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Abstract

We present an algorithm for interactive deformation of subdivision
surfaces, including displaced subdivision surfaces and subdivision
surfaces with geometric textures. Our system lets the user directly
manipulate the surface using freely-selected surface points as han-
dles. During deformation the control mesh vertices are automati-
cally adjusted such that the deforming surface satisfies the handle
position constraints while preserving the original surface shape and
details. To best preserve surface details, we develop a gradient do-
main technique that incorporates the handle position constraints and
detail preserving objectives into the deformation energy. For dis-
placed subdivision surfaces and surfaces with geometric textures,
the deformation energy is highly nonlinear and cannot be handled
with existing iterative solvers. To address this issue, we introduce
a shell deformation solver, which replaces each numerically unsta-
ble iteration step with two stable mesh deformation operations. Our
deformation algorithm only uses local operations and is thus suit-
able for GPU implementation. The result is a real-time deformation
system running orders of magnitude faster than the state-of-the-art
multigrid mesh deformation solver. We demonstrate our technique
with a variety of examples, including examples of creating visually
pleasing character animations in real-time by driving a subdivision
surface with motion capture data.

Keywords: subdivision surface, detail preservation, displacement
mapping, geometric texture.

1 Introduction

Subdivision surfaces have been widely used in movie production,
commercial modelers and game engines [DeRose et al. 1998; War-
ren and Weimer 2002]. Constructing surfaces through subdivision
elegantly addresses many issues that computer graphics practition-
ers are confronted with, such as arbitrary topology, scalability, uni-
formity of representation, numerical stability and code simplicity
[Zorin et al. 2000]. Traditional subdivision surfaces are mainly suit-
able for modeling piecewise smooth surfaces; the displaced subdi-
vision surface introduced in [Lee et al. 2000] enhances that expres-
sive power by integrating displacement mapping [Cook 1984] into
the subdivision framework. Recently, researchers further added ge-
ometric textures to subdivision surfaces to make them truly pow-
erful tools for modeling surfaces with complex details [Peng et al.
2004; Porumbescu et al. 2005].

In this paper we present an algorithm for interactive deformation of
subdivision surfaces. Our algorithm has the following features:

Figure 1: Subdivision surface deformation. (a) Deformation of a displaced
subdivision surface. The control mesh, smooth mesh and displacement map
are shown in Fig. 2. (b) Deformation of a subdivision surface with geometric
textures.

< Direct manipulation: Instead of using the control mesh, the user
is free to select points on the target surface as handles for direct
manipulation. To deform the surface, the user simply drags the
handles to new positions and our algorithm automatically adjusts
the control mesh to satisfy the handle position constraints.

¢ Detail preserving: Our algorithm is effective in preserving sur-
face details while generating visually pleasing deformation.

¢ Real-time performance: Our algorithm can be implemented on
the GPU, with real-time performance ( > 100 FPS) for moderate-
sized subdivision surface meshes.

Preserving details is important for subdivision surface deformation.
Without detail preservation, the deformed surface can exhibit severe
distortion as shown in Fig. 10. This motivated us to develop a gra-
dient domain deformation algorithm for subdivision surfaces. Gra-
dient domain techniques, introduced recently for mesh deformation
and editing [Alexa 2003; Yu et al. 2004; Sorkine et al. 2004], are
well-known for their ability to preserve surface details and generate
visually pleasing results.

An immediate issue with a gradient domain algorithm for subdi-
vision surfaces is that of maintaining the subdivision surface rep-
resentation. Like existing gradient domain techniques, we wish to
manipulate the subdivision surface mesh directly and preserve de-
tails. Unlike existing techniques, which only generate a deformed
mesh, we need to generate a new subdivision control mesh to en-
sure that the deformation result is actually a subdivision surface.
We achieve this by projecting the deformation energy from the sur-
face mesh to the control mesh, using the subdivision detail function
that determines surface mesh vertices from control mesh vertices.

A much more challenging issue is the preservation of surface de-
tails during deformation. For a subdivision surface without dis-



placement maps or geometry textures, the subdivision detail func-
tion is simply the linear function defined by the subdivision matrix
[Warren and Weimer 2002]. The deformation energy in this case
is only moderately nonlinear and can be minimized using a Gauss-
Newton iterative method. This is similar to the situation with the
subspace deformation technique [Huang et al. 2006], which uses
the mean-value interpolation [Ju et al. 2005] to obtain a stable and
fast solution.

