides a set of functions implementing common operations
on the bus like mapping, reading, writing, copying, etc.

I The bus space(9) is implemented at the machine-dependent
level (typically it’s a part of architecture-specific code), but all
implementations present the same interface1

1At least they should, some functions are missing on less popular ports

Machine independent drivers

I If possible drivers should work on any hardware platform

I High quality, machine-independent (MI) drivers are an
important factor that adds to NetBSD portability

I Some drivers are completely MI, some have MD or bus
dependent attachments and some are completely MD
• A driver for a typical PCI card will be completely MI
• A driver for the components of a SoC will usually be

completely MD

I The bus space abstraction helps to achieve portability,
transparently handling endianness issues and hiding bus
implementation details from the device driver

I Even if we have MI drivers, writing the drivers is always
significant part of effort needed to port NetBSD to new
hardware

Section 3

Example driver from scratch

Development environment

I Out of scope of this course, but very well documented

I Cross compiling is an easy task with the build.sh script

I Described in Part V of the NetBSD Guide

I Check out the NetBSD sources

I $ build.sh -m cobalt tools will build compiler,
assembler, linker, etc. for cobalt port

I $ build.sh -m cobalt kernel=GENERIC will build the
GENERIC kernel for cobalt

I Call build.sh with a -u parameter to update (won’t
rebuilding everything)

I build.sh is calling nbconfig and nbmake tools, no magic
involved

http://www.netbsd.org/docs/guide/en/part-compile.html

Quick introduction to GXemul

I A framework for full-system computer architecture emulation,
excellent for educational purposes

I Capable of emulating several real machines supported by
NetBSD

I We’ll emulate a Cobalt, MIPS-based micro server with PCI
bus

I I’ve modified GXemul and implemented an emulation of an
additional PCI device

I It will be used to show (almost) a real-life example of the
driver development process

http://en.wikipedia.org/wiki/Cobalt_Qube

Our hardware - functional description

I Business applications often use arithmetic operations like
addition

I Fake Cards Inc. responded to market needs and created a new
product, Advanced Addition Accelerator

I Pointy Haired Bosses will certainly buy it to accelerate their
business applications, so let’s create a driver for NetBSD!

Our hardware - technical details

I Overview
• Implemented as a PCI device
• Arithmetic unit capable of addition of two numbers
• Four2 registers in the PCI memory space

I PCI configuration space
• Identified by the PCI vendor ID 0xfabc and product ID
0x0001

• Base Address Register 0x10 used to configure the engine
address

• 4 x 32-bit registers = 16 bytes
• Other configuration registers irrelevant

2Only three of these registers are of any importance for us at this moment

Our hardware - technical details (memory mapped register
set)

I Advanced Addition Acceleration registers

Register Name Offset Description

COMMAND 0x4 Register used to issue commands to the engine

DATA 0x8 Register used to load data to internal engine registers

RESULT 0xC Register used to store the result of arithmetic operation

I COMMAND register

Bit R/W Description

0 W Execute ADD operation on values loaded into internal register A and B

1 R/W Select internal register A for access through DATA register

2 R/W Select internal register B for access through DATA register

I Selecting internal register A and B at the same time will lead to undefined
behaviour

Our hardware - technical details (memory mapped register
set)

I DATA register

Bit R/W Description

0:31 R/W Read/write the value in internal engine register

I RESULT register

Bit R/W Description

0:31 R Holds the result of last ADD operation

Our hardware - technical details (operation algorithm)

I Select the internal register A for access (write 0x2 into
COMMAND register)

I Write the first number into DATA register

I Select the internal register B for access (write 0x4 into
COMMAND register)

I Write the second number into DATA register

I Issue the ADD operation (write 0x1 into COMMAND register)

I Read the result from RESULT register

Adding a new driver to the NetBSD kernel

I We’ll discuss the steps needed to add a new MI PCI device
driver to the NetBSD kernel
• Add the vendor and device ID to the database of PCI IDs
• Create a set of the driver source files in
src/sys/dev/$BUSNAME/

• Add the new driver to a DEVNAMES file
• Add the new driver to a
src/sys/dev/$BUSNAME/$BUSNAME.files file

