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ABSTRACT
We propose a compact approximation scheme for 3D curves. Consider a polygonal curve  P, whose n vertices  have
been generated through adaptive (and nearly minimal) sampling, so that P approximates some original 3D curve, O,
within tolerance 0. We present a practical and efficient algorithm for computing a continuous 3D curve C that
approximates P within tolerance 1 and is composed of a chain of m circular arcs, whose end-points coincide with a
subset of the vertices of P. We represent C using 5m+3 scalars, which we compress within a carefully selected
quantization error 2. Our approximation uses a total of less than 7.5n bits, when O is a typical surface/surface
intersection and when the error bound 1+ 2 is less than 0.02% of the radius of a minimal sphere around O. For less
accurate approximations, the storage size drops further, reaching for instance a total of n bits when 1+ 2 is increased
to 3%. The storage cost per vertex is also reduced when 0 is decreased to force a tighter fit for smooth curves. As
expected, the compression deteriorates for jagged curves with a tight error bound. In any case, our representation of
C is always more compact than a polygonal curve that approximate O with the same accuracy. To guarantee a correct
fit, we introduce a new error metric  for 1, which prevents discrepancies between P and C that are not detected by
previously proposed Hausdorff or least-square error estimates. We provide the details of the algorithms and of the
geometric constructions. We also introduce a conservative speed-up for computing C more efficiently and demonstrate
that it is sub-optimal in only 2% of the cases. Finally, we report results on several types of curves and compare them
to previously reported polygonal approximations, observing compression ratios that vary between 15:1 and 36:1.

1 INTRODUCTION AND OVERVIEW
Three-dimensional (3D) curves play a fundamental role in many 3D applications. For example, they may represent
surface/surface intersections in CAD/CAM, blood vessel lines in medical 3D imaging, point trajectories in 3D graphics and
animation, or flow-lines in engineering simulation. We focus on the efficient computation of a compact approximation of such
curves. Most applications represent 3D curves as an ordered set of sample points, assuming an agreed upon interpolation or
approximation scheme. A polygonal interpolation is often chosen for its simplicity.

When the original curve O is known—or at least when an error bound may be estimated—the samples are usually spaced
adaptively along O, so as to avoid over-sampling, while guaranteeing that the resulting polygonal approximation P lies within
some prescribed error bound 0 from O. The samples generated in this manner are the vertices of P.

When the original curve is unknown, or when the estimation of the maximum deviation between P and O is too expensive, a
much larger than necessary set of samples may be generated initially. Then a polynomial curve P that passes sufficiently close
to all the samples is generated. Its vertices are usually selected from the initial samples. An adaptive selection process may be
used in an attempt to minimize the number n of such vertices, while preserving closeness between P and all the initial samples.

In either case, the resulting polygonal approximation P may be represented using 3nB bits, where B is the number of bits
needed to represent each quantized coordinate of each one of its n vertices. To report our results more precisely, we will not
take into account additional compression that could possibly be achieved through vertex prediction or vector quantization [40],
because these gains vary too much with the size of the sampling and with the smoothness of the curve, and because these more
general compression techniques may be applied to most representations in a post-processing step.

Thus, we address the specific problem of computing a piecewise-circular approximation (abbreviated PCA), called C, for a
polygonal curve P. The error between P and C is bounded by an a priori defined tolerance 1+ 2. Here, 1 is the maximum
deviation between P and an initial version of C computed with full precision. The additional error 2 is introduced by quantizing
the representation of C for better compression.

Note that our construction procedure may be used either to find directly a very tight fit to an over-sampled approximation P of
an unknown curve O or to produce a compressed approximation of a polygonal curve P, which itself may have been derived as
a nearly optimally sampled approximation of some original curve O. In order to report our compression results in a fair manner,
we cannot describe them in terms of compression ratios between a representation of C and a representation of an over-sampled
polygonal approximation of the original curve. Therefore, we report our results by comparing the storage of C to the storage of
a nearly optimally sampled polygonal approximation P of O.

We report our results for three types of curves: (a) the typical surface/surface intersections commonly found in CAD/CAM
models, (b) jagged 3D curves that may for example form the bounding loop of a set of triangles selected from the boundary of a
3D model, and (c) helixes, which are simple 3D curves that may be easily reproduced and can serve as a benchmark for
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comparing 3D fitting and compression techniques. We have tested our approach on a spectrum of these curves to ensure that the
reported results are representative of the results that should be expected in practice.

We represent C using 5m+3 scalars: 3 for the coordinates of each vertex and 2 to encode how each arc deviates from a straight
line. We compress them through quantization within an error bound 2. We select 2 and 1 so as to minimize the total storage
of C, while keeping 1+ 2 below a prescribed threshold.

We have found that our approximation uses less than 7.5n bits, when O is a typical surface/surface intersection and when the
error bound 1+ 2 is less than 0.02% of the radius of a nearly minimal sphere containing O. As expected, the storage drops
further for less accurate approximations. For example, it reaches 1.0n bits, when 1+ 2 is increased to 3%. In other words, we
take a polygon P whose n vertices have been generated though an adaptive sampling of a 3D curve O. P requires 3nB bits of
storage. We generate an approximation C of P and compress it to 1.0n bits. In practice, this 3B:1 compression ratio varies
between 15:1 and 36:1, when B varies between 5 and 12 bits per coordinate.

It should be noted that, for smooth curves, better compression is achieved when we force a tighter fit between P and O.  This
observation may be explained by understanding that we usually require more arcs to provide a tight fit C to a less smooth
polygonal approximation P of a curve O. As expected, the compression deteriorates for jagged or noisy polygonal curves with a
tight error bound. Nevertheless, our representation of C is always more compact than P and hence there is never a storage
penalty when using a PCA, rather then a polygonal approximation.

The proposed approach is based on a new algorithm for finding, if it exists, a circular arc A that has as end-points two
vertices, Vi and Vj, of P and that lies within a prescribed tolerance  from the subset S of P bounded by these two vertices. There
is a two-parameter family of circular arcs joining Vi and Vj. We have developed a fast conservative test for deciding whether
such an arc exists and a method for finding the arc in a time proportional to the number of vertices of S. The test is based on the
computation of the plane that is the bisector of the wedge of all planes that pass through Vi and Vj and are closer than  to all
vertices of S. If the wedge is empty, we can guarantee that no arc exists. Otherwise, if the bisector plane exists but does not
contain an acceptable arc, we consider that no such arc exists. This choice corresponds to a wrong (conservative) decision in
only 2% of the cases, and thus leads to always valid, although sometimes (rarely) slightly sub-optimal approximations.

To guarantee a correct fit, we introduce a new error metric, which prevents discrepancies between P and C that are not
detected by previously proposed Hausdorff or least square error estimates. Our error metric combines two conditions:

• The first condition requires that the arc be inside the tube S↑ . The notation S↑ , introduced in [41], refers to a grown
version of S, defined as the set of points at distance no more than  from S.

• The second condition requires that there exist an ordered sequence of points along the arc such that the first point be
closer than  from Vi, that the second point be closer than  from the first vertex of S after, Vi and so on.

We present and compare two different algorithms for selecting the set of vertices of P that will be interpolated by C and will
serve as the end-points of the arcs of C.

• The first algorithm is based on an efficient greedy process. It has O(nlogm) time complexity, where m is the maximum
number of points approximated by a single arc. However, it does not always produce an optimal result.

• The second algorithm is optimal, but more expensive. It has time complexity O(n3). It is inspired from an approach
developed by Imai and Iri [13] for computing polygonal approximations, which we have extended to circular arcs.