For displaced subdivision surfaces and subdivision surfaces with
geometry textures, the subdivision detail function is nonlinear. This
leads to a highly nonlinear deformation energy and the Gauss-
Newton iteration used in [Huang et al. 2006] no longer converges.
To handle this highly nonlinear energy, we introduce a shell defor-
mation solver. A displaced subdivision surface or a subdivision sur-
face with geometric texture is created by using the subdivision sur-
face mesh as a smooth mesh over which displacement maps or ge-
ometric textures are mapped to generate a detail mesh. The smooth
and detail meshes respectively form the inner and outer boundaries
of a shell. Our shell deformation solver operates within this shell,
replacing each numerically unstable Gauss-Newton iteration with
two stable deformation operations: one for optimizing the smooth
mesh and the other for the detail mesh. By alternately optimizing
the smooth and detail meshes, our technique essentially uses the de-
formation of the smooth mesh to compute a good initial estimation
of the highly nonlinear components of the deformation energy and
thus makes it tractable.

Our algorithm can be implemented on the GPU for real-time per-
formance. A key observation about our algorithm is that it is com-
pletely designed using local operations and is thus suitable for GPU
implementation. To balance the workload between the CPU and
GPU and take advantage of parallel execution streams in the GPU,
we organize the subdivision control mesh in texture memory as
done in [Shiue et al. 2005]. We also precompute the matrix in-
version needed and load the results into the GPU as texture images.
This way the whole iterative solver rests in the GPU, resulting in
high performance. Our GPU implementation runs orders of mag-
nitude faster than the state-of-the-art fast deformation solver using
multigrids [Shi et al. 2006].

With the proposed algorithm, good-quality deformation results can
be achieved with high performance on the GPU. Fig. 1 provides
deformation examples of our algorithm. We will demonstrate our
technique with more examples. We will also show that with our
GPU deformation algorithm, an animator can create visually pleas-
ing, real-time animations from a static subdivision surface and mo-
tion capture data.

2 Related Work

Freeform deformation (FFD) [Sederberg and Parry 1986] embeds
an object inside a volume lattice. The user deforms the object by
manipulating the lattice points. Several extensions have been pro-
posed to provide a more intuitive user interface by directly manipu-
lating points [Hsu et al. 1992] or curves [Singh and Fiume 1998]
on the object surface. A recent approach [Botsch and Kobbelt
2005] uses volume-based radial basis functions to deform the ob-
ject. Real-time performance on large meshes has been achieved for
deformation with predefined handles.

Energy minimization has long been used to deform smooth surfaces
[Welch and Witkin 1992; Botsch and Kobbelt 2004]. [Boier-Martin
et al. 2004] introduces a variational approach to deform subdivision
surfaces. To preserve surface details, they optimize the energy of a
deformation vector field instead of the deformation energy of ver-
tex positions. With their technique the deformation result is always
a fine mesh with a deformation vector associated with each ver-

(b)

Figure 2: (a) Control mesh shown in blue. (b) Smooth mesh. (c) Displace-
ment map. See Fig. 1 for the detail mesh of the subdivision surface.

tex. This can be quite inconvenient when working with subdivision
surfaces without displacements. Furthermore, since displacements
at vertices are not texture-mapped from a displacement map, this
approach does not scale up well as the subdivision level increases.
Most importantly, the above technique cannot handle geometry tex-
tures that are not displacement maps.

Since the introduction of hierarchical B-Spline editing [Forsey and
Bartels 1988], multiresolution mesh editing techniques [Zorin et al.
1997; Kobbelt et al. 1998; Guskov et al. 2000] have been devel-
oped for detail-preserving deformations by decomposing a mesh
into several frequency bands. A deformed mesh is obtained by first
manipulating the low-frequency mesh and later adding back the
high frequency details as displacement vectors. Recently, [Mari-
nov et al. 2007] mapped a two-band multiresolution deformation
framework to the GPU. These methods do not support direct ma-
nipulation of the original surface. Also, the displacement vectors
are inserted back independently at each vertex. As a result, arti-
facts can appear in highly deformed regions because details are not
coupled and preserved uniformly over the surface.

