
Triangular Bézier Clipping

S. H. Martin Roth, Patrick Diezi†, Markus H. Gross

Computer Science Department
ETH Zurich, Switzerland

e-mail: {roth, grossm}@inf.ethz.ch
http://graphics.ethz.ch/

†Currently at Oerlikon Contraves Defence
Zurich, Switzerland

email: czdpa@saturn.ocag.ch

Institute of Scientific Computing Computer Graphics Group

Zurich¨
Technische Hochschule
Eidgenossische¨

Swiss Federal Institute of Technology Zurich
Politecnico federale di Zurigo
Ecole polytechnique federale de Zurich´ ´

C
S

Te
ch

ni
ca

l R
ep

or
t #

34
7,

 J
ul

y
12

, 2
00

0

ETH Zurich, CS Technical Report #347 Triangular Bézier Clipping
Institute of Scientific Computing, July 12, 2000 Roth et al.

Computer Science Department
Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland

Triangular Bézier Clipping

S. H. Martin Roth, Patrick Diezi†, Markus H. Gross

Computer Science Department
Swiss Federal Institute of Technology (ETH)

Zurich, Switzerland

email: {roth, grossm}@inf.ethz.ch
http://graphics.ethz.ch/

Abstract
This paper presents a new approach to finding ray–patch
intersections with triangular Bernstein–Bézier patches of
arbitrary degree. Unlike a previous approach which was
based on a combination of hierarchical subdivision and a
Newton–like iteration scheme [15], this work extends the
concept of Bézier clipping to the triangular domain.

The problem of reporting wrong intersections, inherent to
the original Bézier clipping algorithm [12], is investigated
and opposed to the triangular case. It turns out that report-
ing wrong hits is very improbable, even close to impossible,
in the triangular set-up.

A combination of Bézier clipping and a simple hierarchy
of nested bounding volumes offers a reliable and accurate
solution to the problem of ray tracing triangular Bézier
patches.

CCS Categories and Subject Descriptors: I.3.3 [Com-
puter Graphics]: Picture/Image Generation; I.3.5 [Com-
puter Graphics]: Computational Geometry and Object
Modeling; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Additional Keywords: Computer graphics, parametric
surfaces, piecewise polynomials, ray tracing, Bézier clip-
ping, Bernstein–Bézier patches, Chebyshev boxing

1 INTRODUCTION
Piecewise polynomial surfaces, or parametric free-form
surfaces, have proven useful for representing objects in
computer aided design and computer graphics (for an intro-
duction, see [7]). In general, we have to distinguish two
types of free-form surfaces: rectangular and triangular sur-

faces. Most modeling systems strictly rely on rectangular
surface formulations since their definition as a tensor prod-
uct extension of the univariate case is conceptually simpler.
However, triangular formulations offer considerable advan-
tages both topologically and analytically. Further, from a
mathematical point of view, triangular Bézier patches in
terms of barycentric coordinates are a more natural general-
ization of Bézier curves than tensor product patches. More
and more, triangular surfaces are used for modeling of com-
plex geometries or to represent deformable models [6, 13].
Further, they lend themselves well to scattered data
interpolation [1]. All those disciplines have a demand for an
accurate visualization of the resulting surfaces.

Conceptually, there are two alternatives to render free-
form surfaces: firstly, the conversion to a polygonal model
and subsequent rendering of the resulting polygonal primi-
tives or, secondly, direct ray tracing of the parametric sur-
face description. The disadvantages of polygonalization are
obvious. On the one hand, shading artifacts occur if the
polygonalization is too coarse. On the other hand, visual
effects like reflection and refraction as well as correct light-
ing is difficult or impossible to achieve. In contrast thereof,
ray tracing, although being computationally more expen-
sive, offers a means to accomplish all fore-mentioned
effects. Further, ray tracing as a high quality rendering tech-
nique is well known and has been investigated thoroughly
over the past decades (see e.g. [9]).

The basic requirement for ray tracing of objects, it be
geometric primitives or a parametric surface, is the compu-
tation of intersections between a ray and the surface
description. For free-form surfaces, this task is referred to
as the ray–patch intersection problem. This paper describes
a new approach to this problem for triangular Bézier
patches of arbitrary degree [5] based on the concept of
Bézier clipping [12].

