
NetBSD/usermode
Reinoud Zandijk, MSc.

NetBSD foundation

17 March, 2013 at 12.17 p.m.

Summary

NetBSD/usermode adds a new type of
system virtualisation to NetBSD. It allows
one to run a NetBSD kernel and its userland
as just another process on the host, complete
with console, networking, audio and a virtual
display. In this paper we visit some of the
design challenges and our solutions for them.
Some benchmarks are also produced.

Keywords: system virtualisation

1. Introduction

The goal of the project is to provide a
complete NetBSD kernel and its userland
running inside a POSIX compliant operating
system with minimal to no kernel support.

Each way of virtualisation has its strong
and weak points. NetBSD/xen is very well
suited for high security applications and vir-
tual servers, whereas Qemu is more a ma-
chine simulator and suited for testing out
hardware that the developer has no access
to. VirtualBox can be seen as a best-of-both-
worlds solution though depends heavily on
kernel support and can in conjunction with
CPU support provide both performance and
isolation.

Compared to these other virtualisation
methods, NetBSD/usermode stands out for
running at full speed without the need for a
dedicated setup nor specific processor sup-
port. As expected it is limited to the same ar-

chitecture of the host running it.

NetBSD/usermode provides the user a
complete virtual machine that behaves just
like any other machine running NetBSD. It
has either a tty console where it resembles a
machine console over a serial line or a graphi-
cal console displayed with a VNC client. The
virtual machine can have full network access,
play audio, mount NFS partitions, compile
stuff etc. It can also be run multiple times in
parallel making it suitable for distributed sys-
tems testing.

NetBSD/usermode is most userfull as
a research platform or for regression testing.
It provides excellent debugging since its just
another process running on the host and can
be debugged using gdb complete with all its
features wich is quite a relief since all datas-
tructures can be examined, breakpoints be
set etc. For debugging it is best compared to
having a dedicated machine with both a serial
console and a KGDB link.

Work on NetBSD/usermode started
around 2010 by Jared D. McNeill. He man-
aged to compile it as a normal program and
to ‘boot’ it until the disc had to be mount-
ed by inserting lots of empty functions, just
enough to get it going. He then abandoned
the project and after some time of neglect it
was picked up again by the both of us. Jared
focused on most of the IO subsystems while I
focussed on the internals like virtual memory,
process switching, interrupts etc.

NetBSD/usermode is still in active de-
velopment. Focus is now on direct support



- 2 -

for ATAPI/SCSI devices1, X support2 and of
course cleaning up. Support for direct USB
support is also investigated but is not yet seen
as a priority.

For now, NetBSD/usermode only sup-
ports the i386 and amd64 architectures on
NetBSD. Other architectures like arm32 are
in the planning but haven’t been started on
due to lack of suitable hardware. Jared has
also done some initial work on trying it to
build and run on Linux. When thebuild.sh
build system problems are solved so that
NetBSD/usermode can be build with it this
ought to become a lot easier.

2. NetBSD/usermode architecture

As NetBSD/usermode tries to run as
much kernel code as possible to make it as
close to a real test and develop machine. It
uses all the kernel internals like the NetBSD
virtual memory manager UVM/UBC. De-
vices are not simulated for the ‘normal’hard-
ware drivers but are implemented using the
host kernels userland interfaces to provide
the services needed.

The overall memory space architecture
has been a point of controversyand debate in-
side the NetBSD community. Especially our
choice to go for a unified kernel and userland
virtual memory space has been the issue of
a hot debate for the preferable way is to use
separate overlapping memory spaces so both
userland and kernel can use the full extent of
virtual memory space.

This full memory separation is espe-
cially interesting for systems providing more
memory than the processor can map simulta-
neously like i386. The separation also gives
the additional security benefit that userland
can never, not even by brute force, inspect
suspected kernel memory ranges.

