
GMCh7 5/10/99 7-1

GEOMETRIC MODELING: A First Course

Copyright © 1995-1999 by Aristides A. G. Requicha
Permission is hereby granted to copy this document for individual student use at USC,
provided that this notice is included in each copy.

7. Application Algorithms

Unambiguous geometric models are potentially capable of supporting fully automatic
algorithms for any applications that involve object geometry. However, only a few
application algorithms have reached maturity and are routinely used in industry. This
chapter discusses currently understood applications in graphics and simulation; mass-
property calculation (i.e., volume, moments of inertia); and interference (i.e., collision)
analysis. It also touches upon other applications such as planning for inspection and
robotics, which are emerging from the research labs. Generally, analysis algorithms are
well-developed, whereas synthesis algorithms, which require geometric reasoning, are not.

7.1 Graphics and Kinematic Simulation

7.1.1 Overview

Most of the rendering software in use today operates on BReps. Simple images are
produced swiftly, but photo-realistic renderings, with texture, shadows, and so on, may
take several minutes or even hours per image. If objects are modeled by using Boolean
operations, the BRep must be evaluated before rendering, and this is a time consuming
procedure. Thus, although rendering itself is fast, the entire process suffers from what is
sometimes called “the Boolean bottleneck”. Rendering methods that do not require
boundary evaluation, and therefore avoid the Boolean bottleneck, are attractive for
modeling systems that define objects primarily through Booleans. Graphic algorithms for
BReps are covered in standard graphics texts, and are not discussed extensively here. We
focus on algorithms that do not require explicit boundary information.

Graphic displays of solids and surfaces are typically produced in three styles:

• Wireframes.
• Line drawings with hidden lines removed.
• Shaded displays.

Wireframes – All the edges of the object are displayed, regardless of whether they are truly
visible or not. For curved objects, which have few edges, displays often contain additional
curves, usually called generators. These may be computed by intersecting the object with a
set of parallel planes, or, more commonly, by tracing curves of constant parameter value in
parametric surfaces. Figure 7.1.1.1 provides an example. Given parametric representations
for the curves to be drawn, the display process consists of (i) stepping along the curve
through suitable parameter increments, (ii) generating a piecewise linear approximation on
the fly, and (iii) projecting the line segments on the screen, as discussed in Chapter 2.
Parameter increments may be constant, or they may be smaller in regions of high curvature,

GMCh7 5/10/99 7-2

for better approximation and visual effect. Wireframe displays are easy to generate from
BReps (especially if generators are not used), but hard to interpret for complicated objects.
Rotating a wireframe helps human users perceive the represented object (or objects, if the
internal representation happens to be an ambiguous wireframe).

Figure 7.1.1.1 – Wireframe display of a curved solid.

Line drawings with hidden lines removed – Here the invisible edges or edge segments are
not displayed. The resulting images are much more intelligible than their wireframe
counterparts. However, hidden-line removal requires substantial computation. For objects
with curved surfaces, profile or silhouette curves are also computed and displayed, for a
more realistic effect. A silhouette corresponds to the points of the object where the surface
normal is perpendicular to the line of sight. If p(u,v) is a generic point on the surface,
n(u,v) is the normal vector to the surface at p, and v is the viewpoint, the equation of a
silhouette is (v – p). n = 0. This is an equation in the two parametric variables u and v, and
therefore implicitly defines a curve in parameter space. Note that silhouettes are not edges
in a BRep, and are viewpoint dependent. Figure 7.1.1.2 presents a simple example that
shows that some BRep edges are not displayed, because they do not correspond to
discontinuities in the surface normal, and that some edges (silhouettes) that are not in the
BRep are displayed. Hidden-line algorithms normally operate on boundary representations
and are discussed at length in texts on Computer Graphics.

Figure 7.1.1.2 – A display with hidden lines removed.

Shaded displays – These are the most realistic, but also the most expensive to compute.
They can be very sophisticated, with texture, reflectance effects, shadows, and so on.
Figure 7.1.1.3 is an example of a high-quality shaded display of a metalic part. Often
shaded displays are generated from boundary representations by visible surface algorithms,
which are discussed in graphics textbooks. In this course we present only a very simple
boundary representation algorithm, and then focus on shaded graphics algorithms for
CSG, which are usually not described in the graphics texts. There are also algorithms for
generating shaded displays directly from octree and voxel representations. These
algorithms are simple, and especially attractive when implemented in hardware. Efficient
software for rendering octrees is available commercially.