Modifying the PCI device database

unmatched vendor 0xfabc product 0x0001 (Co-processor

processor, revision 0x01) at pci0 dev 12 function 0

not configured

I The kernel does not know anything about this vendor and
device

I Add it to the PCI device database -
src/sys/dev/pci/pcidevs

I vendor VENDORNAME 0xVENDORID Long Vendor Name

I product VENDORNAME PRODUCTNAME 0xPRODUCTID Long

Product Name

I To regenerate pcidevs*.h run awk -f devlist2h.awk

pcidevs or Makefile.pcidevs if you’re on NetBSD

Modifying the PCI device database - example

--- pcidevs 29 Sep 2012 10:26:14 -0000 1.1139

+++ pcidevs 5 Oct 2012 08:52:59 -0000

@@ -669,6 +669,7 @@

vendor CHRYSALIS 0xcafe Chrysalis-ITS

vendor MIDDLE_DIGITAL 0xdeaf Middle Digital

vendor ARC 0xedd8 ARC Logic

+vendor FAKECARDS 0xfabc Fake Cards

vendor INVALID 0xffff INVALID VENDOR ID

/*

@@ -2120,6 +2121,9 @@

/* Eumitcom products */

product EUMITCOM WL11000P 0x1100 WL11000P PCI WaveLAN/IEEE 802.11

+/* FakeCards products */

+product FAKECARDS AAA 0x0001 Advanced Addition Accelerator

+

/* O2 Micro */

product O2MICRO 00F7 0x00f7 Integrated OHCI IEEE 1394 Host Controller

product O2MICRO OZ6729 0x6729 OZ6729 PCI-PCMCIA Bridge

Modifying the PCI device database - example

Fake Cards Advanced Addition Accelerator (Co-processor

processor, revision 0x01) at pci0 dev 12 function 0

not configured

I Now the kernel knows the vendor and product ID

I But there’s still no driver for this device

Adding the new PCI driver

I Choose a name - short, easy to remember, avoid numbers
• faa looks like a good name, but you can choose any name you

like

I Create a set of new files in src/sys/dev/pci

• faa.c - main driver code
• faareg.h - register definitions3

• faavar.h - driver structures and functions used in other parts
of the kernel4

I Modify driver definitions
• src/sys/dev/pci/files.pci
• src/sys/dev/DEVNAMES

I Add the driver to a port-specific kernel configuration file -
src/sys/arch/$PORTNAME/conf/GENERIC

3Might not exist if the driver is only a simple passthrough from a specific
bus to another MI driver.

4Omitted if not needed.

Adding the new PCI driver - main driver

I Kernel includes are at the beginning, followed by
machine-specific and bus-specific includes

I Should also include faareg.h and faavar.h files

I A minimal driver needs just two functions
• faa match (or faa probe for some buses)
• faa attach

I The CFATTACH DECL NEW macro plugs the above functions
into autoconf(9) mechanism

Adding the new PCI driver - main driver

I static int faa match(device t parent, cfdata t
match, void *aux);

• Check if the driver should attach to a given device (for
example in case of PCI bus, it will be used to check vendor
and product ID)

• parent - pointer to parent’s driver device structure
• match - pointer to autoconf(9) details structure
• aux - despite the name the most important argument, usually

contains bus-specific structure describing device details

I static void faa attach(device t parent, device t
self, void *aux);

• Attach the driver to a given device
• parent - same as with match function
• self - pointer to driver’s device structure
• aux - same as with match function

I See definitions of these functions in the driver(9) man page.

http://netbsd.gw.com/cgi-bin/man-cgi?driver+9+NetBSD-current

Adding the new PCI driver - main driver cont’d

I CFATTACH DECL NEW(faa, sizeof(struct faa softc),
faa match, faa attach, NULL, NULL);

• driver name
• size of softc structure containing state of driver’s instance
• match/probe function
• attach function
• detach function
• activate function

I The “ NEW” name is not fortunate

I Pass NULL for unimplemented functions

I We won’t cover detach and activate now, as they are not
needed for a simple driver

Adding the new PCI driver - main driver example

I src/sys/dev/pci/faa.c

#inc l u d e <s y s / c d e f s . h>
KERNEL RCSID (0 , ”$NetBSD$”) ;

#inc l u d e <s y s /param . h>
#inc l u d e <s y s / d e v i c e . h>
#inc l u d e <dev / p c i / p c i v a r . h>
#inc l u d e <dev / p c i / p c i d e v s . h>
#inc l u d e <dev / p c i / f a a r e g . h>
#inc l u d e <dev / p c i / f a a v a r . h>

s t a t i c i n t faa match (d e v i c e t , c f d a t a t , vo id ∗) ;
s t a t i c vo id f a a a t t a c h (d e v i c e t , d e v i c e t , vo id ∗) ;

