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Abstract

High-order smooth surface primitives, such as subdivision patches
for example, are attractive for the modeling of free-form surfaces.
In contrast to meshes they require only a few control points to spec-
ify large sections of a surface. Unfortunately, much of this band-
width advantage is lost when such surfaces have to be tessellated on
the CPU prior to transmission over the graphics bus and rendering
on the graphics card. For surfaces built through linear combination
of basis functions it is possible to precompute tessellations and use
these to evaluate the surface at runtime in a simple computation per-
formed entirely on a programmable graphics processor (GPU). The
improved bandwidth requirements—only control points need trans-
mission during animation, for example—coupled with the high per-
formance of GPUs, allows us to achieve tessellation rates up to24
million vertices per second on a500 MHz GeForce FX.

CR Categories: I.3.1 [Computer Graphics]: Hardware Architecture—Graphics pro-
cessors; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—
Graphics processors;

Keywords: GPU Computing, Subdivision, Catmull-Clark, efficient, evaluation

1 Introduction

Achieving good performance in interactive graphics has until re-
cently implied the use of low polygon count models. Smooth sur-
face primitives, such as spline or subdivision patches, have of-
ten been limited to high precision (e.g., CAD) and high quality
(e.g., special effects) applications at the expense of realtime perfor-
mance. Among these primitives, subdivision surfaces [Zorin and
Schr̈oder 2000] are of particular interest (see Figure1) as these are
now widely used in high end modeling packages [Alias|Wavefront
2002], animation production [DeRose et al. 1998], realtime author-
ing kits [MacroMedia 2002], and have become part of the MPEG4
standard [2002].

Since commodity graphics hardware is tuned for triangle ren-
dering, any high level primitive must be tessellated prior to scan
conversion to take advantage of the rasterization hardware. This
consumes both CPU resources for evaluation and bus resources for
transmission of the resulting triangles to the GPU. Present gener-
ation graphics adapters, such as the ATI9700 or nVidia GeForce
FX, have raw rasterization performance which far outstrips the bus
bandwidth available to “feed” the cards [Moreton 2001]. Since
the mismatch of bandwidth to compute performance is expected to
continue to get worse [Semiconductor Industry Association 2002;
Khailany et al. 2003], tessellation must be performed on the GPU
to realize the benefit of higher rasterization throughput for smooth
surface primitives. One avenue to achieve this is through the inclu-
sion of forward difference accumulator units [Vlachos et al. 2001;
Moreton 2001]. These could be used to tessellate subdivision sur-
faces [Peters 2000; Bischoff et al. 2000], but the required special-
ized hardware is not available in the ATI9700 or GeForce FX.

Traditional approaches to subdivision perform depth or breadth
first subdivision on a (sub-)mesh or use direct evaluation [Stam
1998]. Depth first evaluation of pairs of Loop [1987] patches was
first described by Pulli and Segal [1996], who used the micro-
coding support on early generation SGI rendering hardware to im-
plement this in a stored program. Since depth first recursion re-
quires a stack of rows of vertices, their algorithm does not easily

Figure 1: Examples of Catmull-Clark subdivision surfaces tessel-
lated with our implementation on the GeForce FX. Each consists of
several hundred patches of different valence. The VW and phone
have many tags in different configurations. The closeup shows the
mesh structure of a watertight adaptive tessellation (subsection of
the head model near corner of left eye).

map onto streaming oriented architectures. Exact evaluation as de-
scribed by Stam could be implemented in a fragment program. Sup-
porting all the possible cases of tags, corners, and boundaries [Bier-
mann et al. 2000] however, would lead to a rather complex pro-
gram [Zorin and Kristjansson 2002]. Instead we pursued an entirely
different and much simpler approach.

1.1 Linear Combination of Tessellations

The basic observation we exploit is thatthe tessellation of a linear
combination of basis functions is equivalent to the linear combina-
tion of tessellations of basis functions: our algorithm is applicable
to anysurface built from linear combinations of basis functions. It
also results in an embarrassingly simple fragment program. In the
case of Catmull-Clark [1978] subdivision surfaces—with the full
complement of tagged edges and vertices [Biermann et al. 2000]—
Bolz and Schr̈oder [2002] successfully used this approach in a care-
fully crafted CPU implementation and achieved1.8 flops/cycle.
Brickhill [ 2001] similarly used precomputed powers of the subdi-
vision matrix for Loop surface tessellation on PS2 hardware1.