Figure 7.1.1.3 – A shaded display of an automotive part.

Kinematic simulation amounts essentially to displaying a sequence of images, or frames, in
which an articulated object is shown in several poses along a trajectory of motion. (Here
“frame” is not a coordinate system; it is used with its standard meaning in the animation
field, i.e., as an individual image in an animation sequence.) Pose computation was
discussed in Chapter 2. Major challenges in kinematic simulation are computational speed
and bandwidth. For realistic motion effects the frame rate ideally should be at least 30 fps
(frames per second). A 1,000 by 1,000 pixel display, with 24 bits of color per pixel,
corresponds to 3MB (mega bytes) of data per frame. At 30 fps this is a data rate of 90
MB/sec, which is very large, and requires special hardware. In addition, motion tends to
exacerbate certain imperfections in computed images. For example, if the silhouette of an
object is not accuratetly approximated, the object/background boundary flickers annoyingly
in the animation.

GMCh7 5/10/99 7-3

7.1.2 Depth Buffering

Depth- or z-buffering is a simple rendering technique, well-suited for hardware
implementation, and widely used in graphic accelerators. It is especially useful for objects
represented by BReps in which the faces are very simple polygons such as triangles or
quadrangles. Such BReps are also called tessellations; if all the faces are triangular, the
tessellation is called a triangulation.

The basic z-buffer algorithm uses two arrays I[x,y] and Z[x,y]. The indices x,y
range over all the pixels of the display window. I[x,y]stores the intensity, or color
value, that corresponds to pixel x,y, and Z[x,y] is the corresponding depth. The depth,
or Z value, is the distance between the viewpoint and the point on the object’s boundary
that is being projected on the pixel—see Figure 7.1.2.1.

Pixel
x,y

Screen

p qv

Figure 7.1.2.1 – Depth buffering geometry, illustrated in section view.

The agorithm may be summarized as follows: initialize the buffers; scan each face; check
the distance between each point on the face and the viewpoint; if the distance is less than
that stored in the z-buffer, overwrite the z-buffer and compute the new intensity by using
information about the surface normal and the light sources. At the end of the scan the
intensity buffer contains the correct image values. Enough points must be generated in each
face to ensure that all the pixels covered by the face’s projection have at least one
corresponding face point.

In pseudo-code the algorithm may be expressed as follows.

GMCh7 5/10/99 7-4

Depth Buffering Algorithm for BReps

for each [x,y] do
Z[x,y] = BigNumber; // “Infinite” distance
I[x,y] = BackgroundColor;
end; // Initialization loop

for each face F of solid S do
// Scan convert the face
for each point P in a dense grid on face F do

[x,y] = ProjectOnScreen(P);
d = Norm(V-P);
// V is the viewpoint
// Function Norm computes the length of a vector
if d < Z[x,y] then

Z[x,y] = d; // Update buffers
N = NormalToSurface(P);
I[x,y] = Intensity(P,N,LightSources);
end; // if

end; // Scan loop
end; // Face loop

Display(I[x,y]);
end;

Figure 7.1.2.1 illustrates the need for depth testing. Points p and q project on the same
pixel. If the z-buffer contains the depth that corresponds to q when p is reached in the face
scan, then the buffers must be updated, to reflect the fact that only p is visible, because its
depth is lower than q’s.

The z-buffer algorithm does not require any complicated geometric computations. For
example, no intersections of surfaces or curves are computed. And it can support realistic
rendering if the Intensity function is sufficiently elaborate. (Images produced with the
algorithm as described have a jagged appearance, and should be anti-aliased. Anti-aliasing
is a filtering operation necessary to combat sampling effects, and is described in standard
graphics texts. It is analogous to low-pass filtering, familiar to electrical engineers.)

This z-buffer algorithm is not directly applicable to CSG representations, because the faces
of an object are not explicitly available. But it can be extended to CSG by using the
generate-and-test paradigm we encountered earlier, in the study of Boolean operations. We
generate points on primitive solid faces, which are guaranteed to be larger than the faces of
the object, and discard some of the points by classifying them with respect to the solid.
Only those points that classify on the boundary are processed.