Gradient domain mesh deformation techniques [Alexa 2003; Yu
et al. 2004; Sorkine et al. 2004; Sheffer and Kraevoy 2004; Zhou
et al. 2005; Lipman et al. 2005; Nealen et al. 2005; Zayer et al.
2005; Au et al. 2006; Huang et al. 2006; Lipman et al. 2006] cast
deformation as an energy minimization problem. The energy func-
tion incorporates position constraints as well as terms for detail
preservation. Minimization of this energy distributes errors glob-
ally over the entire mesh and thus leads to high quality deformation
results. The user can directly manipulate the mesh surface and use
the region of interest to control the scale of manipulation.

Our algorithm combines the strengths of gradient domain tech-
niques and subdivision surfaces to achieve visually pleasing defor-
mation and high performance. Recently, [Shi et al. 2006] presents
a fast multigrid solver for gradient domain mesh deformation. Un-
fortunately, their GPU implementation does not run much faster
than the CPU version due to the unstructured nature of a general
mesh. Thanks to the regular connectivity and locality-preserving
data access of subdivision surfaces, our deformation algorithm can
be efficiently implemented on the GPU, resulting in a real-time sys-
tem which runs orders of magnitude faster than the multigrid solver
of [Shi et al. 2006]. We deem our algorithm a nice complement
to existing GPU-based subdivision techniques [Bolz and Schroder
2004; Shiue et al. 2005].

Deformation is an active research area and the above review only
summarizes techniques most relevant to our work. Other deforma-
tion approaches include example-based mesh deformation [Sumner
et al. 2005; Der et al. 2006], vector field based shape deformation
[von Funck et al. 2006], and volumetric prism based deformation
[Botsch et al. 2006].



3 Subdivision Surface Deformation

In this paper, a triangle mesh M is represented by a tuple (K,V),
where K is an abstract simplicial complex containing mesh connec-
tivity information and V = (v{,...,v;,)7 is a 3m-dimensional vector
with each v; € R? representing a vertex position.

3.1 Laplacian Deformation

We first derive a formulation for direct manipulation of subdivi-
sion surfaces following the Laplacian surface editing approach for
meshes [Sorkine et al. 2004; Yu et al. 2004]. Let the control mesh
of the subdivision surface be M, with vertices V. as shown in Fig. 2.
From the control mesh, a smooth mesh M, is obtained by subdivid-
ing V. to a desired level. A detail mesh My with vertices V; is then
generated on top of the smooth mesh by applying either a displace-
ment map [Lee et al. 2000] or geometric texture [Peng et al. 2004].

The detail mesh My is the subdivision surface that we wish to de-
form through direct manipulation. We can carry out Laplacian de-
formation of M, by minimizing the following energy function:

min (|1LVg = §(V) |2+ lcva = U1 M
Va

where L is the Laplacian operator matrix of M, 5 (V) is the Lapla-
cian coordinates of V;, and C is the positional constraint matrix and
U is the target positions of the constrained vertices (i.e., vertices un-
der direct manipulation). 5 (V) is a nonlinear function of the vertex
positions because it includes local rotations.

We must ensure that the deformation result is still a subdivision
surface. For this purpose we rewrite Eq. (1) in terms of the control
mesh vertices V... Through subdivision, displacement mapping, and
geometric texture mapping, the vertices of the detail mesh M,; may
be computed from V, as follows:

Vd :f(VC)7

where the function f is determined by the subdivision rules, dis-
placement mapping and texture mapping procedures. We call f the
subdivision detail function. For a subdivision surface without dis-
placement maps or geometry textures, f is simply the linear func-
tion defined by the subdivision matrix, as we shall see. In general
f is a complex nonlinear function.

By replacing V; with f(V.) we turn Eq. (1) into
min (1L (Ve) = S V)P +Crve) —ul?). @)

This is the basic formulation for the Laplacian deformation of sub-
division surfaces. The deformation proceeds by first solving Eq. (2)
for the control mesh V. and then applying subdivision rules, dis-
placement maps, and geometric textures to arrive at the deformed
detail mesh M,;. Fig. 3 provides an example of subdivision surface
deformation by direct manipulation.

In the following we present our technique for solving Eq. (2), start-
ing with the simple case in which displacement mapping and geo-
metric textures are absent and My is simply the smooth mesh Mj,.

3.2 Smooth Surface Deformation

What makes this case simple is the fact that the subdivision detail

function f(V,) is a linear function. Let M}, = M; be the 1t Jevel
subdivision mesh of the control mesh M, = M, and

Vb =58181_1...51Ve = SpVe.
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Figure 3: Subdivision surface deformation via direct manipulation. Top
row: The user deforms the detail mesh using freely selected surface points
as handles (shown as orange dots). Bottom row: Our algorithm automati-
cally adjusts the control mesh accordingly.