We build on this earlier work to design an entirely GPU based al-
gorithm. In particular we use the basis function tables provided by
Bolz and Schr̈oder (http://multires.caltech.edu/software/fastsubd/).
However, in contrast to all earlier work weguaranteea water-
tight tessellation—no pixel dropouts at patch boundaries. This is
achieved through consistent arithmetic on patch boundaries and a

1No performance numbers were reported.

1

http://multires.caltech.edu/pubs/GPUSubD.pdf
http://multires.caltech.edu/software/fastsubd/


novel preprocess which enforces exact bit equivalence of floating
point numbers on edges under alllocal symmetriesof the control
mesh for all basis functions, valences, and tag statuses (smooth in-
terior, dart, boundary, crease, convex corner, concave corner).

During animation, and after the initial download of basis func-
tion tessellation “textures,” our fragment program requires only the
transmission of control points. We can saturate the fragment shader
hardware at marginal AGP bus bandwidth consumption. Our algo-
rithm supportsadaptive tessellationon a per patch basis (Figure1)
and generates vertices every24 to60 instructions leading to approx-
imately24 million vertices per second on nVidia’s GeForce FX (see
Section3.1).

2 Algorithm Setup

For purposes of exposition we give here a very brief review of the
approach of Bolz and Schröder and refer further details to [2002]
(see also Brickhill [2001] for the Loop case). A tutorial overview
of subdivision can be found in [Zorin and Schr̈oder 2000], while
details of the particular rules used are documented in [Biermann
et al. 2000]. A prototype implementation of the latter is available at
http://www.mrl.nyu.edu/biermann/subdivision/. This code formed
the basis for the reference implementation of subdivision surfaces
in MPEG4 [2002] and was used to generate the tables we use.

A Catmull-Clark subdivision surface is specified by a polyhe-
dral 2-manifold (with boundary) mesh, possibly containing tagged
vertices (dart, corner) and edges (boundary, crease). WLOG we
may assume that all faces are topologic quadrilaterals. In order to
separate irregular vertices—those with other than four (two on the
boundary) faces incident—one step of subdivision is performed up
front. Each resulting patch contains exactly one vertex of the in-
put mesh. We will refer to this vertex as thecorner of the patch
and orient it to be at the local origin. Note that we do not assume
a consistent orientation. Thecontrol setof a patch is made up of
the control points in the 1-ring neighborhood of the given quad.
The limit surface can be evaluated on an arbitrary but fixed tes-
sellation by linearly combining tessellations of the basis functions
in the control set. Of these only the section with support on the
patch is required. Bolz and Schröder [2002] used a regular grid of
25 +1 samples on a side. Fewer levels of subdivision are supported
through subsampling while finer subdivision is achieved through
additional coarse level subdivisions on the CPU.

The number of unique basis functions is unbounded so no set of
tables sufficient for all inputs can be computed ahead of time. We
use the tables of limit positions and tangents provided by Bolz and
Schr̈oder in their prototype implementation. These cover smooth
and dart interior vertices, boundaries and creases, as well as convex
and concave corners, with valences ranging from one to twelve.
For a full fledged implementation one could either store the needed
tables with a given control mesh—not unlike what is done with
standard texture maps—or create tables lazily upon mesh creation.

An important issue that was not addressed by earlier work is that
of pixel dropouts between neighboring patches.