The paper is organized as follows: after an overview of
previous work, the extension of Bézier clipping to the trian-
gular domain will be presented in chapter 3. Chapter 4 will

† Currently at Oerlikon Contraves Defence, Zurich, Switzerland
email: czdpa@saturn.ocag.ch

ETH Zurich, CS Technical Report #347, Institute of Scientific Computing, July 12, 2000 Roth et. al, Triangular Bézier Clipping

2 Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland

give some details about the problem of reporting wrong
intersections inherent to the original clipping algorithm for
tensor product formulations and investigate differences and
advantages of triangular Bézier clipping. Chapter 5 will
present results and comparisons to a simple approach based
on nested bounding volumes.

2 RELATED WORK
In general, the ray–patch intersection problem with free-
form surfaces of arbitrary degree cannot be solved directly.
As a consequence, one has to resort to an iterative computa-
tion of intersection points. Fournier and Buchanan [8] dis-
tinguish between two principle approaches: geometric and
parametric intersection. Geometric intersection aims at
finding the world coordinates of intersection points whereas
parametric intersection determines their parametric coordi-
nates. Most often, it is not only the intersection point itself
one is interested in but also the local surface normal as well
as shading and texture information. As far as free-form sur-
faces are concerned, all these requirements make it inevita-
ble to know the world as well as the parametric location of
an intersection. Further, as a matter of fact, knowing the
parametric intersection coordinates automatically implies
the corresponding point in 3D space whereas the contrary in
general does not hold. As a consequence, with exception of
early works [11, 14] emphasis in previous research as well
as in this work has been put on parametric intersection
methods.

Again, parametric intersection methods divide into two
categories: nested bounding volumes in general followed by
a root finding scheme such as Newton iteration and parame-
ter interval iteration. These classes of algorithms will be
revisited in the next two sections.

2.1 Nested Bounding Volumes

Approaches using nested bounding volumes basically
compute a hierarchy of bounding volumes for every patch.
In a preprocessing step each patch is hierarchically subdi-
vided until the resulting sub-patches meet a certain stopping
criterion, most often based on the flatness of the sub-patch.
The computation of a ray–patch intersection now consists
of a traversal of such a hierarchy guided by intersection
tests between the ray and the bounding volumes on the
respective hierarchy level. As soon as a leaf of the hierarchy
is reached, the intersection between the ray and the leaf
geometry is calculated. This is accomplished either by
using Newton iteration, known to converge quickly on
nearly planar surfaces, or by direct intersection of the ray
with an approximating primitive.

One has to choose a suited bounding primitive providing
for an optimal trade-off between tight enclosure and effi-
cient intersection testing. Bounding spheres offering a very
efficient intersection test [9] have been proposed as well as

axes-aligned bounding boxes [16], oriented slabs [19], and
parallelepipeds [2]. Especially the use of parallelipipeds is
very suitable for Bézier patches as it takes advantage of
their convex hull property. Another conceptually elegant
and very efficient method, Chebyshev boxing, was intro-
duced by Fournier and Buchanan in [8]. In order to find a
hierarchy of enclosing bounding volumes they use the coef-
ficients of the Chebyshev representation of bilinear patches
approximating the sub-patches in the hierarchy. The actual
point of intersection is finally found by intersecting interpo-
lating bilinear patches in the leaves of the hierarchy with the
ray. Obviously, such a procedure, as does any approach
using an approximation of the surface in the leaves, requires
solving the cracking problem between adjacent patches.
Further, Chebyshev boxing can only deal with integral
patches [4]. Therefore, Campagna et al. in [4] proposed an
approach very similar to Chebyshev boxing which can han-
dle rational patches, the bounding volume hierarchy (BVH).
It computes nested bounding volumes using the Bézier rep-
resentation. The actual intersection points are found either
using Bézier clipping ([12], see section 2.2) on the sub-
patches in the hierarchy leaves or by intersecting an interpo-
lating bilinear sub-patch. In contrast to Chebyshev boxing,
there is no need for calculating these sub-patches since the
four corner control points of the corresponding Bézier sub-
patch already form an interpolating bilinear patch.