CFATTACH DECL NEW(faa , s i z e o f (s t r u c t f a a s o f t c) ,
faa match , f a a a t t a c h , NULL , NULL) ;

s t a t i c i n t
faa match (d e v i c e t parent , c f d a t a t match , vo id ∗aux)
{

r e t u r n 0 ;
}

s t a t i c vo id
f a a a t t a c h (d e v i c e t parent , d e v i c e t s e l f , vo id ∗aux)
{
}

Adding the new PCI driver - auxiliary includes

I src/sys/dev/pci/faareg.h

#i f n d e f FAAREG H
#de f i n e FAAREG H
/∗
∗ R e g i s t e r s a r e d e f i n e d u s i n g p r e p r o c e s s o r :
∗ #d e f i n e FAA REGNAME 0 x0
∗ We ’ l l add them l a t e r , l e t ’ s l e a v e i t empty f o r now .
∗/

#end i f /∗ FAAREG H ∗/

I src/sys/dev/pci/faavar.h

#i f n d e f FAAVAR H
#de f i n e FAAVAR H

/∗ s c d e v i s an a b s o l u t e minimum , we ’ l l add more l a t e r ∗/
s t r u c t f a a s o f t c {

d e v i c e t s c d e v ;
} ;
#end i f /∗ FAAVAR H ∗/

Adding the new PCI driver - registering the driver

I src/sys/dev/DEVNAMES

--- DEVNAMES 1 Sep 2012 11:19:58 -0000 1.279

+++ DEVNAMES 6 Oct 2012 19:59:06 -0000

@@ -436,6 +436,7 @@

ex MI

exphy MI

ezload MI Attribute

+faa MI

fb luna68k

fb news68k

fb newsmips

Adding the new PCI driver - registering the driver

I src/sys/dev/pci/files.pci

--- pci/files.pci 2 Aug 2012 00:17:44 -0000 1.360

+++ pci/files.pci 6 Oct 2012 19:59:10 -0000

@@ -1122,3 +1122,9 @@

device tdvfb: wsemuldisplaydev, rasops8, vcons, videomode

attach tdvfb at pci

file dev/pci/tdvfb.c tdvfb

+

+# FakeCards Advanced Addition Accelerator

+device faa

+attach faa at pci

+file dev/pci/faa.c faa

+

Adding the new PCI driver to the kernel configuration

I src/sys/arch/cobalt/conf/GENERIC

--- GENERIC 10 Mar 2012 21:51:50 -0000 1.134

+++ GENERIC 6 Oct 2012 20:12:37 -0000

@@ -302,6 +302,9 @@

#fms* at pci? dev ? function ? # Forte Media FM801

#sv* at pci? dev ? function ? # S3 SonicVibes

+# Fake Cards Advanced Addition Accelerator

+faa* at pci? dev ? function ?

+

Audio support

#audio* at audiobus?

I The above definition means that an instance of faa may be
attached to any PCI bus, any device, any function

I The exact position of the rule in the configuration file is not
important in this case

I See config(5) for a description of the device definition
language

http://netbsd.gw.com/cgi-bin/man-cgi?config+5+NetBSD-current

Adding the new PCI driver - example

I The driver should compile now

I The driver’s match function will check if the driver is able to
work with a given device

I Since it is not implemented, the kernel will not attach the
driver

Matching the PCI device

I Modify the faa match function to match the specified PCI
device

I Use PCI VENDOR and PCI PRODUCT macros to obtain the IDs

s t a t i c i n t
faa match (d e v i c e t parent , c f d a t a t match , vo id ∗aux)
{

const s t r u c t p c i a t t a c h a r g s ∗pa = (const s t r u c t p c i a t t a c h a r g s ∗) aux ;

i f ((PCI VENDOR(pa−>p a i d) == PCI VENDOR FAKECARDS)
&& (PCI PRODUCT(pa−>p a i d) == PCI PRODUCT FAKECARDS AAA))

r e t u r n 1 ;

r e t u r n 0 ;
}

Attaching to the PCI device

faa0 at pci0 dev 12 function 0

I The driver has successfully matched and attached to the PCI
device but still is not doing anything useful

I Let’s fill an attach function and actually program the hardware

Variable types used with bus space

I bus space tag t – type used to describe a particular bus,
usually passed to the driver from MI bus structures

I bus space handle t – used to describe a mapped range of
bus space, usually created with the bus space map() function

I bus addr t – address on the bus

I bus size t – an amount of space on the bus

I Contents of these types are MD, so avoid modifying from
within the driver5

5although you’ll often have to use bus size t

Why do we need to “map” the resources?