The subdivision matrix for M. — My, is S, = $;5;_1...S1, where §;
is the subdivision matrix for Mi_y — M; (i = 1,...,1). The subdivi-
sion detail function f(V,) = SV, is the linear function defined by
subdivision matrix.

With a linear f(V,) Eq. (2) becomes

min AV — b(Ve)||, 3)

(LS, _( 8(SpVe)
where L, is the Laplacian operator matrix of the smooth mesh M;,

since we are examining the case when M; = M),. Here we use L,
instead of L to emphasize its relationship to Mj,. Note that (V) is

a nonlinear function of V.. because of the nonlinear 0.

As in [Huang et al. 2006], Eq. (3) can be solved using an inexact
Gauss-Newton method [Steihaug 1995],

min VA1 — b(V)] . @
Vit

In each iteration, b(VX) is known and Eq. (4) is solved as a least
squares problem

VERL — (AT A)~1AT p(VH). 5)

3.3 Shell Deformation Solver

The inexact Gauss-Newton method for smooth surface deformation
essentially uses the following linearization:

AVFTL — p(VET) AVE—b(VE) + (A= T, (VE)) (VET —VE)
AVE—b(VEY £ A(VET —vE)

AVKHL _p(VE),

QN

(6)
where Jj, is the Jacobian of b. This approximation is accurate when
either ||J,(V¥)|| < ||A]|| or the step size ||V ! — VK| is very small.



In practice, the step size is not always small because large step sizes
at the beginning of the iterative process are usually necessary for
fast convergence. Fortunately, we do have ||J, (V)| < ||A|| because
the subdivision detail function f(V,) is linear and the nonlinearity

of b(V,) is solely caused by the nonlinear Laplacian coordinates 5.
In this case, b(V,) is only moderately nonlinear and the above one-
step linearization method suffices. Our experiments indicate that
VX J,)1I/|IAT Al is in the range of < 1.0e .

In general, the detail mesh M,; and the smooth mesh M, differ and
the subdivision detail function f(V.) is nonlinear. This nonlin-
ear f(V,) leads to highly nonlinear deformation energy functions
that cannot be minimized using the above one-step linearization
method. To handle such deformation energy functions, we devel-
oped the shell deformation solver. For simplicity, we first describe
the shell deformation solver for displaced subdivision surfaces.

Suppose the detail mesh M; is created by applying a displacement
map to the smooth mesh M. Each vertex v; on M, is displaced by
a distance h; along the normal n; € R3. The vertex positions V,; of
the detail mesh may be computed as follows:

Vi=Vy,+HNp,

where N, = (ny, ...,nm)T is a nonlinear function of the vertex posi-
tions Vj,. Since Vj, = S, V.., N, is also a nonlinear function of V., H
is a m x m diagonal matrix with H(i,i) = h;. Using V}, = S, V., we
can compute V,; from V, as follows:

V= f(VC) =85,Ve +HNp,.

Now the subdivision detail function f is nonlinear because of the
nonlinear function N,. With this new f, Eq. (2) can be turned into

min [ DV, —d (V). ™
(LS _ ( 8(f(Ve)) —LyHN,
D—( CSp > d(V“)_( U —CHN, )

where L; is the Laplacian operator matrix of the detail mesh M, —
we use L, instead of L to emphasize its relationship with M. The
function d(V,) is highly nonlinear due to the nonlinearity of both 5
and N,,. Under this circumstance, the one-step linearization method
in [Huang et al. 2006] no longer suffices and the corresponding
Gauss-Newton solver usually runs into convergence problems as
shown in Fig. 4.

The shell deformation solver is an iterative solver for Eq. (7). The
smooth mesh M, and the detail mesh M,; form a thin shell with in-
ner boundary M, and outer boundary M. In each iteration, the shell
deformation solver optimizes M;, and M. An iteration starts with
deforming the inner boundary M, using the position constraints im-
posed on the outer boundary M,;. This is done by solving Eq. (4)
according to the inferred position constraints on Mj,. The inferred
constraints are derived from U, the given constraints on M. After
deforming the smooth mesh M}, M, is used to evaluate the nonlin-
ear Laplacian coordinates 5 and displacement normals N, in d(V,)
in Eq. (7). Finally, the deformation of the detail mesh M, is com-
puted for the current iteration using d(V,) so evaluated.