2.2 Parameter Interval Iteration

In contrast to the fore-mentioned methods, parameter
interval methods directly operate on the parametric domain
by narrowing the candidate interval for an intersection. First
approaches using multivariate Newton iteration employed
interval arithmetic to overcome the inherent problem of
finding a good starting point for the iteration [17]. More
recently, Nishita et al. introduced the technique of Bézier
clipping [12] which makes extensive use of the convex hull
property of Bézier curves. Although being less computatio-
nally efficient than e.g. Chebyshev boxing, this approach is
applicable to rational patches and, with slight
improvements [3, 4], yields a robust and stable algorithm.
In contrast to many nested bounding volume algorithms,
Bézier clipping is guaranteed to find all intersections. Fur-
ther, the memory usage of Bézier clipping is very low com-
pared to nested bounding volume approaches, since only
the control points of the patches have to be stored instead of
hierarchical data structures and thousands of bilinear
patches and bounding volumes.

In summary, in accordance with [4], we prefer Bézier
clipping as a general choice for producing high-quality pic-
tures without artifacts in reasonable time and with few
memory requirements. Chebyshev boxing and BVH are still
very useful for animation set-ups where the same scene
may have to be rendered several times. A combination of a
nested bounding volume approach together with Bézier
clipping seems very promising. On the one hand, it elimi-

ETH Zurich, CS Technical Report #347, Institute of Scientific Computing, July 12, 2000 Roth et. al, Triangular Bézier Clipping

Swiss Federal Institute of Technology (ETH) 3
Zurich, Switzerland

nates the first clipping iterations which in general are less
efficient due to little clipping of curved patches. On the
other hand, it avoids potential approximation artifacts.

2.3 Ray Tracing Triangular Patches

Except for the early work on triangular Steiner patches
in [14], to the author’s knowledge only Stürzlinger
addressed the problem of ray tracing triangular free-form
surface patches [15]. His approach must be attributed to the
class of nested bounding volumes algorithms using tripi-
peds (skewed triangular prisms) as bounding primitives and
Newton iteration similar to [2]. Chebyshev boxing unfortu-
nately does not straightforwardly generalize to the triangu-
lar domain. Although having been considered by
Stürzlinger to be «not straightforwardly applicable to trian-
gular surfaces», the next section presents an extension of
Bézier clipping to the triangular domain.

3 TRIANGULAR BEZIER CLIPPING

3.1 Triangular Bernstein–Bézier Patches

A Bézier curve of degree n in the local coordinate u,
 is represented as

(1)

with control points and the univariate Bernstein polyno-
mials . For triangular surfaces and
using barycentric coordinates as the local coordinate sys-
tem, the Bernstein polynomials generalize very naturally to

(2)

Correspondingly, a triangular Bézier surface of degree n is
given by

(3)

where stands for on the assumption
that . Figure 1 illustrates the situation on the
example of a quadratic Bézier patch.

Please notice that although there are three barycentric
coordinates we are dealing with the bivariate case due to the
linear dependency of the third barycentric coordinate

. As a consequence, in the remainder of the
paper we will adhere to a notation using only r and s and
omitting t. A triangular patch therefore is of the form:

(4)

3.2 Ray–Patch Intersection Problem

The ray–patch intersection problem refers to the task of
finding the intersections of a ray

(5)

with a Bézier patch according to (4). As do [11, 12] we rep-
resent the ray as the intersection of two planes given by
their normalized implicit equations

(6)

with (see Figure 2).

In practice, the two planes are orthogonal. To this aim,
we define the normals and the distances
to the origin as

(7)

If we instead of use a vector given by permuting
the two biggest values in in order to define .

3.3 Reduction to Two Dimensions

In complete analogy to [12, 4] the problem of finding an
intersection

(8)

Figure 1: A triangular quadratic Bézier patch:
(a) barycentric parametric domain
(b) corresponding patch and control points

0 u 1≤ ≤

bn u() biBi
n u()

i 0=

n

∑=

bi
Bi

n u() n
i()ui 1 u–()n i–=

Bijk
n

r s t, ,() Bi
n

r s t, ,() n
i()r

i
s

j
t
k n!

i! j!k!
-------------r

i
s

j
t
k

= = =

bn
r s t, ,() biBi

n
r s t, ,()

i n=
∑=

i n= i j k+ + n=
i j k 0≥, ,

s = 1

r = 1
t = 1 b200

b020

b002

t

s

r

b002

b101

b200

b110

b020b011

(a) (b)

