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ABSTRACT

The Sequenced Convex Subtraction (SCS) algorithm is a hardware based multi-pass image-space algorithm
for general purpose Constructive Solid Geometry (CSG) Rendering. Convex objects combined by volu-
metric intersection, difference and union are rendered in real-time without b-rep pre-processing. OpenGL
stencil and depth testing is used to determine the visible surface for each pixel on the screen.
This paper introduces a specialised algorithm for CSG Rendering of intersected convex objects, we call
SCS-Intersect. This new technique requires linear time with respect to the number of intersections. SCS-
Intersect is primarily of interest as an optimisation to the SCS algorithm for rendering CSG trees of convex
objects. A revised formulation of the SCS CSG Rendering algorithm is presented in this paper.

Keywords: CSG Rendering, Rendering Algorithms, Constructive Solid Geometry, OpenGL, Solid Mod-
elling, Numerical Control (NC) Verification.

1 INTRODUCTION

As the performance of graphics hardware improves,
multi-pass rendering techniques for anti-aliasing,
shadowing, specular light, reflection and other effects
become increasingly attractive for enhancing the vi-
sual realism of real-time interactive graphics. Over
time, the graphics hardware feature-set has evolved
to include stencil testing and programmability at the
vertex and fragment level. This increased flexibil-
ity and performance enables the use of sophisticated
graphics-hardware based algorithms for interactive
applications.

The pervasive availability of z-buffer hardware for
hidden surface elimination has encouraged the de-
velopment of alternative applications of z-buffer
graphics hardware. Applications include image
compositing, shadow maps, voxelisation, discrete
Voronoi diagrams, object reconstruction, symmetry
detection and Constructive Solid Geometry (CSG)
rendering[Theoh01].

Image-space CSG rendering techniques provide an al-
ternative to object-space evaluation[Requi85] of CSG
trees for geometric design or machining simulation.
The relative simplicity and robustness of implementa-
tion, the interactive flexibility of dynamic CSG trees,
and the potential for pixel parallelisation[Molna88]
make image-space algorithms attractive for some ap-
plications.

Existing CSG rendering methods[Goldf89, Wiega96,
Rappo97, Stewa00] generally require

���������
time,

where
�

is the number of leaf nodes in the CSG
tree. This

�����	�
�
requirement is due to the gen-

eral strategy of comparing every pair of objects.
This can be improved by taking advantage of depth
complexity[Stewa98] (the number of objects cov-
ering each pixel) — resulting in

��������
execu-

tion time, where
�

is the maximum depth com-
plexity. The Sequenced Convex Subtraction (SCS)
algorithm[Stewa00] aims to improve CSG perfor-
mance by reducing the requirement for z-buffer copy-
ing — a common bottleneck in contemporary graph-
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Figure 1: Z-Buffer Intersection using the z and stencil buffers

ics hardware[Wiega96, Stewa98, Stewa00].

This paper introduces a new approach for render-
ing the intersection of convex objects in linear time,
that we call SCS-Intersect. It has been imple-
mented using the z and stencil testing functionality
of OpenGL[Boarda, Boardb]. SCS-Intersect can be
used as a stand-alone algorithm for CSG trees of con-
vex objects in the form:

��� � �����
	�	�	 . It can also
be utilised in a more general-purpose CSG rendering
algorithm such as SCS[Stewa00].

The SCS-Intersect algorithm is described in Sec-
tion 2, including some timing results for NVIDIA
GeForce3 hardware. Section 3 refines the SCS CSG
rendering algorithm, incorporating SCS-Intersect.
Section 4 presents some SCS timing results for CSG
trees including intersection and subtraction, followed
by a conclusion and future work in Section 5.

2 SCS-INTERSECT

The intersection of two objects
��� � is the volume

contained by both
�

and � . In terms of surfaces,
the intersection is surfaces of

�
inside � and sur-

faces of � inside
�

. The SCS-Intersect algorithm
uses OpenGL to render the intersection of any number
of convex objects:

�� � ��������

Algorithms limited to convex objects often have ad-
vantages in terms of robustness and performance.