The CSG algorithm differs from its BRep counterpart only by the addition of the
classification test implemented by function ClPtSol(). Note that it is always possible to
avoid points lying on edges or vertices of the solid in the face scans. If necessary, a point
can be moved randomly by a small amount, so that the perturbed point projects on the same
pixel and lies in the interior of a face. This simplifies significantly the representation and
combination of point neighborhoods in the point classifier. Many other techniques are
available for speeding up the computations—see [Rossignac & Requicha 1986].

In pseudo-code the algorithm is as follows.

GMCh7 5/10/99 7-5

Depth Buffering Algorithm for CSG

for each [x,y] do
Z[x,y] = BigNumber; // “Infinite” distance
I[x,y] = BackgroundColor;
end; // Initialization loop

for each face F of each primitive of solid S do
// Scan convert the primitive face
for each point P in a dense grid on face F do

[x,y] = ProjectOnScreen(P);
d = Norm(V-P);
// V is the viewpoint
// Function Norm computes the norm of a vector
if d < Z[x,y] then

if ClPtSol(P,S) == onS then
Z[x,y] = d; // Update buffers
N = NormalToSurface(P);
I[x,y] = Intensity(P,N,LightSources);
end; // Inner if

end; // Outer if
end; // Scan loop

end; // Face loop
Display(I[x,y]);
end; // Algorithm

7.1.3 Ray Casting

Ray casting can be used with any representation scheme, but is most attractive for CSG.
The basic idea is very simple: cast rays between the viewpoint and the screen pixels, and
compute the first point of intersection between each ray and the object to be rendered. From
information about this entry point determine the color to be displayed and write it to the
appropriate pixel. In pseudo-code the algorithm is as follows.

Ray Casting Algorithm for CSG

for each Pixel P[x,y] do
R = V - P; // Create ray from viewpoint V to pixel P
RwrtS = ClLineSol(R, S); // Classify ray against solid S
if RinS == 0 then I = BackgroundColor // No intersection
else

Q = FirstPoint(RinS); // Entry point into solid S
N = NormalToSurface(Q);
I = Intensity(Q, N, LightSources);
end; // else

Display(P, I); // Write color I on pixel P[x,y]
end; // Ray casting algorithm

Whereas the z-buffer algorithm scans object faces and projects their points on the screen,
ray casting scans the screen and computes the intersections of rays with the object’s faces.
Unlike z-buffering, ray casting requires line/face intersections, which can be difficult to

GMCh7 5/10/99 7-6

compute when faces lie in complicated curved surfaces. Experimental results have shown
that ray casting and depth buffering for CSG have comparable complexities, and that z-
buffering has advantages when the object’s surfaces are complex.

The efficiency of ray casting algorithms may be increased by a variety of techniques—see
[Roth 1982]. For example, we can sample the screen, and cast a ray for every eighth pixel,
say, in a scan line. If two consecutive rays hit the same face of the object we interpolate the
intensities for the in-between pixels without casting additional rays. If two faces are hit, we
subdivide the distance and cast a new ray half way between the two pixels, i.e., at a
distance of four pixels from the first. Figure 7.1.3.1 illustrates the procedure. For
simplicity, we assume the viewpoint is at infinity and the rays are parallel. We first cast
rays 1 and 2, which hit Faces 1 and 2. Next we divide by half the distance between rays 1
and 2, and cast 3, which hits Face 1. We interpolate colors between pixels 1 and 3. Next
we cast 4, which hits Face 2. We interpolate colors between 2 and 4. Finally we cast ray
5, which hits Face 1, and we assign the correct color to pixel 5. Note that this procedure is
not entirely safe, because we will miss a small protrusion or depression if it is sited
between two rays that hit a single face.

Edge

Screen

1

2

3

4
5

Face1

Face2

Figure 7.1.3.1 – Generating line drawings by ray casting.

Interestingly, this technique can be used to generate line drawings with hidden lines
removed. In essence, we are searching for edges, because we cast rays until we find two
successive rays, in adjacent pixels, that intersect different faces. If we turn on the pixels
where the transitions occur, we produce a suppressed hidden-line display. In Figure
7.1.3.1, rays 4 and 5 bracket the intersection edge of Faces 1 and 2. We turn on the pixel
that corresponds to ray 5. (Alternatively, we could have turned on the pixel of ray 4, or
done some anti-aliasing average.) Figure 7.1.1.2 was produced precisely by this technique,
using the ray casting algorithms of the PADL-2 system.