We provide experimental comparisons of the compression results and report running times for both the optimal and the greedy
algorithms.

The rest of the paper is organized as follows. First we review the most relevant prior art in curve approximation, fitting, and
compression. Then, we discuss the strategies for selecting the interpolated vertices, compare error measures, present the details
of our algorithm, and explain the geometric constructions that it uses. Finally, we present our results and compare them to
Douglas and Peucker’s [7] and Barequet et al [39] polygonal fit algorithms.

2 RELATED WORK ON CURVE FITTING
Curve fitting through the set of given points has been studied in several application areas. Published approaches can be grouped
into interpolating and approximating, depending on whether the resulting curve passes through all of the data points or not.
Non-linear curves (e.g. splines, b-splines, minimal energy splines, bi-arcs) have been used for this purpose [1, 2].  In general,
approximation approaches minimize the error between the approximating curve and the set of given points.

We focus on fitting a curve to a given polyline. By bounding the error between the approximating curve C and the given
polyline P (rather than the vertices alone), we guarantee that C does not exhibit undesirable wiggles between the points.
Furthermore, if P lies within some error 0 from an original curve O and if C lies within error  from P, we guarantee that C
approximates O within error 0+ .

Polygonal approximations of polylines have been studied extensively in 2D for GIS and other applications. They have been
surveyed in [3-6]. The algorithms in this category can be roughly divided into adaptive refinement algorithms [7-9],
decimation algorithms [10,11], and global optimization algorithms [12-21].  Barequet et al [39], give an optimal solution for
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polygonal approximations of polylines in three and higher dimensions. By optimal, we mean that the approximating polyline C
has the minimum number of vertices, while not deviating from P by more that a prescribed error. We focus on fitting circular
arcs to a given polyline, as we believe that circular arcs provide better compression for many types of curves. They are
especially good for approximating smooth 3D curves, like the typical surface/surface intersections found in CAD/CAM. Our
technique also performs well on smooth curves with small noise, when the error tolerance exceeds the magnitude of the noise.

A significant amount of work has also been devoted to fitting arcs and bi-arcs through points in 2D [23-33]. An overview of
these methods can be found in [25]. None of the above methods, however, guarantee a fit to a polyline, and none is easily
extendable to  3D. All approaches that we surveyed minimize the error (maximum or average) between vertices in the given
polyline and the approximating curve, and thus do not guarantee an error bound between P and C.

We only know of a few publications reporting techniques for fitting non-linear curves to polylines.  Saux and Daniel [22]
propose an algorithm that uses a B-spline curve to approximate the original polyline. They define a new error measure that
guarantees the error bound between P and C. A B-spline curve, has a second-degree continuity, and thus can be advantageous
to some applications. However, in applications, where G1 and G2 continuity is not as important as data reduction, our approach
is preferable. The compression rate shown by Saux and Daniel is close to the compression rate of Douglas and Peucker’s [7]
polygonal approximation algorithm. The results that we present in this paper show that our PCA approximation provides
improvement in the compression rate over the polygonal approximations reported in [7], and hence over storage
requirements of the B-splines produced by the technique of [22].

Instead of fitting a non-linear curve, C, to the polyline, P, produced by sampling the original curve O, we could approximate
the original curve directly with a non-linear curve such as our PCA. Typical examples of such approaches are discussed in
[34-37]. Previously reported approaches of this type are either computationally prohibitive, or specific to a particular type of
parametric curve model, or both. A notable exception is the work reported by Tseng and Chen’s [30], which offers a general
algorithm for approximating 3-dimensional curves by bi-arcs with an approximation error defined by the largest allowed
deviation distance between the curve and bi-arcs. Their algorithm fits a bi-arc between two points, us and ue, on the original
curve and then finds the largest deviation distance between the bi-arc and a set of samples uniformly spaced along the original
curve between us and ue. Such an error estimate ignores the shape of the curve between the samples and fails to detect folds in
O, as shown in Fig. 1e. The limitations of the various error measures are discussed below in Section 4.

3 STRATEGIES FOR SELECTING INTERPOLATED VERTICES
Before drilling down to the details of error estimation and arc fitting, we present in this section the overall strategy for building
a PCA, because it is independent of these details.

Given a 3D polyline, P, with vertices P1, P2…Pn and a tolerance factor, ε, we construct a PCA, C, consisting of circular arcs,
whose end-points coincide with an ordered subsequence of vertices of P. These endpoints are called the interpolated vertices.
We want to minimize the number of arcs in C, while guaranteeing that the error between P and C does not exceed the
prescribed tolerance factor ε.

We have explored two algorithms for selecting the interpolated vertices, while trying to minimize the number of acceptable
arcs. They offer a tradeoff between compression and complexity. Several similar optimal and sub-optimal algorithms have been
previously developed for selecting interpolated vertices for fitting polylines, B-spines, or other non-linear curves. An overview
of these algorithms may be found in [25, 26].

3.a Optimal Algorithm - OPCA
Our optimal approach, abbreviated OPCA, follows the approach of Imai and Iri [13] for approximating curves with polygonal
lines. We first build a directed graph, G, whose nodes correspond to the vertices of P. Two vertices Vi and Vj are connected by a
directed edge, Eij in G, if and only if an acceptable arc A starting at vertex Vi and ending at vertex Vj exists. The time
complexity for building G is O(n3), since the test of the existence of an acceptable arc between two vertices Vi and Vj has
complexity O(n), and since we have to test all possible pairs of vertices Vi and Vj, where i<j. Then, we use a breadth-first search
to find the shortest path from vertex V1 to vertex Vn. This path gives us an optimal PCA. The time complexity of the complete
OPCA approach is O(n3), since it takes O(n3) to build G and O(n2)  to find shortest path using breadth-first search.

3.b Doubling Algorithm - DPCA
Our more practical approach, abbreviated DPCA, is based on a greedy process, which first attempts to find an acceptable arc
from V1 to V2. If an arc exists, it looks for an acceptable arc from V1 to V4. It continues in this manner, each time doubling the
distance (number of edges) to the end vertex of the arc until it fails to find an acceptable arc. Then, a binary search on the last
interval identifies the endpoint, Vj, of the longest acceptable arc. We then proceed to fit arcs to the remaining portion of P,
starting at Vj. This greedy algorithm does not produce an optimal result and has a time complexity of O(nlogk), where k is the
maximum number of points approximated by a single arc. For a complete analysis of the running time of this algorithm please
refer to [26]. In section 7, we show that both algorithms produce similar results and thus we advocate DPCA.

The following sections focus on computing, if there exists, one arc between two candidate vertices Vi and Vj.
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4 COMPARING ERROR MEASURES
Consider a single arc, A, in C connecting two interpolated vertices Vi and Vj. Define the polyline S to be the subset of P between
vertices Vi and Vj. Let S1, S2…SK denote the vertices of S. Thus Vi=S1,Vi+1=S2 …Vj=Sk. An arc A is an acceptable arc if the error
between A and S is less that . We discuss here how we define the error between A and S.

Several error measures have been proposed. In this section we illustrate their shortcomings and introduce a new, more precise
error measure, which is used by our approach.

Fig 1: (a) Drawbacks of expressing the error as the maximum distance to vertices. (b) Drawbacks of the tolerance zone error
measure. An error between vertex V2 and A is much more than . (c) Example showing that the Hausdorff error measure is not the
same as error measure in 4.4. (d and e) Drawbacks of the combined maximum-norm and tolerance-zone error measure, and of the
Hausdorff distance. (f) Drawback of the  error measure defined in 4.5.