Graphics hardware typically rasterises only triangles,
and relies on layers of software for triangle tessela-
tions of convex and concave polygons. Similarly, the
SCS algorithms assume CSG trees of convex objects,
and rely on the application to perform convex decom-
position where necessary[Stewa00].

Convex objects characteristically have two distinct
surfaces for each pixel - a “near” front-facing surface,
and a “far” back-facing surface. The OpenGL back-
face culling mechanism provides a convenient mech-
anism for restricting rasterisation to either front or
back-facing polygons. It also ensures that with culling
enabled, there is at most one fragment per pixel, per
object. The number of fragments processed at a pixel
therefore corresponds to the number of objects cover-
ing that pixel.

Using OpenGL, the closest visible surface of the
boolean intersection of a set of convex objects is
formed in the z-buffer. An additional pass is per-
formed with a z-equal z-test to determine the colour
of each pixel.

2.1 Algorithm

The image-space intersection algorithm uses two
principles. First, only the furthest front-facing sur-
face can be volumetrically inside all of the objects.
Closer front-facing surfaces cannot be volumetrically
inside more distant objects. Second, the intersection
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Figure 2: Application of SCS-Intersect to Cylinders

surface must be in front of
�

back-facing surfaces. If
any back-facing surface is closer than the candidate z-
buffer pixel, then the pixel can’t possibly be inside the
intersection. If the depth-complexity of a pixel is less
than

�
, then it can’t possibly be inside all

�
objects.

These two ideas are implemented as a multi-pass al-
gorithm with appropriately configured z and stencil
tests.

SCS-Intersect:

���
number of intersected objects

for each pixel� �������
	��
��
� �����������

for each intersected object,
�

if
�
� ��������� �
� � �
� �!�����

for each intersected object,
�

if
�
" 	$#�%&� �
'�
� ��������� ��
� �������)(+*

for each pixel
if ��
� ������� �� �
� ��� � 	��
��
� �����������

To begin with, the z-buffer is initialised to
�,�-�
	��

, and
the stencil buffer reset to zero. Then the furthest front
facing surface is drawn into the z-buffer by rasterising
with a z-greater test. The stencil buffer is then used to
count the number of back-facing objects behind the
z-buffer. Finally, all pixels that do not have

�
back-

facing surfaces behind the z-buffer are reset to
�.� 	��

.

The intersection of two cylinders is illustrated in Fig-
ure 1. In the z-buffer diagrams, black is near and
white is far. In the stencil-buffer diagrams white, red
and green denote values of 0, 1 and 2 respectively.

2.2 Limitations

A maximum of /-021 * surfaces can be counted with an -bit stencil buffer. On hardware with an 8-bit stencil
buffer, the algorithm is therefore limited to 255 in-
tersected objects. However, the last two passes could
be incorporated into a loop to check /3041 * surfaces
at a time, at the expense of extra passes. We expect
that a limitation of 255 surfaces for an 8-bit stencil is
reasonable for most practical purposes.

2.3 OpenGL Implementation

The following C code fragment implements the SCS-
Intersect algorithm in OpenGL. Figure 2 illustrates
the result of intersecting increasing numbers of cylin-
ders.

/* Clear frame-buffer */

glClearDepth(0.0);
glDepthMask(GL_TRUE);
glClearStencil(0);
glStencilMask(˜0);
glColorMask(GL_TRUE,GL_TRUE,

GL_TRUE,GL_TRUE);
glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT |
GL_STENCIL_BUFFER_BIT);

/* Draw furthest front face */



glColorMask(GL_FALSE,GL_FALSE,
GL_FALSE,GL_FALSE);

glDisable(GL_STENCIL_TEST);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_GREATER);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
drawCylinders();

/* Count back-facing surfaces behind */

glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS,0,˜0);
glStencilOp(GL_KEEP,GL_KEEP,GL_INCR);
glDepthMask(GL_FALSE);
glCullFace(GL_FRONT);
drawCylinders();

/* Reset pixels where n != stencil */

glStencilFunc(GL_NOTEQUAL,n,˜0);
glStencilOp(GL_ZERO,GL_ZERO,GL_ZERO);
glDepthFunc(GL_ALWAYS);
glDepthMask(GL_TRUE);
glDisable(GL_CULL_FACE);
drawZfar();