Specifically, at each iteration k, we first compute an initial guess of

the control mesh vertices Vf+ * using Eq. (5) and obtain

1
VETE = (AT a) AT (v ®)
where b/ (VF) = ( 6(‘2’,‘/ ) ) with U’ representing the inferred

position constraints on the smooth mesh M;,. U’ is inferred from

(a) one-step linearization method in [Huang et al. 2006]

(b) our shell deformation solver

Figure 4: The convergence of the one-step linearization method in [Huang
et al. 2006] and our shell deformation solver. The horizontal axis represents
time. The red curves indicate the deformation energy while the blue curves
indicate the iteration step sizes. See the companion video for animated de-
formation sequences.

the original position constraints U as follows. Suppose a vertex v;
on the detail mesh M, is constrained to move by Av; according to
U. Then v;’s corresponding vertex on the smooth mesh M;, should
be constrained to move by the same amount Av; according to U’.

To calculate the deformation of M,; for the current iteration, we
compute VC"‘Jrl using the deformed smooth mesh control vertices

1
Vck i by solving

1
min DV —a(vET )12,
Vi

c

The result is 1
vkl = (DT D)~ IpTa(vi ). )

Fig. 3 shows the deformation results of a displaced subdivision sur-
face. The user directly manipulates the points on the detail mesh.
The control mesh is automatically adjusted and the surface details
are nicely preserved.

Fig. 6 demonstrates the importance of preserving geometric details.
The dinosaur model is a displaced subdivision surface created from
the original scanned model using the algorithm described by [Lee
et al. 2000]. Fig. 6 (c) is the result of deformation without preserv-
ing the details of the displacement map. This is generated by first
deforming the smooth mesh using the algorithm described in Sec-
tion 3.2 and then applying the displacement map to the deformed
smooth mesh. Fig. 6 (d) is the result of the shell deformation solver,
which preserves the geometric details of the detail mesh. As we can
see from the zoomed versions in Fig. 6 (e) and (f), the geometric de-
tails in Fig. 6 (c) are heavily compressed compared to that of Fig. 6
(d). Fig. 10 provides another example that demonstrates the impor-
tance of preserving details.

While a complete analysis of the stability of the shell deformation
solver is beyond the scope of this paper, the intuition behind the



Figure 5: Deformation of a subdivision surface with a complex geometric
texture. (a) Smooth mesh. (b) Geometric texture. (c) The detail mesh. (d) A
deformation result.

solver is not difficult to understand. The shell deformation solver
essentially uses the deformation of the smooth mesh to compute
a good initial estimation of d(V,) and thus makes the highly non-
linear d(V,) tractable. As noted in [Steihaug 1995], the numeri-
cal stability of the Gauss-Newton method heavily depends on the
nonlinearity of d(V;). d(V,) includes two nonlinear components,

N, and 5, and § further depends on N,. This complex nonlinear-
ity makes the one-step linearization method numerically unstable
even with small step sizes. The shell deformation solver replaces
each Gauss-Newton iteration with two numerically stable deforma-
tion operations. The deformation of the smooth mesh M, is stable
because it only involves the nonlinearity of 5 and thus can be han-
dled with the one-step linearization method. The deformation of the
detail mesh M, is stable because the deformed M;, provides good
initial estimations of V. and N,

We have verified the numerical stability through a wide variety of
experiments. Fig. 4 compares the stability of our shell deformation
solver with that of the Gauss-Newton solver used in [Huang et al.
2006]. As we can see, our solver converges fast while the Gauss-
Newton solver diverges with oscillations. Note that here we are not
doing a general comparison with the subspace mesh deformation
technique [Huang et al. 2006]. We are only comparing the shell de-
formation solver with the one-step linearization method in [Huang
et al. 2006]. For this reason, we did not use the mean value inter-
polation in this comparison. Instead we adapted the one-step lin-
earization method to minimize the subdivision deformation energy
according to Eq. (4). This is a meaningful comparison since both
the shell deformation solver and the one-step linearization method
use the same subspace (i.e., the same control mesh and subdivision
scheme).

Our algorithm can be extended to support displacements along ar-
bitrary directions, although only displacements along the normal
direction are implemented currently. For general displacements,
the displacement direction of each vertex of the smooth mesh is
represented as a vector in the local frame defined by the vertex nor-
mal and the tangent vectors. These local vectors may be stored as
an additional texture. At run time, we simply compute the global
displacement directions using the local displacement directions and
the local frames and feed the results to the shell deformation solver.