4.a Least square error measure

The least square error measure is defined as ∑
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, where d(A, Si) is a shortest distance between an arc and a point.

The use of a least square error measure makes it easy to compute the arc A for which it is minimal. However, the resulting
solution does not guarantee a bound on the maximum error between the vertices of S and A. Furthermore, it does not guarantee
an error bound on the portions of S between the vertices.

4.b Maximum distance to vertices
Under the maximum distance to vertices  error measure, A is acceptable if the maximum distance between A and the vertices
of S does not exceed . However, it still does not restrict the distance between A and points of S other than the vertices (Fig. 1a).

4.c Tolerance zone error measure
Under the tolerance zone error measure, A is acceptable if it lies in the tube defined as the Minkowski sum, S↑ , of S with a
ball of radius  centered at the origin. However, S may be further than  from sections of A, as illustrated in Fig. 1b.

4.d Combined tolerance zone and maximum distance to vertices
Combining the maximum norm error with the tolerance zone error solves the problems illustrated in Fig. 1a and 1b.
Unfortunately, an unacceptable deviation of the approximating curve from the original polyline may still occur (Fig. 1d and 1e).
Such situations may happen, because, under this combined error, both curves are viewed as unordered sets of points. The
problem shown in Fig. 1e has been previously pointed out by Yang and Du [26]. To deal with this case, they introduced the
notion of circular monotone 2D curves, which have a polar representation with respect to the arc midpoint. They used it in
conjunction with the maximum norm error measure. Consequently, we conclude that their approach suffers from the
shortcomings discussed above (in 4.2).
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4.e Reversed tolerance zone
Under the reverse tolerance zone error measure, A is acceptable if S lies in the tube A↑ . However, portions of A may be
further from S as illustrated in Fig. 1f.

4.f Hausdorff distance
This Hausdorff distance error measure combines the error measures defined in 4.c and 4.f into a symmetric error measure,
where: S  A↑  and A  S↑ . It still allows an unacceptable deviation between A and S (Fig. 1d and 1e). Note that the Hausdorff
error measure is not the same as the error measure in 4.d. Fig. 1c illustrates the difference between the Hausdorff distance and
the combined measure defined in Subsection 4.d: A and S are within error  according to 4.4, but not according to the Hausdorff
error, since point T on S is outside the tolerance zone around A.

4.g Fréchet distance
To overcome the drawbacks illustrated above, we advocate a new error measure, A(A, S), inspired by [21] and defined as
follows: Let Bi denote a ball of radius  with center at Si, for each vertex, Si, of S. The caplet Ti is the convex hull of two
consecutive balls Bi, Bi+1. Let A(t) be a point on arc A for t [0,1]. We orient the arc A so that A(0) = S1 and A(1) = Sk (Fig. 2).

Fig 2:  Bi  is a ball of radius  with center at Si. A caplet Ti is a convex hull of two consecutive balls Bi, Bi+1.

Definition 1. We say that A(A, S) ≤ , if the following two requirements are satisfied:
• The order requirement:  there exists a sequence of non-decreasing parameters t1, t2 … tk such that A(ti)  Bi for i=1…k.
• The tolerance requirement: A(t) Ti  for t [ti, ti+1].

This metric adds the order requirement to the Hausdorff error measure, thus eliminating the problems shown in Fig. 1.

Let F (A, S) denote the Fréchet distance between curves P and C, as defined in [17, 37, 38]. F (P,C) ≤ , if there exist two
monotone (non-decreasing) functions,  and , of [0, 1] onto itself, such that d( (t), (t)) ≤  ∀t [0,1]. In APPENDIX A, we
prove that our error measure is equivalent to the Fréchet metric, for the case of an arc and a polyline. We use our
formulation, A, instead of the Fréchet formulation, for its computational advantage.

In the next two sections, we present an algorithm for finding an acceptable arc, A, if it exists, or for deciding that no acceptable
arc exists for a given polyline S. A is acceptable if A(A, S) ≤ .

5 REDUCTION TO A 2D PROBLEM
In this section, we explain how to reduce our search for an acceptable arc A to a two-dimensional problem.
5.a Finding a stabbing plane for a single arc
Consider a family of planes passing through S1 and Sk. Each plane W( ) in this family is defined by an angle parameter, ,
which specifies its orientation around a line L through S1 and Sk. Each ball Bi, for 1<i<k, of radius  around Si defines an
interval [ 1, 2], in which values of  represent planes W( ) that intersect Bi. Let W( 0) be a plane passing through the center of
Bi (Fig. 3). The interval [ 1, 2] is [ 0- , 0+  ], where =arcsin(  /D) and D is the distance from the center of Bi to L.

Fig 3: Finding stabbing interval  [ 1 , 2] for ball Bi.

We compute the intersection of all these intervals. If the intersection is empty, there is no plane that stabs all the balls and thus
no acceptable arc. If the intersection is not empty, we pick its central value, *, and reduce our search for A to W( *).
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We pick this bisecting plane W( *), because, according to our analysis and to the statistical data that we have collected on the
set of all curves listed in Section 7, it has the highest probability of containing an acceptable arc A (Fig. 4). According to our
experiments, the conditional probability that there be a plane containing an acceptable arc, given that W( *) does not, is less
than 2%. Thus, if W( *) does not contain an acceptable arc, we declare that no such arc exists, making a wrong, although
conservative decision in only 2% of the cases.

Fig 4: Probability that an arc exists in the stabbing plane interval.

By focusing on W( *), we have reduced our search for an acceptable arc A to a 2D problem.  In the next sub-section, we
formally state the 2D problem. In Section 6, we present our approach for solving it.

Fig 5:  Three configurations for the intersection of the caplet Ti with the plane W( *). The right column (b) corresponds to the
cross-section by the plane W( *),  shown on the left (a).

5.b Intersecting the tolerance zone with the stabbing plane
Recall that caplet Ti is the convex hull of two balls of radius . It is bounded by a portion of a cylinder and by two hemispheres.
The intersection, K i, of plane W( *) with each caplet Ti , is convex and bounded by a single smooth closed curve made of at
most four arcs that are portions of ellipses, lines, or circles. We use the term 2D-caplet to refer to this intersection. The
intersection of W( *) with each ball Bi, is a disk Di. Note, that the disks Di and Di+1 lie inside Ki.
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UiBi Bi+1

(a)
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Depending on the angle between the plane W( *) and the central line of a caplet Ti, several cases for the boundary of Ki are
possible. Fig. 5 illustrates three of them: Case 1: When plane W( *) is equidistant from the centers of both disks, the boundary
of Ki consists of two lines and two semi-circles. (When W( *) is tangent to Bi and Bi+1, this boundary degenerates to a line
segment.) Case 2: Let Ui be a tube of radius ε around the line through Si and S i+1. Ki is bounded by two sections of the ellipse
Ei=W( *)∩Ui, by one section of Di , and by one section of Di+1. Case 3: Ki is the ellipse Ei=W( *)∩Ui. In the other two cases
(not shown), Ki is bounded by one elliptic and one circular arc, combining the situations of case 2 and case 3 on each end.

Given disks D1…Dk, and 2D-caplets K1 …Kk, we want to find an arc, A, that satisfies the order and the tolerance requirements
imposed by our metric (Definition 1). To satisfy the order requirement, there must exist a sequence of non-decreasing
parameters t1,t2…tk such that A(ti)  Di for i=1…k. To satisfy the tolerance requirement, A(t) must stay in Ki, for t [ti, ti+1].