/* Draw RGB image */

glColorMask(GL_TRUE,GL_TRUE,
GL_TRUE,GL_TRUE);

glDisable(GL_STENCIL_TEST);
glDepthFunc(GL_EQUAL);
glDepthMask(GL_FALSE);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
drawCylinders();

2.4 Timing Results

Timing results in this paper were obtained on a
1Ghz Pentium III system with NVIDIA GeForce3
OpenGL graphics, running RedHat Linux 7.1. The
algorithms were implemented using C++, OpenGL
and GLUT[Kilga96]. Images were rendered in an
1024x768 window, each gluCylinder having 15 slices
and 10 stacks.

The performance of SCS-Intersect over a 1000 frame
period is recorded in Table 1. The graph shows the
linear relationship between the rendering time per
frame, and the number of intersected cylinders.

3 SCS ALGORITHM

The Sequenced Convex Subtraction (SCS) CSG ren-
dering algorithm draws a CSG tree of convex objects
using OpenGL graphics hardware. The algorithm op-
erates in three phases: pre-processing, z-buffer pro-
cessing, and final RGB image composition.

In the pre-processing phase, the CSG tree is converted
to sum-of-products form by means of tree normali-
sation[Goldf89, Rossi94]. Each product consists of
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(frame/sec) (sec/frame)

10 59 0.016
20 33 0.031
30 22 0.044
40 17 0.059
50 14 0.073
60 11 0.087
70 10 0.101
80 9 0.115
90 8 0.130

100 7 0.144

Table 1: CSG-Intersect performance.

only intersection and subtraction operations, and the
products are combined via union operations. The
CSG tree

� � � � ��� � � 1�� � consists of two prod-
ucts:

��� � and
� 1�� . Each product is processed

independently in the z-buffer processing phase, and
merged into the final result using the z-less z-buffer
test. Tree normalisation is view independent and only
needs to be performed when the CSG tree changes.
Refer to Goldfeather’s papers[Goldf86, Goldf89] for
further explanation of tree normalisation and the al-
gorithm.

A second pre-processing step is to determine subtrac-
tion sequences for each product. The optimal sub-
traction sequence is in front to back order. However,
it is sufficient to subtract in any sequence that em-
beds the correct subtraction sequence. It can be faster
and generally much simpler to perform extra subtrac-
tions than to determine the ideal subtraction sequence
for each viewing direction. Subtraction sequences
can be determined either view-dependently or view-
independently using the SCS-Sequence algorithm.

In the z-buffer processing phase the z-buffer result
of each product is determined, and merged into a fi-
nal z-buffer result. To begin with, intersected ob-
jects are handled using the SCS-Intersect algorithm.
Then the subtraction sequence is used by the SCS-
Subtract algorithm to process the subtracted objects.
The SCS-ZClip algorithm clips the z-buffer against
intersected objects, and completely subtracted pixels
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Figure 3: Subtraction sequence for two objects.

reset to
�,� 	��

. The product z-buffer is then merged
into the final z-buffer with a z-less depth test.

In the final phase the merged z-buffer result is used
for calculating the RGB image of the CSG tree. The
front-facing surfaces of intersected objects, and the
back-facing surfaces of subtracted objects are drawn
with lighting enabled and a z-equal depth test.

In the following sections, the SCS-Sequence, SCS-
Subtract and SCS-ZClip algorithms are discussed,
followed by the full SCS algorithm.

The SCS CSG rendering algorithm as presented
here includes revisions with respect to our previous
presentation[Stewa00]. Intersected objects are now
handled by the

�������
SCS-Intersect algorithm, rather

than by the
��� ���
�

subtraction approach. In this ver-
sion, the subtraction sequence need only include sub-
tracted objects. The resulting performance improve-
ment is verified experimentally in Section 4.

3.1 SCS-Sequence

Subtraction sequences must handle every possible de-
pendency between subtracted objects in the product.�

may reveal � , which in turn reveals
�

, which will
only be rendered properly if

�
, � and

�
are sub-

tracted in the right order. Figure 3 illustrates a sub-
traction sequence incorporating 1 � 1 � and 1 � 1 � .
For any viewing direction or configuration of two sub-
tracted objects, the sequence � 1 � 1 � 1 � ensures
that both possible orderings are correctly handled.