Figure 2: Representation of a ray by two orthogonal planes (control
net of patch indicated in red)

t 1 r– s–=

bn
r s,() bijBij

n
r s,()

i 0=

n j–

∑
j 0=

n

∑=

r u() r0 u rd⋅+= u R
+∈ rd, , 1=

akx bky ckz ek+ + + 0= k 0 1{ , }∈,

ak
2

bk
2

ck
2

+ + 1=

nk ak bk ck, ,()T=
ek

n0

r0 rd×
r0 rd×

---------------------= e0 n0 r0⋅()–=,

n1

n0 rd×
n0 rd×

----------------------= e1 n1 r0⋅()–=,

r0 rd|| r0
rd n0

r u() bn
r s,()=

ETH Zurich, CS Technical Report #347, Institute of Scientific Computing, July 12, 2000 Roth et. al, Triangular Bézier Clipping

4 Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland

can be reduced from three to two dimensions even if the tri-
angular patch is rational. This is accomplished by
substituting (4) into (6) which yields

(9)

with

(10)

and the coordinates of the control points of
the patch. The components 0 and 1 (in the remainder
referred to as x and y) of geometrically represent the
distance of the point to plane 0 and 1, respectively. For
rational patches, these distances are scaled by the weights.
The problem now reduces to finding the roots of (9).

3.4 Finding Intersections

Bézier clipping basically clips away regions in the paramet-
ric domain which are known not to intersect the patch. For
tensor product surfaces, Nishita et al. in [12] determine both

and of the parametric candidate
region for an intersection with the ray (see Figure 4a).
Using these bounds, they subdivide the patch and iterate the
procedure until the patch is small enough to satisfy a toler-
ance condition which assures sub-pixel accuracy.

A similar approach on the triangular domain of the bary-
centric coordinates r, s and t in general yields a complex
non-triangular candidate region (see Figure 4b, red striped
region). A triangular upper bound of this region can be
found using only , and (see Figure 4b, blue
region). Subdivision of this triangular domain and iterating
the procedure similar to the tensor product case determines
the parametric intersection. In order to find potential multi-
ple intersections, a patch will be subdivided into four sub-
patches if in one clipping iteration in r, s and t too little of a

patch was to be clipped away. In our implementation, the
following subdivision criterion proved to be a good choice

subdivide if (11)

In the following, the procedure of finding on the
example of a cubic patch will be illustrated. The steps for

 and follow from symmetry.

Firstly, we determine a line parallel to the vector from
to through the origin. This line can be seen as a

linear approximation of the curve of constant r through the
origin. Expressing this line in its implicit form

(12)

yields the distances of the control points
 to the line as

(13)

with since the line passes through the origin. Figure
5 clarifies the situation.

Figure 3: Reduction of the ray–patch intersection problem to two di-
mensions (control net indicated in red)

bn
r s,()

!dn
r s,() dijBij

n
r s,()

i 0=

n j–

∑
j 0=

n

∑ 0

0 
 = =

dij

a0

a1 
 
 

xij

b0

b1 
 
 

yij

c0

c1 
 
 

zij

e0

e1 
 
 

+ + +=

xij yij and zij, ,

dij

t = 1

s = 1

r = 1

–2

–1

1

2

3

4

plane 1

–3 –2 –1 1

plane 0

intersection of ray
and patch

umin umax,() vmin vmax,()

rmin smin tmin

Figure 4: Bézier clipping in the parametric domain (candidate region
highlighted in blue)
(a) Rectangular (tensor product) domain
(b) Triangular (barycentric) domain

Figure 5: Line Lr and corresponding distances drij of control points
of a cubic patch (control point dn0 is hidden)

(a) (b)

umin umax

vmin

vmax

rmin rmax

tmin

tmax

smin

smax

t = 1 r = 1

s = 1

rmin smin tmin+ + 0.5<

rmin

smin tmin

Lr
d00 d0n

ax by c+ + 0 a
2

b
2

+ 1=,=

drij
dij xij yij,()= Lr

drij axij byij c 0 i j+ n≤ ≤,+ +=

c 0=

d00

d0n

r = 1

–2

–1

1

2

3

4

plane 1

–3 –2 –1 1

plane 0
d01

d02

d12

d21

d11

d10

d20

dr0n

dr12

dr02

dr21

dr11

dr20

dr10

dr00

dr01

Lr

ETH Zurich, CS Technical Report #347, Institute of Scientific Computing, July 12, 2000 Roth et. al, Triangular Bézier Clipping

Swiss Federal Institute of Technology (ETH) 5
Zurich, Switzerland

The distance of an arbitrary point to conse-
quently becomes

(14)

The distance function can be regarded as a func-
tional surface over the triangular domain as

(15)

with and equidistant and
for . Figure 6a gives a top view of

the distance surface patch and the corresponding distances.