6 SEARCHING FOR AN ACCEPTABLE ARC IN THE PLANE
In this section, we present our algorithm for finding an acceptable arc in W( *). The arc A must interpolate the two end-vertices,
S1 and Sk, and is thus defined by a single parameter, h, which may for instance be chosen to represent the angle between the
vector Sk–S1 and the tangent to A at S1 (see Fig. 6a). An acceptable arc A(h) must satisfy a series of conditions, each
constraining the interval H of acceptable values for h.

Our approach may be broken down into the following three phases (discussed below):
1. Check that we stab all disks
2. Check that we respect the stabbing order
3. Check that we stay in the tolerance zone between the disks

6.a Finding the planar pencil of arcs that stab all balls
The interval [hm, hM] of values of angle parameter h for which A(h) stabs a single disk D may be computed from the center D1

and radius r of D by finding centers of arcs Am and AM that pass through S1 and Sk and are tangent to D on each side (Fig. 6b).
The details are provided in Appendix B. Given Am and AM, we obtain two angle parameters hm and hM.

(a) (b)

Fig 6: All arcs passing through points S1 and Sk are defined by a single parameter, h (a), which may for instance be chosen to
represent an angle between a line passing through S1 and tangent to the arc with the line segment joining S1 and Sk.  Fig. (b) shows
the extremes of a family of arcs starting at vertex S1 and ending at vertex Sk that stub disk D.

To guarantee that all acceptable arcs stab all disks, we define H as intersection of all such individual intervals [hm,hM]. We
compute H progressively, starting with an infinite interval and replacing it by its intersection with each individual interval.

6.b Enforcing the stabbing order
An arc that stabs all the disks, does not necessarily stab them in an order compatible with their indices.

When the intersections of the arc with the disks are disjoint, the order is clearly defined. All acceptable arcs either stab them in
the right order or not. Consequently, compliance with the stabbing order requirement may be easily checked, in this case, by
considering a single stabbing arc. Thus, when all disks are disjoint, we select A*, defined as A(min(H), compute the arc-length
parameters si of the closest point along A* to each disk Si, and check that they respect the order (i>j⇒si>sj).

If some disks overlap, we consider a single pair (Di,Dj) at a time. If Di and Dj are disjoint, we use the above procedure to decide
whether the pair is correctly stabbed by all A(h) with h H, or whether it is stubbed in the reverse order and thus reduces H to
the empty set. If Di and Dj are not disjoint, they define an interval Hij, such that: h Hij ⇔ A(h) stabs Di and Dj in the correct
order (see Fig. 7). We compute Hij and replace H by H∩Hij, as detailed in Subsection 6c.

(a) (b)    (c)

Fig 7:  Two intersecting disks Di and Dj reduce the interval H of acceptable arcs from above (a), from bellow (b) and both (c). H1 is
the reduced interval.
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If we were to test all pairs of disks, the above procedure would have O(n2) complexity. We have chosen to reduce this time-
complexity to a linear complexity in exchange for a slight possibility of not finding a solution when one exists. We have
compared the n2 and our linear solutions and have so far found no real case where the linear approach misses a stabbing arc.

Our linear solution considers only pairs (Di,Dj), when j–i is less than a given constant z. If it returns an empty interval, we
correctly conclude that no acceptable arc exists. Otherwise, we pick the shortest arc, A*, defined as A(min(H).

A* may not stab all pairs in order. For example, in Fig. 8a, if z=2, we only test the pairs (D1, D2) and (D2,D3). The resulting
interval, H, is bounded by the two dashed arcs. Not all arcs in H intersect disks D1 and D3 in order. In particular, the shortest
one, A*, does not. Thus, we must if for compliance with the stabbing order against all disks, as explained in Subsection 6d.

If A*t fails the stabbing-order test we give up, concluding that no solution exists. Although this conservative conclusion may
theoretically be wrong, we found that, for a small constant z, it proved correct for all the real cases we have tested. If A* passes
the stabbing test, we know that no other arc with a smaller h passes the stabbing test. Thus, if we discover that A* is not
contained in the tolerance zone, we correctly conclude that there is no solution to our 2D problem. If A* passes both the order-
compliance test and the tolerance zone test, we have found an acceptable arc.

(a) (b)

Fig 8:  (a) If k = 2, our reduced test will only test pairs (D1,D2) and (D2,D3).  The resulting interval, H, is shown by two arcs. Not
all arcs in interval H will intersect disks D1 and D3 in order.  (b) Checking the order requirement for an arc A*

6.c Constraining H to satisfy the stabbing order for a pair of intersecting discs
Consider a pair (Di,Dj) of intersecting disks. Assume without loss of generality that j>i. Their bounding circles intersect at two
points (which may be coincident for singular configurations where the circles are tangent to each other). We compute the
parameters h for the arcs passing through these intersection points and use them to split H into sub-intervals. We test each sub-
interval for compliance with the stabbing order requirement by generating a bisector arc (for the average h in the sub-interval).
If the intersections of the bisector arc with the two disks overlap or are order-compliant, we declare this sub-interval compliant
with the stabbing order for Di and Dj. Otherwise, we declare this sub-interval not compliant. We return the union of the sub-
intervals for which  the stabbing order is correct.

6.d Testing a candidate arc for correct stabbing order
Let Ii be the interval of intersection of disk Di with arc A*. Let bi

 and ei represent the arc-length parameters along A* for the
starting and the ending points of Ii (Fig. 8b). An order requirement for arc A* is satisfied if, for each i in [1…k], ei ≤ max t<i bt..
Our extended notion of order is consistent with the one proposed in [21] for stabbing lines. It states that the segment (line or
arc) intersects the disks in order if there exists a sequence of points Pj on the segment, each associated with disk Dj, such that
each point Pj lies inside Dj and is not further away along the segment than all Pi for i>j. As stated by Guibas and colleagues
[21] this is equivalent to saying that “no later interval ends before all earlier one begins”.

6.e Testing the candidate arc for containment in the tolerance zones between the disks
To satisfy the tolerance requirement, we must check that for some sequence of increasing values ti, for each interval [ti, ti+1], the
arc A* stays inside the 2D-caplet Ki. It was pointed out in Section 5 that disks Di  and Di+1 are in Ki. On intervals [ti, ei] and [bi+1,
ti+1], A* lies inside disks Di and Di+1 respectively, and thus inside the 2D-caplet Ki (see Fig. 9).  Thus, we only need to check
that arc A* stays inside the 2D-caplet Ki on the interval [ei, bi+1],  for all i=1…k.

Fig 9: Checking tolerance requirement for arc A*.

Let Ji be the part of arc A* between points ei and bi+1 (Fig. 9). The tolerance requirement for Ji is satisfied if Ji stays within the
corresponding ellipse Ei (or rectangle). We first compute the arc length parameters of the intersection between A* and Ei. We do
this by substituting the parametric form of the circle into the implicit equation of the ellipse and finding the roots of the

D1

D2

D3

bi

S1 Sk

Ci ei

ei bi+1S1
Sk

ti
ti+1Ji
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resulting fourth degree polynomial. Alternatively, one could use the implicit equation of the cylinder and solve the problem in
3D (see [31] for the details on this approach). Then, we test whether these intersection parameters line inside [ei, bi+1]. If so, Ji

intersects the ellipse and A* is invalid. If A* intersect the ellipse, then all arcs in the interval H intersect the ellipse, and
thus no acceptable arc exist. For a proof, remember that the two endpoints of Ji lie inside the ellipse and so does the straight
edge, E, joining them (because the ellipse is convex). The region bounded by E and any acceptable arc A’ in H, larger than A*,
will contain A*, and thus will intersect with the region interior to the ellipse and with its complement. The boundary of that
region will therefore intersect the ellipse. Since the intersection does not happen along E, it must occur along A’.