I In a memory-protected environment like NetBSD one cannot
directly access physical addresses

I The kernel has its own virtual address space

I Physical space can be made visible in kernel virtual address
space through the process of mapping

I It’s a machine-dependent process but it’s also conveniently
hidden from the programmer by the bus space framework

I “The bus space must be mapped before it can be used, and
should be unmapped when it is no longer needed”

Mapping the hardware resources

I The generic bus space(9) way to map space

bus_space_map(bus_space_tag_t space, bus_addr_t address,

bus_size_t size, int flags, bus_space_handle_t *handlep);

I bus space map creates a mapping from the physical address
to a kernel virtual address

I space – represents the bus on which the mapping will be
created

I address – typically represents the physical address for which
a mapping will be created

I size – describes the amount of bus space to be mapped

I handlep – pointer to mapped space (filled after successful
mapping)

I Separate space and address

Mapping the hardware resources

I The PCI-specific way to map space

pci_mapreg_map(const struct pci_attach_args *pa, int reg, pcireg_t type,

int busflags, bus_space_tag_t *tagp, bus_space_handle_t *handlep,

bus_addr_t *basep, bus_size_t *sizep);

I pci mapreg map creates mapping from physical address
present in specified BAR register to kernel virtual address

I pa – struct describing PCI attachment details (passed through
aux)

I reg – BAR register number
I type – Select mapping type (I/O, memory)
I busflags – Passed to bus space map flags argument
I tagp – pointer to bus space tag
I handlep – pointer to a mapped space
I basep – address of a mapped space
I sizep – size of mapped space (equivalent to BAR size)
I The last four parameters are filled after successful mapping

Mapping the registers using BAR - adding auxiliary includes

I src/sys/dev/pci/faareg.h

#define FAA_MMREG_BAR 0x10

I src/sys/dev/pci/faavar.h

struct faa_softc {

device_t sc_dev;

bus_space_tag_t sc_regt;

bus_space_handle_t sc_regh;

bus_addr_t sc_reg_pa;

};

Mapping the registers using BAR - main driver code

I src/sys/dev/pci/faa.c

s t a t i c vo id
f a a a t t a c h (d e v i c e t parent , d e v i c e t s e l f , vo id ∗aux)
{

s t r u c t f a a s o f t c ∗ s c = d e v i c e p r i v a t e (s e l f) ;
const s t r u c t p c i a t t a c h a r g s ∗pa = aux ;

sc−>s c d e v = s e l f ;

p c i a p r i n t d e v i n f o (pa , NULL) ;

i f (pc i mapreg map (pa , FAA MMREG BAR, PCI MAPREG TYPE MEM , 0 ,
&sc−>s c r e g t , &sc−>s c r e g h , &sc−>s c r e g p a , 0) != 0) {
a p r i n t e r r o r d e v (sc−>s c d e v , ” can ’ t map t h e BAR\n”) ;
r e t u r n ;

}

a p r i n t n o r m a l d e v (sc−>s c d e v , ” r e g s a t 0 x%08x\n” , (u i n t 3 2 t) sc−>
s c r e g p a) ;

}

Accessing the hardware registers

I The bus space read * and bus space write * functions
are basic methods of reading and writing the hardware
registers

I uintX t bus space read X(bus space tag t space,

bus space handle t handle, bus size t offset);

I void bus space write X(bus space tag t space,
bus space handle t handle, bus size t offset,
uintX t value);

• space - tag describing the bus
• handle - describes the exact location on the bus where

read/write should occur, this handle is obtained by
bus space map

• offset - offset from handle location
• The read function returns the data read from the specified

location, while write has an argument value which should be
filled with data to be written

Variants of bus space read and bus space write

Data Read function Write function

8-bit bus space read 1 bus space write 1

16-bit bus space read 2 bus space write 2

32-bit bus space read 4 bus space write 4

64-bit bus space read 8 bus space write 8

I There are many more variants of read and write functions and
they are useful in certain situations, see the bus space(9) man
page

http://netbsd.gw.com/cgi-bin/man-cgi?bus_space++NetBSD-current

Accessing the hardware registers - example

I Create a function that will write a value into the DATA register
of our device, then read it back and check if the value is the
same as written