In a next step, the functional surface is projected along
the direction which corresponds to the paramet-
ric line or s direction in Figure 6. Figure 7 shows the pro-
jected control points and their convex hull.

The clipping value can now be found by intersect-
ing the convex hull of the projected distances with the r
coordinate axis (see Figure 7). In this example evalu-
ates to zero. In the very same manner, a clipping value
can be found. Figure 8 shows the projected distances
and their convex hull as well as the resulting value.
For the determination of , the convex hull projection
direction is given by the line , which corresponds to
the diagonal line in Figure 6.

For parametric values below those minima there cannot
be an intersection due to the convex hull property of Bézier
patches. Further, the ray does not intersect the patch if

(16)

If the parametric candidate domain is not yet small
enough to meet the stopping criterion, e.g. its projected size
in screen space exceeds one pixel, the patch is subdivided
according to the minima found and the clipping procedure
continues on the resulting sub-patch as shown in Figure 9.
Otherwise, the centroid of , and is taken as
the parametric point of intersection.

Figure 6: Functional distance patch:
(a) top view
(b) 3D view

Figure 7: Projection of functional Lr distance patch along the s direc-
tion, its convex hull and the resulting rmin

dr
n

r s,() Lr

dr
n

r s,() drijBij
n

r s,()
i 0=

n j–

∑
j 0=

n

∑=

dr
n

r s,()

drn
r s,() drijBij

n
r s,()

i 0=

n j–

∑
j 0=

n

∑ r s dr
n

r s,(), ,()= =

drij ri s j drij, ,()= ri i n⁄=
s j j n⁄= 0 i j+ n≤ ≤

dr12 = 0.79

dr11 = 0.79

dr10 = 0.35

dr21= 0.97

dr20= 1.85 drn0= 1.6dr00 = -2.02

dr0n = -2.02

dr02 = 0.6

dr01 = -1.15

s = 1

s = 0

r = 0 r = 1(a)

0 0.2 0.4 0.6 0.8 1

r
0

0.2
0.4

0.6
0.8
1

s

–1

0

1

dr

(b)

Lr r 0=

-2

-1

0

1

0.2 0.4 0.6 0.8 1.0
r

dr00, dr0n

dr11, dr12

dr10

dr01

dr02

dr21

dr20

drn0

dr

rmin

Figure 8: Projection of functional Ls distance patch along the r direc-
tion, its convex hull and the resulting smin

Figure 9: Subdivision of patch according to clipping minima rmin,
smin and tmin

rmin

rmin
smin

Ls
smin

tmin
t 0=

s

0.2 0.4 0.6 0.8 1.0

ds10

ds00, dsn0

ds20

ds11
ds01

ds21

ds02

ds12

ds0n

3

2

1

0

-1

-2

ds

smin

rmin smin tmin+ + 1>

rmin smin tmin

–2

–1

1

2

3

4

plane 1

–3 –2 –1 1

plane 0

t = 1

s = 1

r = 1

rmin

smin

tmin

ETH Zurich, CS Technical Report #347, Institute of Scientific Computing, July 12, 2000 Roth et. al, Triangular Bézier Clipping

6 Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland

3.5 Convex Hull Determination

As we have seen in the previous section, each clipping iter-
ation requires finding the convex hull of three side views of
different distance patches. Using Figure 8 as an example,
we will investigate the procedure of efficient determination
of such a convex hull and the corresponding value .

In a first step, the maxima and minima for pro-
jected points of equal s parameter values are determined.
The and define two polylines, and respectively
(see Figure 10). Finding the convex hull of all points can
now be divided into finding the upper convex hull from
and the lower convex hull from . This can be accom-
plished using an iterative approach. It turns out, however,
that a complete determination in general is not required [4].

Before proceeding to further computations one should
decide whether the s axis intersects the convex hull at all.
To this aim, we compute the maximum of all and
the respective minimum . If or there
is no intersection of the convex hull and the ray will not
intersect the patch.