1like CD or DVD recorders
2X does run but the keyboard and mouse need work

Our choice for a unified virtual memory
space was a purely pragmatical one. Separat-
ing the two memory spaces entirely is nearly
impossible without kernel and processor sup-
port and one of the design goals was to avoid
that. Not all processor architectures support
the non-unified virtual memory spaces any-
way.

In the following subsections we’ll high-
light selected issues and how we solved
them.

2.1. System calls

System calls are normally done using
privileged instructions that trap the kernel.
On taking this trap, the process state is saved,
the system call number and its arguments are
extracted3 and the appropriate function call
is taken. The Results, if any, are stored in the
process state and the process continues.

One of the major goals of the project,
as stated before, is that running the
NetBSD/usermode kernel does not need ker-
nel modifications nor special hardware sup-
port. This poses a serious problem since how
should the kernel distinguish between a sys-
tem call made by the usermode kernel pro-
cess and a system call issued by its userland.

Our initial solution was to early
fork the process and run the rest of the
NetBSD/usermode kernel as a ktracee of its
parent ‘hypervisor’, not unlike gdb works.
This highlighted a problem with ktrace in
general. We could get a nice overview of the
system calls made, complete with their ar-
guments and the result codes but the ktrace
architecture does not allow system call redi-
rection or modification. An extension was
attempted by Jared but it only gave rise to
more problems. In the end we abandoned
this path.

Concurrently with Jareds work on

3pre- and post-processed if necessary for emulations



- 3 -

ktrace, an alternate solution was explored by
me to make use of the illegal instruction sig-
nal. For this purpose a special userland was
built that replaced the normal system call in-
structionswith undefined instructions. On re-
ceiving the signal the offending instruction is
inspected and if its recognised its treated as a
system call and acted upon.

To support normal precompiled user-
lands, a concession had to be made on kernel
support. Since the process’smemory space is
split into a kernel part and a userland part, a
kernel module was made not unlike other em-
ulation kernel modules. It implements a sin-
gle system call with a address range as argu-
ment in which subsequent system calls of the
calling process are prohibited and an illegal
instruction should be issued instead.

This concession does not mean
NetBSD/usermode won’t run on generic
POSIX-like systems like Linux anymore
since the undefined instruction trap solu-
tion is still valid and used and the modified
NetBSD userland solution still works.

2.2. Virtual memory

NetBSD can only run on systems with
virtual memory support. Normal processors
translate a virtual address to a physical ad-
dress trough a cache, the translation looka-
side buffer. When this gives a cache miss the
processor then either generatesan interrupt or
walks tables to lookup the translation itself to
add to this lookup cache. Since page faulting
on NetBSD/usermode needs to be handled in
software anyway, a TLB-only solution was
chosen with the SIGSEGV signal acting as
the generated interrupt.

On receiving this signal the
NetBSD/usermode kernel checks the pro-
cesses pmap1 to see what it should become

1a pmap holds the architecture specific memory mapping
administration for a process including the lookup tables
if the processor can look it up itself

and then maps a piece of physical memo-
ry substitute on the offending place using
mmap.

As there is no real physical memory to
map around, a substitution has to be created.
This substitute must be able to be mapped
multiple times in the virtual memory space
using specified credentials for each mapping.
Since it must be mappable multiple times,
sources like anonymous memory fall off
since on each new mapping it would be cre-
ated anew. Using /dev/mem is an option but
was abandoned since it would mean that the
physical memory needed to be completely
mapped in the host processes memory space
too. This would significantly reduce the
amount of virtual memory space of the virtu-
al machine. This could be avoided by using
the anonymous memory of a parent forked
processes but this was seen as too freaky and
possibly non-portable.

A more pragmaticand sane solution was
found in using a disc file as virtual memory.

2.3. LWP switching

In NetBSD, each process, including the
kernel, is a collection of LWPs2. Switching
between these threads is machine dependent.
Next to preserving the LWP stack and regis-
ters some operating systemsalso dictate other
measures like calling a system call to signal
for signal mask changes etc. To cater for this,
the choice was made to use the POSIX get-
context/setcontext/switchcontext calls. This
interface predates pthread and allows for
multi threading. Converting the code to use
pthread could be done but it would kind of
messy since we explicitly need to switch be-
tween threads and not let the host choose one
thread for us. It might be worth investigat-
ing though.