I Define the DATA register in the driver

I src/sys/dev/pci/faareg.h

#de f i n e FAA DATA 0 x8
#de f i n e FAA COMMAND 0 x4
#de f i n e FAA COMMAND STORE A BIT (1)

I Define the new function in main driver code

I static bool faa check(struct faa softc *sc);

Accessing the hardware registers - example

I src/sys/dev/pci/faa.c

s t a t i c vo id
f a a a t t a c h (d e v i c e t parent , d e v i c e t s e l f , vo id ∗aux)
{

/∗ . . . ∗/
i f (! f a a c h e c k (s c)) {

a p r i n t e r r o r d e v (sc−>s c d e v , ” hardware not r e s p o n d i n g\n”) ;
r e t u r n ;

}
}

s t a t i c b o o l
f a a c h e c k (s t r u c t f a a s o f t c ∗ s c)
{

u i n t 3 2 t t e s t v a l = 0 x f f 1 1 e e 2 2 ;
b u s s p a c e w r i t e 4 (sc−>s c r e g t , sc−>s c r e g h , FAA COMMAND,

FAA COMMAND STORE A) ;
b u s s p a c e w r i t e 4 (sc−>s c r e g t , sc−>s c r e g h , FAA DATA , t e s t v a l) ;
i f (b u s s p a c e r e a d 4 (sc−>s c r e g t , sc−>s c r e g h , FAA DATA) == t e s t v a l)

r e t u r n t r u e ;

r e t u r n f a l s e ;
}

Accessing the hardware registers - running the example

I Update the kernel binary and run it again

I Check the GXemul log

[faa: COMMAND register (0x4) WRITE value 0x2]

[faa: DATA register (0x8) WRITE value 0xff11ee22]

[faa: DATA register (0x8) READ value 0xff11ee22]

I GXemul will conveniently display all accesses to our device

I The faa driver still does attach without error, which means
that the check function is working properly

faa0 at pci0 dev 12 function 0: Fake Cards Advanced Addition Accelerator (rev. 0x01)

faa0: registers at 0x10110000

Implementing addition using the hardware

I The basic principle of device operation should be laid out in
the data sheet

I We need to implement an algorithm based on this description
Jump to device description

I Writing such an algorithm is often not needed, since the
NetBSD kernel already has frameworks for common device
types (such as atabus/wd for IDE and SATA hard disk
controllers, wsdisplay/wscons for frame buffers, etc.)

Implementing addition using the hardware

I Define all registers

I src/sys/dev/pci/faareg.h

#de f i n e FAA STATUS 0 x0
#de f i n e FAA COMMAND 0 x4
#de f i n e FAA COMMAND ADD BIT (0)
#de f i n e FAA COMMAND STORE A BIT (1)
#de f i n e FAA COMMAND STORE B BIT (2)
#de f i n e FAA DATA 0 x8
#de f i n e FAA RESULT 0xC

Implementing addition using the hardware

I Add a new function to the main driver code

I src/sys/dev/pci/faa.c

s t a t i c vo id
f a a a t t a c h (d e v i c e t parent , d e v i c e t s e l f , vo id ∗aux)
{

/∗ . . . ∗/
a p r i n t n o r m a l d e v (sc−>s c d e v , ” j u s t c h e c k i n g : 1 + 2 = %d\n” , f a a a d d (sc ,

1 , 2)) ;
}

s t a t i c u i n t 3 2 t
f a a a d d (s t r u c t f a a s o f t c ∗sc , u i n t 3 2 t a , u i n t 3 2 t b)
{

b u s s p a c e w r i t e 4 (sc−>s c r e g t , sc−>s c r e g h , FAA COMMAND,
FAA COMMAND STORE A) ;

b u s s p a c e w r i t e 4 (sc−>s c r e g t , sc−>s c r e g h , FAA DATA , a) ;
b u s s p a c e w r i t e 4 (sc−>s c r e g t , sc−>s c r e g h , FAA COMMAND,

FAA COMMAND STORE B) ;
b u s s p a c e w r i t e 4 (sc−>s c r e g t , sc−>s c r e g h , FAA DATA , b) ;
b u s s p a c e w r i t e 4 (sc−>s c r e g t , sc−>s c r e g h , FAA COMMAND, FAA COMMAND ADD