7 RESULTS
In this section we present experimental results of running our DPCA algorithm on a series of sample curves. The choice of
those curves was based on a desire to cover different areas of application. We have used helices because they are simple 3D
curves that are easy to reproduce. We have used cone-cone intersection curves since they illustrate curves found in CAD/CAM
applications. We have also used rugged boundaries of triangle meshes, as an example of piecewise polygonal curves that are
used in graphics and may correspond to patch boundaries.

(a) (b)
Fig 10 : Given the polyline P (helix) (a), the graph (b) compares compression ratio of our algorithm with the polygonal algorithms
of [7] and [39].  We have plotted the comparison for curves corresponding to 25 different values of the error tolerance.

(a) (b)

Fig 11:  Given the polyline P that approximates a cone-cone intersection  (a), the graph  (b) compares compression ratio of our
algorithm with polygonal algorithms of [7] and [39] for 25 different cases of defined by different values of tolerance.
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      (a)    (b)

Fig 12:  Given the polyline P that bounds a region of a rugged polygonal surface (a), the graph (b) compares compression ratio of
our algorithm with polygonal algorithms of [7] and [39] at different tolerance levels.

We have tested our optimal PCA (OPCA) and doubling PCA (DPCA) algorithms on a series of sample curves and compared
their compression ratio with the compression ratios achieved with the algorithm of Douglas and Peucker’s [7], which is
commonly used in GIS, and with the optimal algorithm of Barequet et al [39]. Both of these algorithms fit polylines rather than
PCAs. We have also compare the performance and running times of OPCA and DPCA algorithms.

7.a Comparisons with polygonal fits
Fig. 10 and 11 compare the performance of polygonal algorithms to our algorithm on typical helix and cone-cone intersection
curves, respectively. The helix curve was created with an error 0 = 0.3% of the radius of the helix. The cone-cone intersection
curve was created with an error 0 = 0.01% of the radius of a nearly minimal bounding sphere. Fig. 12 compares the
performance of polygonal algorithms to our algorithm on a rugged boundary of an artificially complex polygonal surface.

Since the representation of the polyline requires 3 parameters per edge, and the representation of the PCA requires 5 parameters
per arc we report the ratio between the number of scalar values in the original polyline P and the number of scalar values
needed to store the approximating PCA or polyline.

Our algorithm consistently outperforms both polygonal algorithms of [7, 39] for any error tolerance. The compression
improvements range from 20% to 300%. For noisy data, the degree to which our approach outperforms polygonal algorithms
increases as the tolerance is relaxed (see Fig. 12b). This behavior can be explained by the fact that the larger error tolerance
allows the PCA curve to approximate more of the general shape of the curve rather than its noise.

7.b Comparing our doubling (DPCA) and optimal (OPCA) algorithms

(a) (b)
Table 1:  We compare the number of arcs produces by our OPCA algorithm to the number of arcs produces by our DPCA algorithm
for the intersection of two cones (a).and for a helix (b).
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E
#Points

 in P
OPCA

algorithm
DPCA

algorithm
Ratio 

OPCA/DPCA 
0.1% 201 17 17 1
0.3% 201 12 12 1
0.5% 201 10 10 1
0.7% 201 9 9 1
0.9% 201 9 9 1
1.1% 201 8 8 1
1.3% 201 8 8 1
1.5% 201 7 7 1
1.7% 201 7 7 1
1.9% 201 7 7 1

E
#Points

 in P
OPCA

algorithm
DPCA

algorithm
Ratio 

OPCA/DPCA 
0.1% 254 14 14 1
0.3% 254 9 9 1
0.5% 254 8 8 1
0.7% 254 6 6 1
0.9% 254 6 6 1
1.1% 254 6 6 1
1.3% 254 6 6 1
1.5% 254 6 6 1
1.7% 254 6 6 1
1.9% 254 6 6 1
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Even though our DPCA algorithm does not produce an optimal result, the experimental data that we have collected shows that,
on smooth curves, the DPCA algorithm perform as well as the OPCA algorithm. See tables 1(a) and 1(b). Our experimental
data on curves with noise shows that the DPCA algorithm produces optimal solutions in most cases (Table 2a). Table 2b shows
running times for both algorithms for the same helix curve as in Table 2.

 (a) (b)

Table 2:  The number of arcs produced by OPCA is compared (a) to the number produced by DPCA for curves with noise.  The
execution time of the two algorithms for a cone-cone intersection curve is given (b) in seconds on a 700MHz PC.

In conclusion, our OPCA algorithm is between 30 and 150 times slower than the DPCA algorithm and has no benefit except for
noisy curves with a relatively high error tolerance compared to the noise magnitude.

8 COMPRESSING PCA REPRESENTATIONS
8.a Representation for arcs
A single arc, A, can be represented by its two endpoints, S and E, and a vector V between the midpoint P = (S + E)/2 and the
midpoint M of the arc (Fig. 13). By construction, V is orthogonal to SE and can be represented with two parameters, provided
that we establish a convention that always defines a suitable coordinate system (i.e. a reference vector W around SE).

Fig 13:  Representation of a single arc A.

To encode a PCA with m arcs, we need to store (5m+3) values (3 values for a first endpoint of the first arc and 5 values for
each arc: 3 represent the SE vector and 2 represent the V vector). We chose to represent V by its absolute length and an angle it
forms with the reference vector W in the plane T. To find the reference vector W for each arc we project vectors {(1,0,0)T,
(0,1,0)T, (0,0,1)T} onto the plane T orthogonal to SE, and choose the longest projection as a reference vector (ties are broken
using a simple convention).

8.b PCA quantization
Our PCA approximates the original polyline within some error 1. Since we are focusing on compression, we use a quantization
technique that reduces the storage of the PCA without exceeding an additional tolerance 2. To guarantee that the compressed
PCA remains within error  from polyline P, we first compute a PCA, C, with a tolerance 1 and then derive a quantization
representation Q of C, with a quantization error bounded by 2, such that 1+ 2 ≤ . To compute the minimal storage
representation of Q, we consider several choices (candidate solutions) and select the smallest in size. Each candidate solution is
defined by an error 1 in the interval [0.. ]. This choice imposes a quantization error 2 =  - 1. We then use 1 to run our PCA
construction algorithm (as explained above) and 2 to select the minimal number of bits for storing the representation Q of C, as
explained in the next section, while guaranteeing that the error between C and Q does not exceed 2.