For all other cases, three situations have to be dealt with:

: Only the upper convex hull of the points to
 has to be determined.

: Only the lower convex hull of the points to
 has to be computed.

: (as is the case for in Figure 7)

4 REPORTING OF WRONG HITS
The original Bézier clipping algorithm can report wrong
intersections (see e.g. [3]). Nishita et al. in [12] proposed
the following enlargement of the parametric candidate
region in order to cope with what they considered numeri-
cal problems:

(17)

Campagna and Slusallek in [3] showed that the problem is
inherent to the algorithm and not due to numerical round-
off. They proposed both a more subtle enlargement of the
candidate region and an extension of the algorithm which
ensures correct results, unfortunately at the cost of addi-
tional computations. After a short description of the prob-
lem, we will show that a comparable situation in the set-up
of triangular patches is very improbable, nay close to
impossible.

In short terms, the error can occur whenever the convex
hull of projected distances intersects the corresponding
parameter axis even if the patch actually does not. If the
candidate region computed due to this intersection happens
to be very small, the iteration may terminate and report a
wrong intersection if, by coincidence, the second paramet-
ric candidate region drops below the threshold, too. Figure
11 illustrates the situation on the example of projected
distances. The slight intersection of the convex hull yields a
small candidate region between and . At the
same time, the convex hull of projected distances con-
verts to a line which results in a collapsing candidate
domain in v. Thus, a potentially wrong intersection is
reported. As we can see, the coincidence mentioned above
is not very improbable as a collapsing domain results when-
ever the projection of the patch in one dimension is undis-
torted as in Figure 11 and the convex hull of projected
distances consequently converts to a line. Obviously, the
error can only occur for non-interpolating control points.

There are several reasons why a similar situation for tri-
angular patches is difficult to construct. First and possibly
most important, the algorithm only makes use of ,
and but does not take into account the respective max-
ima. Thus, if the three minima in one iteration do not sum
up to approximately 1 and therefore cause the iteration to
stop, in the following clipping iteration steps the error is
likely to disappear. This is due to the fact, that the control
nets of subsequent subdivisions approximate the patch bet-

Figure 10: Computation of upper and lower convex hull

smin

hi li

hi li Ph Pl

Ph
Pl

s

0.2 0.4 0.6 0.8 1.0

h0

l0 = lmin

l1

h1

l2

h2

h3 = l3 = hmax

3

2

1

0

-1

-2

ds

smin
Pl

Ph

hmax hi
lmin hmax 0< lmin 0>

h0 0< h0
hmax

l0 0> l0
lmin

h0 0≥ smin 0= rmin

smin 0.99 smin⋅= smax 0.99 smax⋅ 0.01+=,

Figure 11: Potential reporting of wrong intersections for Bézier clip-
ping of a cubic tensor product patch:
(a) reduced problem and lines Lu, Lv perpendicular to u,v
directions
(b) projection of Lu distances along v and corresponding
small candidate region between umin and umax
(c) projection of Lv distances along u and corresponding
collapsing candidate region vmin = vmax

Lu

umin umax
Lv

umin

u

umax

0 1

vmin = vmax

v
0 1

Lu

uv

Lv

plane 0

plane 1
(a)

(b)

(c)

rmin smin
tmin

ETH Zurich, CS Technical Report #347, Institute of Scientific Computing, July 12, 2000 Roth et. al, Triangular Bézier Clipping

Swiss Federal Institute of Technology (ETH) 7
Zurich, Switzerland

ter and better. Second, distances are computed with respect
to three coordinate directions, which due to the barycentric
setting are linearly dependent and thus to some respect
redundant. As a consequence of these two facts, wrong
intersections can only occur if both of the following condi-
tions are met:

• In at least one projective view of distances, one non-
interpolating control point lies above or below the
respective axis and the others do not.

• The minima , and accidentally sum up
to approximately but not more than 1.

It is the second condition that makes triangular Bézier
clipping far less error-prone. Figure 12 clarifies these condi-
tions: The situation is very similar to the tensor product
example in Figure 11. In the projective view of dis-
tances one control point lies slightly above the r axis. Fur-
ther, the convex hull of projected distances converts to a
line. The tensor product error conditions are hereby met. In
the triangular case, due to the second of the above condi-
tions, an erroneous intersection is reported only if in the
third projective view happens to evaluate accidentally
to approximately .