) ;
r e t u r n b u s s p a c e r e a d 4 (sc−>s c r e g t , sc−>s c r e g h , FAA RESULT) ;

}

Implementing addition using the hardware - running the
example

I Update the kernel binary and run it again

I Check GXemul log

[faa: COMMAND register (0x4) WRITE value 0x2]

[faa: DATA register (0x8) WRITE value 0x1]

[faa: COMMAND register (0x4) WRITE value 0x4]

[faa: DATA register (0x8) WRITE value 0x2]

[faa: COMMAND register (0x4) WRITE value 0x1]

[faa: RESULT register (0xC) READ value 0x3]

I Looks like it worked!

faa0 at pci0 dev 12 function 0: Fake Cards Advanced Addition Accelerator (rev. 0x01)

faa0: registers at 0x10110000

faa0: just checking: 1 + 2 = 3

Section 4

Interacting with userspace

The kernel-user space interface

I Now that the core functionality of the kernel driver is working,
it should be exposed to user space

I The interface between kernel driver and userspace can be
designed in many different ways

I The classic UNIX way of interfacing between the kernel and
user space is a device file

I Even when using device files there is no single interfacing
method that fits all use cases

I It’s up to the programmer to define the communication
protocol

Device files

I crw-r----- 1 root wheel 101, 1 Aug 12 21:53 /dev/file

I The kernel identifies which driver should service the request to
this file by using major and minor numbers (101 and 1 in the
example above)

I The major number identifies the driver

I The minor number usually identifies the driver instance,
although the driver is free to use it in any other way

I In NetBSD device files are created statically
• By the MAKEDEV script during installation or boot
• Manually by using the mknod utility

Operations on device files

I open(2) and close(2)

I read(2) and write(2)

I ioctl(2)

I poll(2)

I mmap(2)

I and more. . .

I Any mix of the above system calls might be used to interface
between the kernel and user space

I We’ll later implement an ioctl(2)-based communication
mechanism

http://netbsd.gw.com/cgi-bin/man-cgi?read++NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?read++NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?read++NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?write++NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?write++NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?poll++NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?write++NetBSD-current

Adding cdevsw

I cdevsw is used to decide which operation on the character
device file calls which driver function

I Not all calls have to be implemented, although some device
layers define a set of calls that a driver must implement

I For example disk drivers must implement open, close, read,
write and ioctl

I src/sys/dev/pci/faa.c

d e v t y p e o p e n (f a a o p e n) ;
d e v t y p e c l o s e (f a a c l o s e) ;
d e v t y p e i o c t l (f a a i o c t l) ;

const s t r u c t cdevsw f a a c d e v s w = {
faaopen , f a a c l o s e , noread , n o w r i t e , f a a i o c t l ,
nostop , notty , n o p o l l , nommap , n o k q f i l t e r , D OTHER

} ;

Prototyping the cdevsw operations

I The dev type* macros are used to prototype the functions
passed to cdevsw

I Pass no followed by a function name to the appropriate
cdevsw field if it is not implemented

I There’s also bdevsw for block devices, but we won’t use it in
this example

I The last member of the cdevsw structure defines the device
flags, originally it was used to define the device type (still used
for disks, tape drives and ttys, for other devices pass D OTHER)

Implemeting the cdevsw operations - open / close

I src/sys/dev/pci/faa.c

i n t
f a a o p e n (d e v t dev , i n t f l a g s , i n t mode , s t r u c t lwp ∗ l)
{

s t r u c t f a a s o f t c ∗ s c ;
s c = d e v i c e l o o k u p p r i v a t e (& f a a c d , minor (dev)) ;

i f (s c == NULL)
r e t u r n ENXIO ;

i f (sc−>s c f l a g s & FAA OPEN)
r e t u r n EBUSY ;

sc−>s c f l a g s |= FAA OPEN ;
r e t u r n 0 ;

}
i n t
f a a c l o s e (d e v t dev , i n t f l a g , i n t mode , s t r u c t lwp ∗ l)
{

s t r u c t f a a s o f t c ∗ s c ;
s c = d e v i c e l o o k u p p r i v a t e (& f a a c d , minor (dev)) ;

i f (sc−>s c f l a g s & FAA OPEN)
sc−>s c f l a g s =˜ FAA OPEN ;

r e t u r n 0 ;
}

Defining the ioctls

I ioctl(2) can be used to call kernel-level functions and
exchange data between the kernel and user space