E
#Points

 in P
OPCA
 Time

DPCA 
Time

0.1% 201 3.7 0.1
0.3% 201 6.4 0.1
0.5% 201 8.3 0.1
0.7% 201 9.6 0.1
0.9% 201 11.4 0.1
1.1% 201 12.8 0.1
1.3% 201 13.5 0.1
1.5% 201 14.8 0.1
1.7% 201 15.8 0.1
1.9% 201 16.4 0.1

E
#Points

 in P
OPCA

algorithm
DPCA

algorithm
Ratio 

OPCA/DPCA 
0.9% 100 43 43 1.00
1.3% 100 38 38 1.00
1.7% 100 35 35 1.00
2.1% 100 31 31 1.00
2.5% 100 26 26 1.00
2.9% 100 26 26 1.00
3.3% 100 22 22 1.00
3.7% 100 20 21 0.95
4.1% 100 15 18 0.83
4.5% 100 15 15 1.00
4.9% 100 14 14 1.00

16 0.93
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8.c Selecting the number of bits for PCA representation
Quantizing the five scalars that represent an arc will result in quantization errors that are bounded by the following formulae:

12 −
=

PB
P

P

R
E  , 

12 −
=

VB
V

V

R
E  and 

12

2

−
=

ABAE . (1)

Where, EP , EV , EA  denote, respectively, the error due to the quantization of vertex coordinates, the absolute length of vector V,
and the angle between vector V and the reference vector W.  BP , BV , BA  denote the number of bits used for these entities, and
RP , RV , 2   denote their ranges of their values.

For an arc A with an absolute length of vector V less than the length of vector SE (Fig. 13) the maximum error max between A
and its quantized representation is bounded by the following formula (see Appendix B):

VPA EEEV ++≤ 37)2sin(2max (2)

If the absolute length of V is greater than the length of SE, instead of encoding arc A, we encode arc A’, which complements A
to a full circle. With each arc, we store one bit specifying whether A or A’ was encoded.

In order to uniformly control the quantization error, we choose BP and BV  to be the same for all arcs and BA to be dependent on
the radius of the arc. As shown in the equations (2), the larger the radius is, the larger BA  must be for that arc.

Given error 2 , we want to select BP , BV  and Bi
A, i=1..m,  that minimize the storage requirement for C, while guaranteeing that

the error between C and Q will not exceed 2. The storage size of Q with m arcs is defined by the following formula:

∑
=

++
m

i

i
ApV BmBmB

1

3 (3)

where BP , BV  and Bi
A, i=1..m, are the m+2 unknowns.

To guarantee that the error between C and Q will not exceed 2 we require for each arc that the maximum error max defined by
equation (2) be less than 2. Substituting (1) into (2), we get m inequalities, one for each arc:

2max
1212

37
)12(*2

2
sin2 ≤

−
+

−
+

−
≤

VPA B
V

B
P

B

RR
V (4)

Thus, to find BP, BV and Bi
A, i=1..m, we need to solve a non-linear optimization problem with m +2 unknowns and m constrains.

We solve it by selecting the number of bits for BP and BV  on an interval [5..16] and then solving for Bi
A, i=1..m from (4). We

choose a solution that minimizes the size of Q defined by (3).

The complexity of the Doubling PCA algorithm without quantization was O(nlogk), where n is the number of vertices in P and
k is the maximum number of vertices of P approximated by a single arc. With the quantization procedure defined in this
section, the complexity is limited by C1*(nlogk + C2*m), where C1 and C2 are constants: C1 is the number of values we try for

1 on an interval [0.. ], C2 = 144 is the number of values we try for BP times the number of values for BV and m is the number of
arcs in the PCA.

8.d Compression results
The number of bits per vertex in the original polyline as a function of allowed error tolerance is given in Fig. 14a, 14b, and 14c,
each for a different curve. For example, the compressed representation of a typical cone-cone intersection (Fig. 14b), requires
about 7n bits for a total error  =0.02% of the radius of the minimal sphere around the curve and less than 1n bits for  = 3%,
where n is the number of vertices in a polyline which approximates a cone-cone intersection curve with error 0  = 0.01%.

9 CONCLUSION
We have shown that piecewise circular curves have advantage over polygonal and B-spline curves, when used to produce
compact approximations of 3D curves. We have presented the details of an efficient approach for computing such piecewise
circular approximations and for compressing them. For example let P be a polyline with 250 vertices that approximates the
intersection curve between two quadric surfaces within a tolerance 0 of 0.01% of the size of the curve. Then in about two
seconds, our algorithm computes a piecewise circular curve that approximates P with a tolerance  of 0.02% and can be stored
using 7x250 bits: a 5-to-1compression ratio. The compression ratio improves as the original tolerance 0 is relaxed.
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Fig 14:  Number of bits per vertex of original polyline as a function of total error . (a) Helix, created with 0  = 0.3% of the radius
of the helix curve (b) cone-cone intersection, created with 0  = 0.01%  of the radius of nearly minimal bounding sphere  (c) Rugged
boundary.
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12 APPENDIX A: Proof of equivalence with the Fréchet Metric
We prove here that our error measure is equivalent to the Fréchet Metric [37, 38] for the case of one arc and a polyline. Please
refer to section 4.7 for the definitions of our error estimate and of the Fréchet error metrics. The notations A and F refer
respectively to our error metrics and to the Fréchet error metrics.

12.a First we prove that F(A, S)  implies A(A, S)
By definition, F(A, S)≤  implies that there exists two monotone parameterizations,  and , of the arc A and of the polyline P,
respectively, which are both functions from [0,1] onto itself, such that d( (t), (t))≤ , ∀t [0,1].  We need to prove that both the
order and the tolerance requirements imposed by our metric are satisfied. This direction of the proof is similar to the one given
in [21] for polylines in 2D, and has two parts.

The order requirement: We need to prove that there exists a sequence of non-decreasing parameters t1 … tk such that A(ti)  Bi,
for i=1…k. Consider parameters ti, for i=1…k, such that (ti) are vertices of the polyline S. Since d( (t), (t)) ≤  ∀t [0,1] ,

(ti) Bi for i=1…k.

The tolerance requirement: We need to prove that A(t) Ti  for t [ti, ti+1]. Since parameterizations  and  are monotone,
d( (t), (t)) ≤  for t [ti, ti+1] and thus A(t) Ti for i=1..k-1.

12.b Second we prove that if A(A, S)   then F(A, S)  .
By definition A(A, S) ≤  implies that there exists a sequence of non-decreasing parameters t1, t2 … tk, such that A(ti)  Bi   for
i=1…k and A(t) Ti  for t [ti, ti+1]. We need to prove that there exist monotone parameterizations  and  of arc A and polyline
P respectively, such that d( (t),  (t)) ≤  ∀t [0,1]. We do this by providing such a monotone parameterization on each of the
intervals [ti, ti+1], namely, we provide monotone parameterizations  and  such that d( (t),  (t)) ≤  ∀t [ti, ti+1] for i=1…k-1.
We choose  (ti) to be an ith vertex of the polyline S, (ti) to be some point on arc A, is inside of ball Bi. We know that (ti)
exists from the initial conditions (Fig 15). Thus, d( (ti),  (ti)) ≤ , for i=1…k. Clearly, if there are such parameterizations for
each of the intervals, then the monotone parameterization for interval t [0,1] is just a concatenation of the parameterizations
for each of the intervals (Fig. 15).

Fig 15:  We show that there exist monotone parameterizations  and  such that d( (t),  (t))   t [0,1] by showing that there
exist monotone parameterizations  on each of the intervals [ti, t i+1]. We choose  (t i) to be an ith vertex of the polyline S, (ti) is
some point on arc A, which is inside of ball Bi.

First, we give a formal definition of the parameterization we propose. Then we intuitively explain what it means. Finally, we
give the formal proof that this parameterization is correct.