Permutation embedding sequences[Galbi76] have the
property that all

���
permutations of

�
objects are em-

bedded. A sequence is embedded if it can be formed
by deleting other entries. For example,

� � � is em-
bedded in

� � � � � � � : ��� � � � ��� . Permutation
embedding sequences of length

�������
�
or

��� � ���
can

be easily obtained[Stewa00].

Sequence encoding uses a permutation denoted �� ,
and it’s reversal  � . The sequence is formed by al-
ternating between  � and  � until

�
copies have been

catenated. At each boundary between  � and  � the

repeated entries are collapsed into one. The length of
these sequences is

��� 1 � (+* .

For example:

� � / , �� � � � ,  � � � �	�� ��
 � � � � 
 � � �
� �� , �� � � � � ,  � � � � �	�� � �� 
 � � � � � ��� � � 
 � � � � � � �

If the maximum depth complexity of the subtracted
objects is known, shorter subtraction sequences of����� ���

length can be used, where
�

is the maximum
number of subtracted objects overlapping any pixel.
The depth complexity can be found easily using a
stencil test[Stewa00].

For example:

� � / , � � * ,  � � � � ,  � � � � � 
 � �
� �� ,

� � / , �� � � � � ,  � � � � �	�� ��
 � � � � � � 
 � � � � �

3.2 SCS-Subtract

Subtracted objects in a CSG product are handled
by sequenced subtraction[Stewa00] from the z-buffer.
Each subtraction involves comparing the front and
back facing surfaces to the z-buffer. The z-buffer is
updated for each pixel volumetrically inside the sub-
tracted object.

SCS-Subtract:

for each object �	� in subtraction sequence
if ��������������� �
��
� ��������� *

else��
� �����������
if � ����� �"! � � and '�
� ������� � *� � � �������#!
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Figure 4: Convex Subtraction From Z-Buffer

Figure 4 parts (b) – (d) illustrate subtraction of a
sphere from a rectangular block in the z-buffer. The
OpenGL stencil buffer is used to flag pixels that are
volumetrically inside the subtracted sphere. The z-
buffer at these pixels is subsequently replaced with
the back-facing surface of the subtracted sphere.

3.3 SCS-ZClip

Once subtraction is complete, pixels that have been
completely subtracted are reset to

� � 	$�
. The z-buffer

is compared to the back-facing surfaces of all of the
intersected objects in the product. Pixels further than
any back-facing surface of an intersected object are
reset.

SCS-ZClip:

for each pixel��
� �����������
for each intersected object,

�
if
�
" 	$#�% � �
'�
� ��������� *

for each pixel
if ��
� ������� � *� ��� � 	��
��
� �����������

The z-buffer clipping step is illustrated in Figure 4 (e).

3.4 SCS Rendering Algorithm

The z-buffer of each CSG product is determined by
applying the SCS-Intersect, SCS-Subtract and SCS-
ZClip algorithms. If there are multiple products, a
second z-buffer is used for storing the merged par-
tial result. In a final pass, the shaded result is drawn
into the colour buffer. The front-facing surfaces of in-
tersected objects and the back-facing surfaces of sub-
tracted objects are drawn with a z-equal depth test.

SCS:

for each pixel����������� ����	3� ��
������ ��
��� �����$��� � � � 	��

for each product
for each pixel��� ��������# � ��� �-�
	��
SCS-Intersect
SCS-Sequence
SCS-Subtract
SCS-ZClip
for each pixel

if � � ��������# � � � � �����$������ �����$��� � ��� �!������# �

for each intersected object,
�

if
� � �!� � � � ��� ���������
draw
� � �������

for each subtracted object,
�

if
� " 	$#�% � ��� �����$���
draw
� " 	$#�%

3.5 Discussion

The advantage of the SCS algorithm, compared to the
Goldfeather [Goldf89, Stewa98] or Trickle [Epste89]
algorithms is that a CSG product can be computed
using a single z-buffer. Utilising multiple z-buffers
by means of copying can be a significant bottleneck,
[Goldf89, Wiega96, Stewa98, Stewa00] depending on
the graphics hardware and available bandwidth. The
SCS algorithm also makes use of linear-time process-
ing of intersected convex objects, a strategy not found
in other CSG rendering algorithms.