3.4 Handling Geometric Textures

The shell deformation solver can also handle subdivision surfaces
with geometric textures. Fig. 5 shows a dragon model mapped with

a squama geometric texture.

We use the shell map [Porumbescu et al. 2005] to map a geomet-
ric texture to the shell space over the smooth mesh M. First we
construct a shell space over the smooth mesh M},. An offset mesh
M;, which has the same number of vertices and the same mesh con-
nectivity as M, is created using the envelope generation algorithm
introduced in [Cohen et al. 1996]. As with displacement mapping,
each vertex v; of M;, is moved by a distance 4; along the normal
direction at v;. Thus the vertex positions of the offset mesh M; can
be expressed as
Vi =V + HNp,

where Nj, = (ny,...,n,)7, with each n; € R® being a unit normal
vector. H is a diagonal matrix with H(i,i) = h;.

We define a shell map by decomposing both the shell space (the
space between M) and M;) and the texture space into two sets of
corresponding tetrahedra. The shell map is defined by the barycen-
tric coordinates of the corresponding tetrahedra. Given a point in
the texture space, we can easily locate the tetrahedron it belongs to
and compute its barycentric coordinates. Its corresponding point in
the shell space is located in the corresponding tetrahedron with the
same barycentric coordinates.

With the shell map, the vertex positions of the detailed mesh M,
can be represented as a linear combination of Vj, and V;:

V
Va= (W, VVt)( Vl,j ) =WV + Wi Vy = (W, +Wy)Vj, + W,HN,,

where (W, W;) is the matrix of barycentric coordinates. Replacing
Vp, with S, V.., we get

Vd = f(Vc) = (Wb + vvz)Sch + VV;HNb.

This subdivision detail function f has essentially the same form as
that of the displaced subdivision surface.

The detail mesh M, can be deformed by solving Eq. (7) with a new
matrix D and nonlinear function d(V,)

_( La(Wp+W;)S, ~( 8(f(V.))— L ,W,HN,
D_( éi(Wbb+VW)Sbb )’ d(v")_( (fgj—))CW;Ii{Nb ’ >

Again, the nonlinear structures of d(V,) is the same for displace-
ment maps and geometric textures. As a result, the shell deforma-
tion solver can be applied here.

Note that we can also use other algorithms such as [Peng et al. 2004]
for constructing the offset surface M;. With [Peng et al. 2004], the
displacements from the smooth mesh vertices to the offset mesh
vertices can be arbitrary. We can represent such displacements us-
ing the local frames defined by the vertex normals and the tangent
vectors, storing the result as a texture. This is the same as a dis-
placement map with arbitrary displacement directions, which we
discussed earlier.

3.5 Implementation Details

The Laplacian operator matrix L can be constructed using the cotan-
gent form as introduced in [Desbrun et al. 1999]. For the Lapla-
cian coordinates &, we employ the rotation-invariant representa-
tion introduced in [Huang et al. 2006]. Given an inner vertex v;
on the undeformed mesh, its one-ring vertices {v; 1,...,vin, } and
incident triangles {; ; = A(vi,vi j—1,vi, j)}’jn;p its Laplacian co-
ordinate before deformation, &;, is first computed using L. Since
the Laplacian is a discrete approximation of the curvature nor-
mal, it lies in the linear space spanned by the normals of the in-
cident triangles. A set of coefficients y;; is then computed such



(a) (b)
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Figure 6: Preserving details in a displaced subdivision surface. (a) Smooth
mesh. (b) Detail mesh. (c) Deformation result without detail preservation.
(d) Deformation result with detail preservation. (e) Zoomed version of (c).
(f) Zoomed version of (d). As we can see from the zoomed versions, the
geometric details in (c) are heavily compressed compared to that of (d).

that §; = Z;-'il Uij ((v,-7j,1 —vi) X (vij— v,-)). Note that both L and
;i are precomputed for the undeformed mesh.
Hij p p

In each Gauss-Newton iteration, we need to compute 5. Here we
use & (SpVF)) as an example to show how this is done. We first com-
pute the vertex positions ka = Sbe , then calculate the Laplacian at
iteration k using {;;}:

m;

(Vi) = Y i (0h =D x 0k =h). a0
j=1

Then we scale the magnitude of el-(ka) to keep the length of the
original Laplacian before deformation:

&(VF)

S(VE) = ni i,
S s v

an

where 9; = ||&;| is the length of the original Laplacian.