We define a parameterization for a particular interval [ti, ti+1] as follows: We split the interval [ti, ti+1] into N +M sub-intervals,
where N  ∞ and M  ∞. We then give a definition for parameterizations  and  recursively (Fig. 16a):

• (u0) = A(ti), (uN) = A(ti+1)
• (up) is monotonically increasing with uniformly distributed samples as p changes from 0 to N.
• (uN+1) = (uN+2) = … = (uN+M) = A(ti+1).
• (u0) = Si.
• (up) = max(  (up-1), *(up)), for p=1..N, max is defined as a point farthest from Si and * is defined below.
• (up) is monotonically increasing with uniformly distributed samples from (uN) to (uN+M)=Si+1, for p in [N, N+M].

*(up) is the point on SiSi+1 closest to Si for which the distance between this point and a(up) is less than or equal to  (Fig. 16b).
This point always exists since by initial conditions A(ti), for i [ti, ti+1], belong to the convex hull of balls Bi, and  Bi+1.

To explain this parameterization intuitively, consider a boy walking along the arc segment A(t), for t [ti, ti+1], holding, on a
leash of length , a dog that walks along the straight line segment SiSi+1. The boy starts walking at A(ti), while the dog is at Si.
Until the leash extends to its full length, , the dog remains at Si. Afterwards, as the boy keeps on walking along the arc the dog
lags behind as much as the leash permits, namely, it is always at distance  from the boy. The dog never goes backward, even if
the leash permits  it, due to the maximum operation in the parameterization formula that we gave. As the boy reaches the end of
the arc (p=N), he stops and waits until the dog moves to the endpoint of the line segment, Si+1. The same process is repeated for
the next segment.

.
(t0)

(t1) (t2)

(t3)

(t0)

(t1) (t2)
(t3)
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Fig 16:  Definition of the parameterization.

Next we prove that such a parameterization is monotonically increasing, continuous, and d( (up),  (up)) ≤  for p=0…N+M.

• Both parameterizations are monotonic by construction.

• In order to show that  and  are continuous, we have to show that as N  ∞ and M  ∞, d( (up-1), (up)) 0 and d( (up-1),
(up)) 0. These conditions are clearly true for the parameterization  and for the parameterization  for p=N…N+M from

their definitions. For the parameterization   for p=0…N, we have to show that d(  (up-1),  (up))  0. Consider a particular
pair up-1, up. If  (up) is not equal to *(up) then  (up)= (up-1) and we have nothing to prove. Assume that  (up)= *(up).
Then we need to show that d( * (up), (up-1))  0. At the same time (up-1) ≥ *(up-1) thus, if we were to show that
d( *(up), *(up-1))  0 then it would imply that d( * (up),  (up-1))  0. But this is trivial to see that as N  ∞,
d( *(up), *(up-1))  0 because the arc and the line segment are both continuous and differentiable (For two points A and B
along the arc or the polyline segments, the notation A  B means that A is located further along the segment than B).

• Last we have to show that d( (up),  (up)) ≤  for p=0…N+M.

For p=N…M, d( (up),  (up)) ≤  since (uN) = (uN+1) = (uN+M), d( (uN+M),  (uN+M)) ≤  from initial conditions and d( (uN),
(uN)) ≤  as we are going to prove next (Fig 17).

Fig 17: d( (up),  (up))   since (uN) = (uN+1) = (uN+M), d( (uN+M),  (uN+M))   and d( (uN),  (uN))  .

For p=0…N, if (up) = *(up), then d( (up),  (up)) ≤  by the definition of *. To prove that d( (up),  (up)) ≤   if (up) ≠
*(up) (and consecutively (up)= (up-1) > *(up) ) we split the proof into two cases:

Case 1: The notation T(up) means the projection of (up) onto line segment Si, Si+1. If the projection onto the line containing Si,
Si+1 lies to the left of Si then T(up) = Si, if it is to the right of Si+1 then T(up) = Si+1. If 

T(up) ≥ (up), d( (up),  (up)) ≤  since
d( (up), 

T(up)) ≤  and d( (up), *(up)) ≤  and   *(up)< (up) ≤ T(up) (Fig. 18).

Fig 18: If T(up)  (up), d( (up),  (up))   since d( (up), 
T(up))   and d( (up), * (up))   and *(up)< (up) 

T(up).

(u0)=Si

(u0)=A(ti)

(uN)= (uN+1)=…= (uN+M)=A(ti+1)

(uN+M)=Si+1(uN)
(up)

(up)

Si Si+1
*(up)

ε

A(ti)

A(ti+1)

(u0)=Si

(u0)=A(ti)

(uN)= (uN+1)=…= (uN+M)=A(ti+1)

(uN+M)=Si+1(uN)

(a)

(b)

(up)

Si Si+1
*(up)

A(ti)

A(ti+1)

 T(up)

(up-1)= (up)
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Case 2: Now suppose, T(up)< (up). We prove this case by contradiction. First, there exists k<p such that (uk)= *(uk)= (up-1).
Also, d( (uk), *(uk))=  since *(uk)= (up-1)>Si, because (up-1)> *(up)≥Si. Since *(uk)= (up-1), the distance d( (uk) (up-1)) is
also equal to . Also, T(uk)≥ (up-1) since *(uk)= (up-1) and * of any point (ui) is always less than or equal to T(ui), because
d( T(ui),  (ui)  ).

Consider the sphere Cp-1 with center at (up-1) and radius . (uk) lies on that sphere. Consider the plane L passing trough point
(up-1) perpendicular to the line segment Si Si+1. Since T(uk)≥ (up-1), (uk) lies on or on the right side of plane L (Fig. 19).

Fig 19: Sphere Cp-1 with center at (up-1) and radius . (uk) lies on that sphere. Plane L passes trough point (up-1) perpendicular
to line segment Si, Si+1. Since T(uk)  (up-1), (uk) lies on or on the right side of plane L Since T(up) < (up-1), 

T(up) lies on the
left side of plane L

Next we prove that (up) cannot lie outside of sphere Cp-1, and therefore d( (up),  (up-1))≤ .

Since T(up)< (up-1), 
T(up) lies on the left side of plane L (Fig 19). We know that arc A first hits point (uk) and then hits point

(up), since p> k. We next show that point (uk-1) lies outside of sphere Cp-1. If A is tangent to a sphere Cp-1, it is easy to see that
(uk-1) lies outside of circle Cp-1 (this takes care of the case when (uk) lies on plane L). Suppose that A intersects Cp-1. If point
(uk-1) lies inside Cp-1, then A must exit sphere Cp-1 , via the sequence of points: (uk-1), (uk), (uk+1), then enter it again to get

to the other side of plane L, where (up) lies (Cp-1 is tangent to a cylinder in which A should stay to satisfy the tolerance
requirement of our metric), and then exit Cp-1 again to hit point (up), which is impossible.

Thus, we proved that point (uk-1) lies outside of sphere Cp-1. Also, it is easy to see that it lies to the right of plane L. Thus the
distance between (uk-1) and any point on line segment Si, Si+1 smaller or equal to (up-1) is larger than , which is impossible
since point (uk-1) < (uk) and therefore (uk-1) ≤ (uk) = ( up-1).

13 Appendix B: Finding an arc passing through two points and tangent to a circle
In this section we show how to find two arcs Am and AM that pass through S1 and Sk and are tangent to D (see Fig. 6b). D has a
center D1 and radius r.

To find arc Am we solve the following system of equations (Fig. 20a):




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=+
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222

)()( rRtyx

Rtm

where,

- x is the absolute value of the DotProduct(D1- M, n), M is the midpoint of line segment passing through S1 and Sk

- n is a unit vector in the direction of a line passing through S1 and Sk,
- y is the absolute value of the DotProduct(D1- M, l),
- l is a unit vector in the direction perpendicular to n,
- m is half of the length of line segment passing through S1 and Sk,
- t and R are two unknowns, t is the distance from M to the center of Am and R is the radius of Am,

Given t, the center D2 of  Am  is equal to M+l*t.