I The classic way of passing data is by using structures, their
definitions are shared between the kernel and user space code

I The driver might support more than one ioctl, the IO*
macros are used to define the operation and associated
structure used to exchange data
• IO - just a kernel function call, no data exchange
• IOR - kernel function call and data pass from kernel to user

space
• IOW - kernel function call and data pass from user space to

kernel
• IOWR - kernel function call and data exchange in both

directions
• #define DRIVERIO IOCTLNAME IOXXX(group,

ioctl number, data structure)

Defining the ioctls

I src/sys/dev/pci/faaio.h

#inc l u d e <s y s / ioccom . h>

#de f i n e FAAIO ADD IOWR (0 , 1 , s t r u c t f a a i o a d d)

s t r u c t f a a i o a d d {
u i n t 3 2 t a ;
u i n t 3 2 t b ;
u i n t 3 2 t ∗ r e s u l t ;

} ;

I In the above example the ioctl group is not defined (0), but
a single letter identifier could appear as first argument to
IOWR

Implemeting the cdevsw operations - ioctl

I src/sys/dev/pci/faa.c

i n t
f a a i o c t l (d e v t dev , u l o n g cmd , vo id ∗data , i n t f l a g , s t r u c t lwp ∗ l)
{

s t r u c t f a a s o f t c ∗ s c = d e v i c e l o o k u p p r i v a t e (& f a a c d , minor (dev)) ;
i n t e r r ;

sw i tch (cmd) {
case FAAIO ADD :

e r r = f a a i o c t l a d d (sc , (s t r u c t f a a i o a d d ∗) data) ;
break ;

d e f a u l t :
e r r = EINVAL ;
break ;

}
r e t u r n (e r r) ;

}
s t a t i c i n t
f a a i o c t l a d d (s t r u c t f a a s o f t c ∗sc , s t r u c t f a a i o a d d ∗data)
{

u i n t 3 2 t r e s u l t ; i n t e r r ;

a p r i n t n o r m a l d e v (sc−>s c d e v , ” got i o c t l w i t h a %d , b %d\n” ,
data−>a , data−>b) ;

r e s u l t = f a a a d d (sc , data−>a , data−>b) ;
e r r = copyout (& r e s u l t , data−>r e s u l t , s i z e o f (u i n t 3 2 t)) ;
r e t u r n e r r ;

}

Using copyout to pass data to userspace

I The copy(9) functions are used to copy kernel space data
from/to user space

I copyout(kernel address, user space address, size);

I Actually on Cobalt we could just do *data->result =

faa add(); instead of calling the copyout function, but that
is a bad idea

I Some architectures (such as sparc64) have totally separate
kernel and user address spaces =⇒ user space addresses are
meaningless in the kernel

Defining device major number

I Device major numbers for hardware drivers are usually defined
in a per-port manner6

I src/sys/arch/$PORTNAME/conf/majors.$PORTNAME

I src/sys/arch/cobalt/conf/majors.cobalt

I The following defines a new character device file called
/dev/faa* with major number 101, but only if the faa driver
is included in the kernel (last argument)

I device-major faa char 101 faa

6It’s also possible to define a major in a machine-independent way in
src/sys/conf/majors

Creating the device node

I The mknod utility can be used to create the device file
manually

I The driver name can be specified instead of the major number
- it will be automatically resolved into the correct major
number

I mknod name [b | c] [major | driver] minor

I mknod /dev/faa0 c faa 0
I Created successfully

I crw-r--r-- 1 root wheel 101, 0 Oct 8 2012 /dev/faa0

An example user space program

I The example program will open the device file and call
ioctl(2) on it

I As simple as possible, just to show how communication is
done

I Using ioctls from the user space
• Open the device file with O RDWR
• Call ioctl(2) with the operation number and structure as

parameters

An example user space program - source

vo id add (i n t , u i n t 3 2 t , u i n t 3 2 t) ;

s t a t i c const char∗ f a a d e v i c e = ”/ dev / f a a 0 ” ;

i n t
main (i n t argc , char ∗a r g v [])
{

i n t d e v f d ;

i f (a r g c != 3) {
p r i n t f (” usage : %s a b\n” , a r g v [0]) ;
r e t u r n 1 ;