The disadvantage of a convex representation is that
additional surface information may need to be ras-
terised in comparison to algorithms that can handle
concave objects. The SCS algorithm is therefore most
advantageous in the context of relatively high trian-
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10 14 22 29
20 9.0 13 27
30 6.1 8.3 25
40 4.4 5.9 26
50 3.4 4.6 24
60 2.8 3.5 20
70 2.2 2.7 20
80 1.7 2.0 15
90 1.4 1.7 17

100 1.2 1.4 15

Table 2: SCS swiss-cheese performance.

gle rasterisation performance compared to z-buffer
copying[Stewa00].

4 SCS TIMING RESULTS

A CSG test model was developed for verifying the
performance advantage of the SCS-Intersect algo-
rithm. The Swiss Cheese model in Figure 5 is formed
by subtracting four boxes from an ellipsoid and ran-
domly subtracting spherical holes of varied radius.

This results in a CSG product consisting of
� (��

sub-
tractions: � � � ���  � �  1 � ��� � 1 � ��� � 1 ������� 1 �����	� 1
 ��� ��� 1 
 ��� � � 1 	�	�	 1 
 ��� � � .
The same shape can be formed by intersecting boxes
with the ellipsoid, rather than subtracting them. This
alternative CSG tree consists of two intersections and�

subtractions: � � � ���  � �  � � ����� � � ����� 1 
 ��� � � 1
 ��� � � 1 	�	�	 1 
 ��� � �

The average frame rates for the two CSG trees are
given in Table 2. Time per frame is plotted in the
corresponding graph.

The non-linear time requirement for CSG-Subtract is
evident in the increasing slope of the graphs. The rela-
tive performance of CSG-Intersect and CSG-Subtract
can be contrasted by comparing SCS-Intersect in Ta-
ble 1 and SCS-Subtract in Table 2. For

� � * ��� ,
there is an order of magnitude slowdown between 16
frame/sec for intersection and 1.4 frame/sec for sub-
traction.

The relative efficency of SCS-Intersect is also evident
by contrasting the the performance of these two Swiss
Cheese CSG models. The tree using intersection op-
erations is between 15% and 30% faster to display.
Some of this speedup is due to the

��� ���
time in-

tersection of boxes, rather than
��� �����

time subtrac-
tion. Some of this speedup is also due to the fact that
only two boxes need to be intersected, rather than four
boxes being subtracted.

These results confirm that making use of the SCS-
Intersect algorithm for intersections results in a per-
formance improvement over a purely subtractive al-
gorithm. They also suggest that intersection should
be used (or even substituted, if possible) in preference
to subtraction wherever possible.



5 CONCLUSION

The special case of intersection between finite con-
vex objects is processed by the new linear-time SCS-
Intersect rendering algorithm. The algorithm requires
(roughly) three passes per object, and is therefore
highly suitable for real-time interactive applications.
SCS-Intersect requires one stencil buffer, one z-buffer
and no z-buffer copying.

SCS-Intersect has been incorporated into the general
pupose SCS (Sequenced Convex Subtraction) CSG
rendering algorithm. Linear-time handling of inter-
sections, rather than

���������
time subtraction results in

substantial speedup, depending on the relative num-
ber of intersections.

CSG products of around 100 convex objects can be
displayed at interactive frame-rates at high resolution.
NVIDIA GeForce3 hardware can display 100 inter-
sected cylinders at approximately 7 frame/sec, and
50 subtracted spheres at approximately 5 frame/sec
at 1024x768 resolution.

5.1 Future Work

We believe that there remains scope to further im-
prove the performance of convex subtraction by pro-
ducing shorter subtraction sequences. This can be
facilitated by the analysis of adjacency (intersection)
information between subtracted objects, without per-
forming full depth-sorting for every frame.
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