5 RESULTS
As a proof of concept we extended the object oriented ray
tracer (OORT) of Wilt [18] to handle triangular Bézier
patches. The object oriented design of this ray tracer makes
it easy to integrate new types of objects. Unfortunately, its
shading capabilities are limited to some extent.

To speed up the Bézier clipping algorithm we addition-
ally implemented a bounding sphere hierarchy (BSH)
which eliminates the first clipping iterations. Although
bounding spheres are far from optimal with respect to tight
enclosure of the patch, we have chosen bounding spheres

for their simplicity and fast intersection testing. The BSH is
built by subdividing the triangular Bézier patch into four
sub-patches until a flatness criterion is met (see Figure 13).
We define the flatness of a patch as its height h. The height
is computed as the extent of the control points along the
normal of the plane spanned by the patch’s corner nodes

(18)

with the normalized plane normal and

(19)

Finding intersections now consists of a BSH traversal
and subsequent Bézier clipping on the leaf sub-patch.

In order to test the implementation, we converted the
Utah teapot from 32 bicubic tensor product patches to 64
sextic triangular Bézier patches using the approach of Gold-
man and Filip [10]. On the one hand, patches of degree six
are a demanding task for a ray tracer. On the other hand, the
teapot geometry features patches of different curvature.
Figure 14 shows the sextic control net and the correspond-
ing ray traced image. The pairs of red and blue triangular
patches represent the original bicubic rectangular patches.

Figure 15 shows a close-up of the knob. As a conse-
quence of degenerated patches in the original model, the
four red patches at the knob suffer from a collapsing trian-
gle edge (seven control points coincide). In general, unlike
rectangular models, a model made of triangular patches
would not require degenerated edges. Such degeneracies
need special treatment in the Bézier clipping algorithm
since the line L is not defined for collapsing edges.

Due to the very straightforward implementation, it is dif-
ficult to make a quantitative performance analysis. What
can be stated qualitatively is that Bézier clipping is clearly

Figure 12: Potential reporting of wrong intersections for Bézier clip-
ping of a cubic triangular patch:
(a) reduced problem and lines Lr, Ls and Lt
(b) projection of Lr distances and corresponding rmin
(c) projection of Ls distances and corresponding smin
(d) projection of Lt distances and corresponding tmin

rmin smin tmin

Lr

Ls

tmin
1 rmin smin––

Lr

Ls

Lt

s = 1

r = 1

t = 1

plane 0

plane 1

rmin = 0.249

r
0 1

smin = 0.486

s
0 1

t

tmin = 0.255
0 1

(a)

(b)

(c)

(d)

Figure 13: (a) Subdivision of a patch for hierarchy build-up
(b) Computing the height of a quadratic patch

Figure 14: (a) Control net of Utah teapot made of 64 triangular sextic
Bézier patches
(b) Corresponding ray traced image

h max 0 max
0 i j+ n≤ ≤

n bij⋅(),
 
 
 

min 0 min
0 i j+ n≤ ≤

n bij⋅(),
 
 
 

–=

n n n⁄= n

n b0n b00–() bn0 b00–()×=

b00

bn0

b0n

b10

b01

b11h

(a) (b)

1 to 4 subdivision

(a) (b)

ETH Zurich, CS Technical Report #347, Institute of Scientific Computing, July 12, 2000 Roth et. al, Triangular Bézier Clipping

8 Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland

slower than a pure BSH based ray–patch intersection. Since
the cost of the clipping operation grows with the cube of the
patch’s degree, ray tracing of sextic patches using Bézier
clipping is roughly ten times slower than with pure BSH.
Combining BSH and Bézier clipping, this ratio drops to
about five. For patches of lower degree, the efficiency of
Bézier clipping improves.

6 CONCLUSIONS
We presented a new approach to ray tracing triangular
Bézier patches using an extension of Bézier clipping. We
have shown that the accuracy of triangular Bézier clipping
equals tensor product Bézier clipping while its reliability
even excels the original algorithm. In combination with a
hierarchy of nested bounding volumes, triangular Bézier
clipping yields results of highest quality in reasonable time.

Future work includes the incorporation of trimming
which can be done similar to the original work on Bézier
clipping in [12]. Further, a more efficient implementation of
the algorithm (e.g. as a POV-ray extension, http://www.pov-
ray.org/) will yield quantitative information about the per-
formance of triangular Bézier clipping.