Our current system uses the Loop subdivision scheme [Loop 1987].

4 Real-Time Deformation on GPUs

The main components of our deformation algorithm consist of lo-
cal operations such as subdivision and Laplacian coordinates cal-
culation, and matrix-vector multiplications. These operations can
be efficiently implemented on programable graphics hardware. In
the following we use the smooth mesh deformation pipeline (Sec-
tion 3.2) as an example to explain how this can be done.

According to Eq. (5), in each iteration we need to evaluate VC’”‘l =
(ATA)TATb(VETT). We precompute AT and (ATA)~! on the CPU
and load the results into the GPU as two textures. Alternatively, we
could precompute (ATA)~'AT and load it as a single texture. How-
ever, we choose not to do so for the following reasons. First, as A is
a sparse matrix, computing ATb(VCk ) only involves a sparse matrix-
vector multiplication which is inexpensive. Second, we wish to
keep the precomputation time short to facilitate user interaction,
but calculating (ATA)~!AT would involve significantly more pre-
computation time due to the additional multiplication between a

Model #V. Subd. Level #V, FPS
Dinosaur (Fig. 3) 721 4 184,066 125
Teapot (Fig. 1(b)) 296 2 61,052 113
Dragon (Fig. 5) 1,157 2 22,706 122
Tower (Fig. 10) 68 2 29,995 122
Armadillo (Fig. 8) | 1,202 4 307,202 | 103

Table 1: Statistics for the examples used in the paper, including the numbers
of vertices for the control and detail meshes, the subdivision levels, and the
frame rates of the GPU implementation.

|

Figure 7: The user can create real-time animations by driving a subdivision
surface with motion capture data. Here is an example of setting up corre-
spondences between the skeleton joints in the motion capture data and the
handles on the subdivision surface.

dense matrix (ATA)*1 and a sparse matrix A7. Less precompu-
tation time means quicker response to the user, because each time
the user selects a new set of manipulation handles, we need to re-
peat the precomputation stage. To see this, note that A consists of
two parts, LS, and CS;,. The first part is usually fixed because it
only depends on the undeformed control mesh and the subdivision
level. The second part, however, depends on the user selection of
the manipulation handles which often change during a deformation
session. Precomputing (ATA)*1 thus provides a quicker response
to the user.

The calculation of b(VX) consists of two parts: &(S,V¥) and U.
Obtaining U is easy because it comes directly from the user in-
put. To compute S(S;,VCI‘ ), we need to get the smooth mesh vertices
Vlf = Sbe through subdivision, which can be efficiently performed
using the subdivision kernel introduced in [Shiue et al. 2005]. The
control mesh is first preprocessed into a set of fragment meshes.
The fragment meshes that share the same lookup table are placed
into a group and stored as a 2D texture using the spiral enumera-
tion. Each fragment mesh in the group is mapped to a row in the 2D
texture. Then in the fragment shader, the look-up table is used to fill
the necessary subdivision stencil for each row. The subdivision re-
sults (vertex positions and normals) are either stored as 2D textures
for subsequent processing or sent to pixel buffer objects (PBOs) for
rendering. Once we get V¥, S(ka ) can be computed according to
Eq. (10) and Eq. (11).

For the final evaluation of VX! = (ATA)~1ATb(V}), we perform
a sparse matrix-vector multiplication between AT and b(Vb]‘ ) using
the method described in [Bolz et al. 2003], followed by a dense
matrix-vector multiplication between (ATA)~! and A b(V}) which
is carried out as in [Kruger and Westermann 2003].

5 Experimental Results

‘We have implemented the described algorithm on a 3.7Ghz PC with
2GB of memory and a NVidia 8800GTX graphics card. See the
companion video for animated versions of the figures and other de-
formation examples. All video clips are captured live from our de-
formation system.



Figure 8: Snapshots of a dancing Armadillo driven by motion capture data.
See the companion video for the animation.

Fig. 3 and Fig. 6 show deformation results for displaced subdivi-
sion surfaces. Color textures are easily supported in our deforma-
tion system, as shown in Fig. 9. Fig. 1 (a) and Fig. 10 show the
deformation results with geometric textures. The user directly ma-
nipulates the points on the geometric textures. The control mesh
is automatically adjusted and the geometric details are nicely pre-
served. The tower in Fig. 10 is generated by mapping a geometric
texture over a simple smooth cylindric mesh. This example demon-
strates the importance of preserving surface details for high quality
deformation results.