Contexts are created using makecontext

2 light weight processes, also more commonly known
as threads



- 4 -

and are patched up in a cpu architecture de-
pendent way to make sure the stack is setup
correctly and no information is leaked to the
new process trough the other registers.

One problem we encountered with
switching with setcontex/getcontext is the
lack of thread specific variables like the often
used ‘curcpu’.To set this atomically i deviced
a dedicated trampoline that has all signals
switched blocked. This way there can’t be a
signal occuring in the small time between set-
ting curcpu and switching the context. Un-
likely as it might seen it actually happened
a lot.

2.4. Interrupts and I/O

Just like in a physical computer,
NetBSD/usermode needs interrupts for ba-
sic things like preemptive sheduling, keep-
ing time, page faults and I/O operations. All
interrupts are implemented using signal han-
dlers and the sigalt stack.

Since this sigalt stack is shared by all
signals it needs to be switched from as soon
as possible. Since NetBSD/usermode can’t
rely on the running context’s stack space ei-
ther1, each lwp gets assigned an extra stack
space. This allows for recursive signal han-
dling.

Since devices in NetBSD/usermode use
the host operating system’s userland inter-
faces, all files and host devices are preferably
opened asyncronously and set to generate an
SIGIO signal when possible. When generat-
ing a SIGIO signal is not possible, the drivers
have to fall back to polling and/or piggy-back
on other SIGIOs.

On a SIGIO signal reception, all the
SIGIO capable devices are visited so they can
check if they were the cause and take action.
Since multiple SIGIO signals can be folded
and issued as just one signal, all drivers are

1Especially ld.so’s stack space is nearly nothing.

visited twice regardless of a driver recogniz-
ing it.

3. Performance

The performance of NetBSD/usermode
hasn’t been stated as a distinct develop-
ment goal but care has been taken to get
the performance on par with the host ma-
chine. Various tests have been performed
on NetBSD/amd64 (i7-920) with 12 Gb of
memory and the results are as to be expect-
ed.

The number of syscalls per second is
a factor 22 lower as on the native machine2.
This drop is expected and is a direct result of
the signal generating code overhead in the
host OS.The original signal(3) code was nev-
er designed to be high-volume and is thus
not implemented as such. A good amount of
speed increase could be gained if this code is
tackeled.

Disc IO has been tested by using dd(1)
to copy a file on the host OS to /dev/null with
bs=64k. In usermode the raw disc device was
used to directly access the file without induc-
ing a 2nd file system layer. The results were
as expected the same, a rough 80 Mb/sec.

As an overall performance test a medi-
um sided program was compiled. For com-
parisation, the timing is split in a ‘config-
ure’ phase and a real compilation phase.
In NetBSD/usermode, the ‘configure’ phase
takes significantly more time to run, a whop-
ping 11 seconds compared to 3 seconds na-
tively. The compilation phases take an equal
time of 10 seconds on both.

The difference in time during the ‘con-
figure’ phase is more complex. After a long
discussion with other NetBSD developers we
came to the conclusion that it is most likely
due to a higher page fault latency and thus an
effectively lower memory bandwidth on new

213.67 million/sec versus 0.62 million/sec system calls



- 5 -

starting applications that starts to play up.
This same behaviour can be seen on memory
bandwith stricken machines like some cheap
ARM machines that despite their megahertz
figures have to cope with a 16 bit RAM bus.

4. Conclusions

NetBSD/usermode has proven to be
feasable and met the expectations on perfor-
mance we set out. It proved usefull for de-
bugging kernel internals. With some addi-
tional work on providing bus-level access to
busses like USB, ATAPI/SCSI and maybe
one day even PCI, NetBSD/usermode can
also prove to be a great platform for device
driver development.