Photo-realistic images may be obtained by ray casting by using a sufficiently elaborate
Intensity function. Figure 7.1.1.3 was generated by ray casting on a CSG
representation, through a rendering module developed by the Ford Motor Corporation for
the PADL-2 system.

Ray casting is a relatively simple and inherently parallel computation, which can be done by
using special purpose hardware. Existing experimental systems are capable of rendering

GMCh7 5/10/99 7-7

complex objects in about 1 second [Voelcker et al ???]. A drawback of the ray casting
approach is its viewpoint dependence. A change of viewpoint requires a complete
recomputation. This implies that real-time rotation of shaded images produced by ray
casting on CSG is not feasible in the current state of the technology, even with special
hardware. In contrast, z-buffering hardware for BReps routinely supports real-time object
rotation. As noted earlier, computation of BReps is relatively slow, and therefore BRep-
based rendering also is slow when an object is displayed for the first time, because its
boundary must be evaluated. Once the BRep is computed, however, BRep display is fast
and meets real-time constraints.

7.1.4 Graphic Interaction

Defining objects in 3-D by using a 2-D screen is inherently difficult. The vendors of
CAD/CAM systems, as well as many researchers, have spent much time and money in the
design and implementation of graphic user interfaces (GUIs) for geometric modeling
systems. User interfaces are critical for the industrial acceptance of CAD/CAM software.
Today’s commercial systems have modern interfaces with the look-and-feel users have
come to expect, with liberal use of menus, point-and-click, and drag-and-drop operations.

Relative positioning is used to establish the 3-D poses of primitives and sub-objects.
Typically, one picks on the screen an entity or set of entities that serve as reference for
positioning others. For example, pick a planar face and position another plane parallel to
the first at a given offset distance. Defining poses through geometric constraints is intuitive
and very convenient.

A good GUI requires two key capabilities: picking reference geometric entities from a
screen, and creating other entities in constrained poses with respect to the references. The
implementation of graphic picking depends on the primary representation used in a system,
and on the type of display normally presented to the user. Most of the existing modeling
systems are based on BReps, and display objects as line drawings, with or without
suppressed hidden lines. The entities picked in such systems normally are edges. These
can be selected by using standard capabilities of graphic packages.

In CSG systems, edges cannot be picked directly because BReps are not available. Instead,
picking operations return faces, which can then be used as positional references, or as
means of defining edges or vertices, by intersection. Face picking on CSG representations
is implemented by casting a ray from the viewpoint to the mouse position, and classifying
the ray. Experimental GUIs based on CSG representations and face picking have been
demonstrated, and are comparable to their BRep counterparts [Encarnação & Requicha
199?].

Geometric constraint satisfaction is a complicated problem, beyond the scope of this
course. For a survey and introduction to the area, see [Hoffmann ???].

7.2 Mass Property Calculation

7.2.1 Applications and Definitions

Mass properties such as weight and moments of inertia are important in many applications,
as the following examples show. The most fundamental equation of dynamics, Newton’s
equation F = ma, requires knowledge of the mass of the moving object. The weight of an

GMCh7 5/10/99 7-8

object is critical in aerospace products such as those intended to fly inside satellites. The
weight is less critical but still very important for the automobile industry, since it has a
direct bearing on fuel consumption.

The center of gravity of an object is essential for stability studies. An object resting on a
horizontal plane is stable if a vertical line through the center of gravity intersects the interior
of the 2-D convex hull of the points of contact between the object and the plane—see
Figure 7.2.1 for a 2-D example, in which the convex hull of the contact points is 1-D.

CG

Contact
Convex Hull

Figure 7.2.1 – Stability check in 2-D

The dynamics of a rotating body is studied through equations of motion in which the
moments of inertia play a role analogous to that of mass in Newton’s equation. In addition,
the moments and principal axes of inertia of an object provide a coarse characterization of
its shape and can be used for discrimination in pattern recognition and computer vision.
Several object recognition algorithms, especially in 2-D, use moments as one of the
features that help distinguish the objects from one another.

Volume, mass, center of gravity, and moments of inertia of homogeneous objects are all
defined by integrals of the form

I = f (p) dv
V∫ ,

where p is a generic point of the solid V, dv is the volume differential, is the density, and
f is a polynomial function. The following table shows some examples.