With our GPU deformation algorithm, an animator can create visu-
ally pleasing, real-time animations from a static subdivision surface
and motion capture data (Fig. 8 and Fig. 9). The user simply selects
vertices on the subdivision surface as handles and specifies a corre-
sponding joint on the skeleton of the motion capture data for each
handle (see Fig. 7). Then the handle will move following the joint.
Sometimes it is helpful to use a group of surface points as a handle.
In that case, the centroid of the handle moves following the corre-
sponding joint. Note that [Shi et al. 2006] also uses motion capture
data to create mesh animations and they need to build a volumet-
ric graph inside the mesh to get the rotation constraints from the
bone transformation of motion capture data. We do not need such a
volumetric graph because our algorithm can automatically infer ro-
tations from handle translations. More importantly, [Shi et al. 2006]
needs several seconds to generate a frame while our GPU algorithm
runs in real time.

Table 1 provides some statistics for the examples shown in the pa-
per. For all examples, our deformation system can achieve real-time
performance. Note that the performance bottleneck of our GPU al-
gorithm is in the subdivision evaluation in the case of displacement
maps. For geometric textures, the bottleneck is in updating the new
Laplacian coordinates and normals for the detail mesh because the
connectivity of a geometry texture mesh is arbitrary. We cannot
make use of the fragment mesh data structure anymore to acceler-
ate this process. This explains why the frame rate of the teapot is
less than the dinosaur, although the dinosaur has much more ver-
tices than the teapot.

As mentioned, when the user adds new handles or removes old han-
dles, the positional constraint matrix C will change. Therefore, we
need to re-compute the matrix inverse for (A7A)~! and (D" D).
Fortunately, the dimensions of these matrices are decided by the
vertex number of the control mesh, which is much smaller than the
detail mesh. For all examples shown in this paper, this computation
takes around 0.1 ~ 3 seconds. The coefficients {y;;}, the Laplacian
and the subdivision matrices are fixed during deformation and are
not affected by the handle selections. The precomputation time for
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Figure 9: A frog and a dinosaur dancing together. Our GPU algorithm is
fast enough to deform multiple models simultaneously in real time.

these items is less than 7 seconds for all examples.

6 Conclusion

We have described an algorithm for interactive deformation of sub-
division surfaces. This algorithm works for all commonly used sub-
division surfaces, including displaced subdivision surfaces and sub-
division surfaces with complex geometric textures. With our algo-
rithm, the user can directly manipulate subdivision surfaces using
freely-selected surface points as handles. The most important fea-
ture of our algorithm is that it combines the strengths of gradient do-
main techniques and subdivision surfaces to achieve both visually
pleasing deformation and high performance. Specifically, our sys-
tem automatically preserves surface details, generating high-quality
deformation results by minimizing a deformation energy that incor-
porates both the Laplacian and handle position constraints. While
significant computation is needed for minimizing a highly nonlin-
ear deformation energy, our algorithm, designed with local opera-
tions and equipped with a novel shell deformation solver, achieves
real-time performance on the GPU.

As a topic of future research, we plan to explore the use of adaptive
subdivision in our system. Our current system only supports uni-
form subdivision. We are also interested in developing techniques
for collision-free deformation with geometric textures. When de-
forming geometric textures, we do not update the offset surface and
thus cannot guarantee collision-free deformation. If collision oc-
curs locally, it is possible to prevent it by updating the offset surface
interactively as described in [Peng et al. 2004]. However, a general
solution to this problem merits further investigation.

Another area for future work is volume preservation during defor-
mation. The global volume constraint of [Huang et al. 2006] can be
easily incorporated into our deformation energy. However, since the
volume computation needs to use all the vertex information of the
detail mesh, its implementation on the GPU is inefficient. Thus, we
currently drop the volume constraint. Instead of preserving global
volume, we are exploring methods to preserve local volume, which
is more desirable and may be efficiently done on the GPU.
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Figure 10: Detail preservation for subdivision surface deformation. From left to right: the original model, deformation with detail preservation, and defor-
mation without detail preservation. The result of deformation without detail preservation is generated by first deforming the smooth mesh using the algorithm
described in Section 3.2 and then mapping the geometric texture onto the deformed smooth mesh.
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