REFERENCES
[1] C. L. Bajaj, F. Bernardini, and G. Xu. “Automatic Recon-

struction of Surfaces and Scalar Fields from 3D Scans.” In
R. Cook, editor, Computer Graphics (SIGGRAPH ‘95 Pro-
ceedings), volume 29, pages 109–118, Aug. 1995.

[2] W. Barth and W. Stürzlinger. “Efficient Ray Tracing for
Bézier and B-spline Surfaces.” Computers & Graphics,
17(4):423–430, 1993.

[3] S. Campagna and P. Slusallek. “Improving Bézier Clipping
and Chebyshev Boxing for Ray Tracing Parametric Surfaces.”
In B. Girod, H. Niemann, and H.-P. Seidel, editors, Proceed-
ings of "3D Image Analysis and Synthesis ’96", pages 95–102,
1996.

[4] S. Campagna, P. Slusallek, and H.-P. Seidel. “Ray Tracing of
Spline Surfaces: Bézier Clipping, Chebyshev Boxing, and
Bounding Volume Hierarchy – a Critical Comparison with
New Results.” The Visual Computer, 13(6):265–282, 1997.

[5] G. Farin. “Triangular Bernstein-Bézier Patches.” Computer
Aided Geometric Design, 3(2):83–128, 1986.

[6] G. Farin. The Use of Triangular Patches in CAD, pages 191–
194. North-Holland, 1988.

[7] G. Farin. Curves and Surfaces for Computer Aided Geometric
Design. Academic Press, 1990.

[8] A. Fournier and J. Buchanan. “Chebyshev Polynomials for
Boxing and Intersections of Parametric Curves and Surfaces.”
In Proc. EUROGRAPHICS’94, COMPUTER GRAPHICS
Forum, Vol. 13, No.3, pages 127–142, 1994.

[9] A. Glassner, editor. An Introduction to Ray Tracing. Aca-
demic Press, 1989.

[10] R. N. Goldman and D. J. Filip. “Conversion from Bézier Rect-
angles to Bézier Triangles.” Computer-Aided Design,
19(1):25–27, 1987.

[11] J. T. Kajiya. “Ray Tracing Parametric Patches.” Computer
Graphics (SIGGRAPH ’82 Proceedings), volume 16, pages
245–254, July 1982.

[12] T. Nishita, T. W. Sederberg, and M. Kakimoto. “Ray Tracing
Trimmed Rational Surface Patches.” In F. Baskett, editor,
Computer Graphics (SIGGRAPH ’90 Proceedings),
volume 24, pages 337–345, Aug. 1990.

[13] S. H. M. Roth, M. H. Gross, S. Turello, and F. R. Carls. “A
Bernstein-Bézier Based Approach to Soft Tissue Simulation.”
In Proc. EUROGRAPHICS’98, COMPUTER GRAPHICS
Forum, Vol. 17, No.3, pages C285–C294, 1998.

[14] T. W. Sederberg and D. C. Anderson. “Ray Tracing of Steiner
Patches.” In H. Christiansen, editor, Computer Graphics
(SIGGRAPH ’84 Proceedings), volume 18, pages 159–164,
July 1984.

[15] W. Stürzlinger. “Ray Tracing Triangular Trimmed Free Form
Surfaces.” IEEE Transactions on Visualization and Computer
Graphics, 4(3):202–214, 1998.

[16] M. Sweeney and R. Bartels. “Ray-Tracing Free-form B-spline
Surfaces.” IEEE Computer Graphics and Applications,
6(2):41–49, 1986.

[17] D. L. Toth. “On Ray Tracing Parametric Surfaces.” In B. A.
Barsky, editor, Computer Graphics (SIGGRAPH ’85 Pro-
ceedings), volume 19, pages 171–179, July 1985.

[18] N. Wilt. Object-Oriented Ray Tracing. Wiley, 1st edition,
1994.

[19] J. Yen, S. Spach, M. Smith, and R. Pulleyblank. “Parallel
Boxing in B-spline Intersection.” IEEE Computer Graphics
and Applications, 11(1):72–79, Jan. 1991.

Figure 15: (a) Close-up of control net at knob
(b) Corresponding ray traced image

Figure 16: Textured Pacific Graphics 2000 teapot

(a) (b)