2.1 Watertight Surfaces

Patches of the surface are tessellated independent of each other.
To avoid cracks and pixel dropouts, corresponding vertices on the
boundaries of patches must match exactly. Cracks can result when
two neighboring patches are tessellated at different rates. In this
case the boundary is tessellated at the lesser of the rates of the two
incident patches and the transition strip zippered accordingly (see
Figure1)

A more problematic issue is the requiredexactbit by bit equality
of the floating point vertex coordinates which either patch produces

on a joint boundary. Foranyfinite precision this can only be guar-
anteed if the vertices which are supposed to match are computed
through linear combination of the same values with the same coef-
ficients in the same order(and the same initial state of the FPU).
Consistent ordering can be achieved by using a total order,e.g., file
order, on all control points when performing linear combinations
on a patch by patch basis. The coefficients (i.e., control points) of
these linear combinations are shared by definition. More tricky are
the pre-tessellated basis functions. If the code which produces these
tessellations is constructed with appropriate care one could ensure
that exact bit equivalence holds. In general however, this will not
be the case.

We propose a different solution which works for any set of such
tables independent of how they were produced in the first place. It
is based on enforcing matching floating point values on edges under
the group of topologic symmetries of the (tagged) control set.

2.1.1 Symmetry Enforcement

Recall that we store for each patch type (valence, tag status) a set
of tables. Each such table is associated with a basis function whose
support overlaps the given patch. For two neighboring patches a
given basis function will appear as a particular—in general, differ-
ently indexed—table in the control set of each patch. We need to
ensure that these tables, which were computed independently, have
the same entries on the shared edge.

Figure 2 illustrates a simple example of this. Two abutting
patches of valencem and n respectively share a common edge.
The control point highlighted in yellow contributes to the shared
edge (bold). When considering each patch by itself the same basis
function appears in each local picture in different locations.

m n

shared edge

control points for edge each patch in its own local view

identical basis function in each view

Figure 2:A simple example demonstrating a given basis function in
different positions in the control sets of two patches.

Bolz and Schr̈oder [2002] discussed the issue of basis function
table uniqueness. For example, many basis functions are identical
(modulo symmetries)independentof valence. We must now enu-
merate the tableedgeswhich are identical modulo all applicable
symmetries. Once this task is performed, a simple pre-process on
all tables,e.g., taking the minimum of all “equal” values, ensures
exact bit by bit matches.

To enumerate the number of different cases we observe that
of the four edges bordering a patch theoff-corner andon-corner
edges form disjoint sets under symmetries of the control set—an
on-corner edge of one patch can never be an off-corner edge of
another. Off- and on-corner edges can share values at endpoints,
but this does not impact our algorithm to enforce consistency. For
off-corner edges there are only four unique classes (Figure3, left)
across all valences and all tags(boundary, crease, concave corner,
convex corner) with one exception. An edge of a patch adjacent to
anytagged edge (Figure3, center) has four separate classes (though
they are the same independent of valence and tag status). In each
class there are two, four, or eight control points corresponding to
the three symmetries left/right, up/down, and mirror about the line
x = y. Some of these symmetries may be degenerate. Figure4
shows all eight cases in one class for a particular example. On-
corner edges are influenced by the control points of the irregular
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off-corner on-corner  tag off-corner tag 

Figure 3: Enumeration of representatives of all classes of basis
functions (hollow dot) which yield the same set of values on a given
directed edge (arrow) near the corner (solid dot). Edge tags are
shown in bold.

left/right left/rightup/down

up/down up/downleft/right

x=y

Figure 4:Symmetries of directed off-corner edges and their control
sets using a single basis function (hollow dot) as an example.

vertex, its 1-ring, and a set of six (in general) control points from
the 2-ring of the irregular vertex. The latter fall into two classes
independentof valence and tag status—with the lone exception—
as in the off-corner case–of a tagged edge (Figure3, right) which
gives rise to its own classes (again, independent of valence or type
of tag).

Finally, the control points in the 1-ring are subject to a symmetry
under rotation by2π/k and a mirror symmetry about the edge under
consideration (Figure5). Except when the symmetry is degenerate
each class has four members. All these classes are specific to a
particular valence and tag status. This completes the enumeration

rotationrotation horizontal

Figure 5: The symmetries of the on-corner basis function edges
(hollow dot denotes basis function). There is a unique set of classes
for each vertex and valence. If there is a tagged edge, then the
classes are also dependent on the location of the edge with respect
to the tag,i.e., the presence of a tag breaks some of the symmetries.

of all classes. The proof of this fact follows from a simple argument.
Fix any edge shared by two patches in the control mesh. That edge
musthave the same values from the point of view of either side.
This holds no matter what the valence of either patch, or whether
there is a tag present (a tag on a shared edge, must of course be
shared,etc.)