}
i f ((d e v f d = open (f a a d e v i c e , O RDWR)) == −1) {

p e r r o r (” can ’ t open d e v i c e f i l e ”) ;
r e t u r n 1 ;

}

add (devfd , a t o i (a r g v [1]) , a t o i (a r g v [2])) ;

c l o s e (d e v f d) ;
r e t u r n 0 ;

}

An example user space program - source

vo id
add (i n t devfd , u i n t 3 2 t a , u i n t 3 2 t b)
{

s t r u c t f a a i o a d d f a a i o ;
u i n t 3 2 t r e s u l t = 0 ;

f a a i o . r e s u l t = &r e s u l t ;
f a a i o . a = a ;
f a a i o . b = b ;

i f (i o c t l (devfd , FAAIO ADD , &f a a i o) == −1) {
p e r r o r (” i o c t l f a i l e d ”) ;

}
p r i n t f (”%d\n” , r e s u l t) ;

}

An example user space program - running it

make

cc -o aaa_add aaa_add.c

./aaa_add 3 7

faa0: got ioctl with a 3, b 7

10

I The program is successfully accessing the faa driver through
the ioctl

I The faa0:... line is a kernel message, normally only seen on
the console terminal

Section 5

A few tips

Avoiding common pitfalls

I Always free resources allocated in the match or probe
functions

I Always use bus space methods, don’t access the hardware
using a pointer dereference

I If possible test on more than one hardware architecture, some
bugs may surface

I Don’t reinvent the wheel, try to use existing kernel
frameworks as much as possible

I Use copy(9) (or uiomove(9) or store(9)/fetch(9)) to
move data between the kernel and user space

Basic driver debugging

I Use aprint debug to print debug-level messages on console
and log them (enabled by passing AB DEBUG from the boot
loader)

I Use the built-in DDB debugger
• Enabled by the kernel option DDB
• A kernel panic will start DDB if the DDB ONPANIC=1 kernel

option is specified or the ddb.onpanic sysctl is set to 1.
• Run # sysctl -w kern.panic now=1 to trigger a panic

manually (DIAGNOSTIC option)

I Remote debugging is possible on some ports
• With KGDB through the serial port
• With IPKDB through the network

Section 6

Summary

Further reading

I Documentation, articles:
• A Machine-Independent DMA Framework for NetBSD, Jason

R. Thorpe
• Writing Drivers for NetBSD, Jochen Kunz
• NetBSD Documentation: Writing a pseudo device
• autoconf(9), bus space(9) bus dma(9) driver(9), pci(9) man

pages, etc.

I Example source code of drivers:
• tdvfb, voodoofb are fairly good frame buffer driver examples

with documentation publicly available.
• etsec is a nice example of a more complicated network

interface driver

http://www.netbsd.org/docs/kernel/bus_dma.pdf
http://www.netbsd.org/docs/kernel/bus_dma.pdf
ftp://ftp.netbsd.org/pub/NetBSD/misc/ddwg/NetBSD-driver_writing-1.0.1e.pdf
http://www.netbsd.org/docs/kernel/pseudo/
http://netbsd.gw.com/cgi-bin/man-cgi?autoconf+9+NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?bus_space+9+NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?bus_dma+9+NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?driver+9+NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?pci+9+NetBSD-current

Get the source code

I Download the source code and materials for this tutorial

I https://github.com/rkujawa/busspace-eurobsdcon2012

I https://github.com/rkujawa/gxemul-eurobsdcon2012

https://github.com/rkujawa/busspace-eurobsdcon2012
https://github.com/rkujawa/gxemul-eurobsdcon2012

Questions?

I Do you have any questions?

The End. . .

Thank you!

	Introduction
	Why was this tutorial created?
	What won't be covered here?
	What is a driver anyway?
	What do you need to write a driver?

	The NetBSD driver model
	The NetBSD kernel basics
	Kernel autoconfiguration framework

	Example driver from scratch
	Development environment
	Quick introduction to GXemul
	Our hardware - a fake PCI card
	Adding a new driver to the NetBSD kernel
	Matching the PCI device
	Attaching to the PCI device
	Variable types used with bus_space
	Mapping the hardware resources
	Accessing the hardware registers

	Interacting with userspace
	Device files
	Using ioctls
	An example user space program

	A few tips
	Avoiding common pitfalls
	Basic driver debugging

	Summary
	The end