Function f Entity
1 Mass M

x/M X coordinate of CG
x2 + y2 Moment of inertia about Z

xy Product of inertia

There is an area of numerical analysis that is concerned precisely with the calculation of
integrals. It is called numerical integration or numerical quadrature. However, numerical
integration typically addresses the problem of computing integrals in which the domain of
integration (the volumetric solid V) is geometrically simple and the function f is
complicated. In geometric modeling we normally face just the opposite situation of a
simple, polynomial f, but a complex domain V .

Integral evaluation is additive, in the sense that the integral over the union of two disjoint
domains A and B is simply the sum of the integrals over A and over B. This implies that

GMCh7 5/10/99 7-9

mass properties of objects represented by spatial decompositions can be computed by
evaluating the contributions of individual cells in the decomposition and adding the results.
If the cells have simple geometry, the integrals can be evaluated easily by closed form
expressions. As a simple example, let f = z, and let V be a unit cube aligned with the
principal axes and with left lower back vertex at p = (a, b, c); then

dx dy zdz
c

c +1

∫
b

b +1

∫
a

a +1

∫ =[(c +1)2 − c2]/2 = c + 1
2 .

Standard calculus texts show how to find the closed-form expressions for the other
integrals of interest for mass-property calculation over cubical domains. Therefore, spatial
occupancy enumerations, octrees and other decompositions into cubes or cuboids are
especially convenient for mass property calculation.

7.2.2 CSG Algorithms

The divide and conquer paradigm we have been exploiting for designing classification
algorithms for CSG does not work for mass property calculation. The mass properties of
two subtree objects cannot be combined to produce the mass properties of their Boolean
combination. For example, the volume of the intersection of two objects cannot be
expressed in terms of the volumes of the arguments.

Therefore we must convert CSG into other representations that are more suitable for mass
properties. We can evaluate the boundary and then use the BRep algorithms discussed in
the next section. But it is easier to convert CSG into an approximate spatial decomposition
and then add the contributions of each cell. There are several attractive options [Lee &
Requicha 1982]:

• Spatial Enumeration
• Ray Representation
• Octree

To construct an approximate spatial enumeration we classify every point in a dense 3-D
grid. If the point is in the solid we associate with it a filled cubical cell. Figure 7.2.2.1
illustrates this conversion procedure in a 2-D example. Instead of generating the points in a
regularly-spaced grid it is better to generate them randomly within each corresponding cell,
as shown in the figure. Randomness avoids systematic errors. Imagine, for example, that
the left boundary of the object in the figure was moved right by, say, one third of a cell
width. If the points were on a regular grid, all the cells would classify inside the solid and
we would make a relatively large error. With random points, some cells would classify in
and others out, giving a better approximation for the volume. This approach is known in
the numerical analysis literature as a Monte Carlo procedure. The error associated with a
Monte Carlo computation can be estimated by standard statistical techniques. Error
estimates are very useful to guide a user in the selection of a suitable level of subdivision
for the problem being solved. Smaller cells increase the accuracy of the result, at the
expense of increased computation. Unfortunately the complexity of the algorithm increases
linearly with the number of cells N , whereas the accuracy increases slower, with the square
root of N [Lee & Requicha 1982].

GMCh7 5/10/99 7-10

Figure 7.2.2.1 – Spatial enumeration conversion by point classification

For a ray representation we classify parallel rays (i.e. lines) in a 2-D grid to produce a set
of columns of square cross-section. Again, it is advantageous to cast rays randomly to
avoid systematic errors and to be able to use Monte Carlo error estimates. Figure 7.2.2.2
illustrates the procedure in a 2-D example. Ray representations are much more concise that
spatial enumerations, and are considerably faster to compute.

Figure 7.2.2.2 – Ray representation conversion by line classification. For clarity,
the classified lines within the columns are not shown.

Let us turn now to CSG to octree conversion. We need to classify entire cells, which may
be large. For a large cell, we cannot simply classify the cell center (or a random point in the
cell) because there is no guarantee that the whole cell will have the same classification as the
selected point. Misclassification of large cells will produce intolerable errors. Classifying
the vertices of a cell also is not safe. Unfortunately, to be sure that a cell is entirely inside or
outside a solid we have to do something equivalent to intersecting the cell with the solid and
evaluating the boundary of the result. This is too expensive for practical use, since many
cells have to be tested.

GMCh7 5/10/99 7-11

Figure 7.2.2.3 – Octree conversion by cell classification

(To be continued, but not this year...)