We solve a similar system of equations to find arc AM  (Fig. 20b):
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

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  (a)                    (b)

Fig 20:  Given points S1 and S k  and a disk D with radius r and center D1 we find an arc Am passing through points S1 and Sk and
tangent to disk D from below (a) and arc AM passing through points S1 and Sk and tangent to disk D from above (b).

14 Appendix C: The error bound for the quantized representation

Fig 22: (a) Representation of the arc, (b) Sq and Eq represent quantized vertices S and E respectively. Plane Tq is perpendicular to
line segment Sq, Eq and passes through its center.

In this section we describe our quantization procedure and prove that the maximum error max between an arc A and its

quantized representation Aq is bounded by the following formula: VPA EEEV ++≤ 37)2sin(2max , where Ep, EV and

EA denote, respectively, the error due to the quantization of vertices of PCA, the absolute length of vector V, and the angle
between vector V and the reference vector W.  We assume the of vector V is less than the length of vector SE (Fig 22a). See
section 8 for the compete description of the arc representation.

The simple procedure of quantizing all parameters representing arc A will not produce good results. First, it is difficult to
estimate an error between A and Aq, if such a quantization technique is used. Second, it may even result in an incorrect
decompression for the reasons described next. Remember that an arc is represented by its two endpoints, S and E, and by a
vector V in its bisecting plane (Fig 22a). Vector V is represented by its length and by the angle it forms with some reference
vector W in the plane T which is perpendicular to SE. To find the reference vector W, we project vectors {(1,0,0)T, (0,1,0)T,
(0,0,1)T} onto T, and choose the longest projection as a reference vector. Due to the quantization of endpoints of an arc A,
during decompression, we will find a different reference vector W than the one used for compression since the plane T where
we project vectors {(1,0,0)T, (0,1,0)T, (0,0,1)T} will be different. That introduces an error between A and Aq that is difficult to
estimate. Also, since we use the longest of the projections as a reference vector W, during decompression we may end up using
a projection of a vector different than the one used for compression, which will result in an incorrect decompression.
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An alternative would be to first quantize the endpoints of A and store a representation of V in a plane Tq that is perpendicular to
the line segment connecting already quantized endpoints. But vector V does not necessarily lie in Tq (Fig 22b). Thus, we need to
decide which vector V in plane Tq do we want to choose to represent our arc. There are different ways of choosing this vector.
We propose one that allows us to easily compute the error between the original arc A and its quantized representation Aq.

To find vector V in plane Tq, we compute a transformation that maps S into Sq and E into Eq, where Sq and  Eq represent
quantized versions of S and E respectively.  Let A* be the image of A by this transformation. We perform this transformation in
three steps and at each step estimate the maximum error we make. The resulting error between A and A* is bounded by the
summation of maximum errors made at each step. V is then a vector between the midpoint of line segment SqEq and the
midpoint of the arc A*. Next we compute a quantized representation of A, Aq, by quantizing the angle and radius of vector V.
The resulting error between A and Aq is then bounded by the summation of error between A and A* and between A* and Aq.

Fig 23: Transformation of arc A into arc A*.  Each figure shows a step of the transformation. Arc before a particular
transformation step is drawn using solid line. An arc after each of the transformation steps drawn using dotted line.

We first describe the process of transforming A into A*.

1. First we transform A by a vector (Sq – S). S is mapped into Sq, whereas E is mapped into some point E1 (Fig 23a). The error
between the original and transformed arcs is bounded by the length of vector (Sq – S) and thus by a vertex quantization

error pE3 , where Ep is the quantization error of each coordinate of a vertex.

2. Then, we align the base of A with SqEq. In order to do that, we rotate A by an angle between vectors (E1–Sq) and (Eq–Sq)
around a vector L that is perpendicular to SqEq and to SqE1 (Fig 23b). E1 is mapped into E2. The resulting error is bounded
by the distance between E1 and E2. Let notation d(X,Y) represent the distance between vertices X and Y. We next show that

d(E1 , E2)  ≤ pE34 .

• d(E1,E2)≤d(E1,Eq) + d(E2,Eq), from triangle (E1,E2,Eq)

• d(E1,Eq)≤d(E,Eq) + d(E,E1) ≤ pE3 + pE3 ≤ pE32 , from triangle (E, E1, Eq)

• d(E2,Eq)≤ pE32 (see Figure 24)

• Thus, d(E1,E2)≤ pE34

Fig 24   Let L be the line segment from S to E .The quantization of the coordinates of its endpoints by less than E can change its

length by at most pE32 .

3. Finally, we stretch or shrink A into A*, keeping the length and the direction of V constant. A* only differs from A by its one
endpoint. It is represented by the same vector V as A (Fig 23c). We show that the error between A and A* is bounded by the

distance between E2 and Eq and thus (as was shown in Fig. 24) by pE32 .

We have shown how to transform A into A* with error E1 bounded by pE37 . The next step is to quantize the representation

of V. We first compute the error due to the discretization of an angle of vector V and then the error due to the discretization of
the length of vector V.

S E

Sq

Eq

Sq

ES

V

Eq

E1

Eq

Eq

Sq E1

E2 E2

Sq

(a) (b) (c)



Safonova & Rossignac: PCA GIT-GVU-01-05 updated on 3/15/02 (reduced version to appear in CAD) 20/16

Fig 25   Error due to quantization of an angle of vector V. Arc A** which results from the discretization is drawn as a dashed arc.

The discretization of the angle of vector V introduces an error E2 between A and A**, which is limited by the distance between

midpoints M and M** of arcs A and A** respectively (Fig. 25a). Thus, )2sin(22 AEVE ≤ (Fig. 25b), where EA is a

quantization error in angle of vector V.

The Error due to the discretization of the length of vector V, E3,, is bounded by the quantization error of length of vector V, EV

(Fig 26).

Fig 26 Error due to the discretization of the length of vector V, E3,, is bounded by the quantization error of length of vector V, EV.

The maximum error εmax between an arc A and its quantized representation Aq is bounded by the sum of errors E1, E2, E3 and

thus the following formula: VPA EEEV ++≤ 37)2sin(2max .

Now, we consider the error between arcs A1 and A2 that only differ by one endpoint.

Fig 26: (a) Two arcs  A1 and A2 have the same first endpoints S1 and S2 , and the same deviation parameters of length D, second
endpoints E1 and E2 lie on the same line but do not coincide, (b) Translate A1 along vector (E2 – E1) by distance d/2. Now
midpoints P1 and P2 of arcs A1 and A2 coincide.

Consider two arcs A1 and A2 in the plane.  Each arc is represented by its two endpoints, S and E, and a deviation parameter D
between the midpoint P = (S + E)/2  and the midpoint M of the arc. Arcs A1 and A2 have the same first endpoints S1 and S2, and
the same deviation parameters of length D, second endpoints E1 and E2 lie on the same line but do not coincide (Fig. 26a). We
prove that the error between A1 and A2 is bounded by the distance d between E1 and E2.

Without loss of generality, we assume that A1 has smaller radius than A2. Translate A1 along vector (E2 – E1) by distance d/2.
Now, the midpoints P1 and P2 of arcs A1 and A2 coincide (Fig 26b). It is trivial to see that the error between the translated A1

and A2 is less than d/2. Thus the error between A1 and A2 is less than d.
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