We implemented a simple program which enforced these sym-
metries in a pre-process performed on the tables of Bolz and
Schr̈oder. It reads all tables, maps edges onto their symmetry
classes, and for each edge writes back the minimum of all values
found in a given slot. For tangent (derivative) tables the same sym-
metries holdwith the provisothat d/dx maps tod/dy under the
x = y symmetry.

3 Implementation

Each patch is evaluated by rendering a2n+1 by2n+1 quadrilateral
(n ≤ 5) to a vertex buffer. Each pixel corresponds to a vertex of
the tessellated patch. The fragment program computes the weighted
sum of the control points passed to the program in constant registers
with the weights fetched from the appropriate tessellation textures.
Normals can be computed by using two additional tessellation tex-
tures for the associated partial derivatives. Among other uses, nor-
mals can be employed to apply a displacement map to the surface
tessellation [Lee et al. 2000].

Control points are passed into the fragment program in the order
induced by the total ordering. The associated basis function values
are looked up in a texture using a constant offset—passed in con-
stant registers—and an interpolated offset appropriate for the given
fragment (Figure6). Each patch type,i.e., valence and tag status,

control points

table offsets 0 00

x y z x y z x y z

a b c

....

....

....basis function

tables
0 1 2 2k+7

33

33(2k+8)

Figure 6: Layout of basis function tessellations within a texture.
Control points map to the right basis function through an associated
address.

has its own texture containing the2k + 8 tables associated with
its control set. The unrolled loop is optimized over two iterations,
since they can share an addition

R1.xyzw = OffSet01.xyzw + TEXCOORD0.xyxy;
R1.x = TEX0[R1.xy]; R0 += R1.x * cp0
R1.x = TEX0[R1.zw]; R0 += R1.x * cp1

wherecp0 andcp1 are two control points;OffSet01 contains
the constant texture offset intoTEX0 in xy andzw respectively; and
TEXCOORD0is the interpolated texture coordinate for this patch.

In a second pass this buffer is rendered as a standard vertex buffer
triangle mesh. Since current driver releases do not yet expose the
“render to vertex buffer” functionality our implementationcurrently
requires a round trip to the CPU to render the vertex buffer.

If global ordering of the bases is not required—giving up on one
of the requirements for bit consistency—the above code can be fur-
ther optimized by simply adding control points in the order their
associated tables are stored within the texture. Additionally the ba-
sis functions can be packed into a 4-channel float texture which
reduces the number of instructions even further. With this four iter-
ations of the loop can be written as

R0 = 33*i + TEXCOORD0; R1 = TEX0[R0];
R0 += R1.x * cp0; R0 += R1.y * cp1;
R0 += R1.z * cp2; R0 += R1.w * cp3;

This reduces the number of instructions per control point by40%.
However, a simple instruction count does not fully determine per-
formance. Texture instructions may stall due to bandwidth limita-
tions, and some instructions may inherently require more than one
cycle to complete.

Patches are rendered using the vertex buffer and indexed prim-
itives, regular quad-strips in the interior and triangles to stitch
patches together at the edges. All necessary indices are precom-
puted. The textures containing the basis functions store the finest
tessellation, for five levels. To evaluate the surface to fewer levels
suitably chosen texture coordinates can be used to subsample the
texture: forn < 5 levels of subdivision appropriate coordinates
(OpenGL) range from.5− 24−n to 32.5 + 24−n.

A sophisticated adaptivity criterion for this tesselation algorithm
uses upper bounds for the curvature of patches to determine the
level of tesselation [Grinspun and Schröder 2001].

3.1 Performance

We have implemented the fragment programs described above and
measured their performance on actual GeForce FX hardware using
a number of different geometric models. They contain many differ-
ent valences and tags in a variety of combinations (Figure1). The
presence of tags has no impact on performance, while the valence
of a patch does influence the instruction count per tessellated vertex



(for detailed flop counts of different evaluation methods see [Bolz
and Schr̈oder 2002]). As representative examples we consider va-
lence4 and9.

The valence4 (9) case requires composition of16 (26) basis
function tables. Achieving bit accurate results requires40 (65) in-
structions because of the ordering constraint. If bit accurate results
are not required the tighter instruction sequence results in24 (40)
instructions. Both sequences require two registers. Computing nor-
mals as cross products of tangent table evaluations adds an addi-
tional52 (84) instructions in a second pass.

To estimate achievable performance we assume the use of four
parallel fragment pipelines (i.e., instruction issues per cycle), but
discount these by a factor of two for the number of float regis-
ters used. For a concrete example consider500 MHz and 1 M
instruction issues per second for a theoretical peak throughput of
1000/24 ≈ 41.66 (not bit accurate; valence4) to 1000/65 ≈
15.38 (bit accurate; valence9) million vertices per second. In prac-
tice these numbers cannot be achieved. For example, assume that
round robin scheduling of functional units requires large groups
of fragments to execute the same instruction sequence. A switch
to another patch then requires a “flush” driving down utilization.
For example, for five levels of subdivision each patch generates
332 = 1089 vertices. If the batch size is512 fragments this would
result in only1089/(3∗512) ≈ 71% utilization. We determined the
utilization ratio due to (a hypothesized) batch size experimentally,
by varying the size of the quadrilateral rendered into the pbuffer.
The number of cyclesactually consumed was verified by render-
ing the same patch1000 times into the same pbuffer. In particular
this experiment verified that there are no detrimental effects due to
memory latency. Assuming this utilization and the experimentally
observed number of instructions per cycle, patches can be tessel-
lated at a rate of between8 (valence9; bit accurate) and24 (valence
4; not bit accurate) million vertices per second. Running tests on ac-
tual hardware, we observed a23% performance penalty for the bit-
consistent vs. non bit-consistent code. Note that thisbetterthan the
penalty predicted by instruction sequence length differences (40%)
alone.

The numbers have been established under synthetic test condi-
tions since the current OpenGL drivers have a very high software
overhead associated with pbuffer switches—only about200 pbuffer
switches per second are achievable. Each new patch requires such a
switch. While the pipeline flush is of course unavoidable—and we
accounted for it—the software reload of the entire OpenGL state
currently performed by the driver can be entirely eliminated2

As a concrete example of tessellation performance consider the
VW model. It has about300 patches which can be tessellated at
subdivision depth five in approximately1/60th of a second. Ren-
dering time would be additional and depends of course on shading
and lighting parameters.

4 Discussion and Future Work

The simplicity and high speed of table driven tessellation makes
the method we described very attractive for modern GPUs. The
speed is mostly due to the great regularity in the memory access
and computation patterns. This is also the reason it was found to be
attractive for CPUs [Bolz and Schr̈oder 2002]. However, GPUs get
to benefit relatively more since their architecture is highly tuned for
algorithms of this kind.

We improved earlier work by describing a pre-process manipu-
lation of the tables whichguarantees bit accurate resultsat patch
boundaries when coupled with a global composition order. The
latter unfortunately comes at a performance penalty in our imple-

2Efforts to remove pbuffer switching overhead are under way.

mentation due to addressing constraints in the current assembly lan-
guage.

Our algorithm is applicable toany smooth surface type which
is built from linear combinations of basis functions, for example,
NURBS. The algorithm should scale well with increasing fragment
processing power in future GPUs.

An interesting question for future research is whether more tra-
ditional subdivision surface construction through breadth first or
depth first recursive refinement can have efficient implementations
on GPUs. The advantage of this would be lower overall flop count
(albeit only by a small factor [Bolz and Schr̈oder 2002]) and the
possibility of more fine-grained control over adaptive tessellation.
The main challenge in this is the management of the irregular topol-
ogy of the control mesh as it becomes refined.

On the hardware side “render to vertex buffer” functionality must
be exposed in the drivers to reap the full benefit of our method and
the unnecessary overhead associated with pbuffer switches needs to
be removed when the OpenGL state does not in fact change.
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