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5. Solids

This chapter discusses 3-D solids. First we address mathematical modeling issues, and
then representations. We consider only single objects that are rigid and made of
homogeneous materials. Assemblies of several components and inhomogeneous objects
raise additional issues, which are briefly discussed in the section on Further Explorations.

Solids may be represented by using the various methods discussed in Chapter 3. Solidity
does not raise significant new issues for most of these methods. However, BReps of solids
deserve a more detailed treatment than that provided in Chapter 3, and are the main focus of
our representational discussion in this chapter.

5.1 Mathematical Models for Rigid and Homogeneous Solids

Most of the physical objects we encounter in real life are solids. Sometimes they can be
modeled as surfaces or curves. For example, in stress analysis, thin shells are usually
analyzed as if their thickness was effectively zero. But full 3-D models are required for
many applications. In addition, we often need to model not only solid objects but also
operations on them. For example, fabrication processes such as machining or welding are
important in CAD/CAM. The geometrical aspects of machining may be modeled as the
(regularized) difference between the initial state of the workpiece and the volume swept by
the cutter in its motion. Welding and other additive processes may be modeled by set
union.

Computationally-useful mathematical models for rigid solids should exhibit the following
properties.

Rigidity – This is easily achieved since the distances and angles among points of a set in
Euclidean space are fixed. Rigid motions preserve distances and angles. Therefore all the
instances of a set obtained from one another by rigid motions can be used to model a rigid
object in all its poses.

Finiteness – A physical object should have a finite extent. To ensure finiteness all we need
is to require that our sets be bounded.

Solidity – A model for a solid should be homogeneously 3-D, without dangling faces or
edges. We saw earlier that this requirement is met by regular sets in 3-space.

Closure under Boolean operations – Boolean operations applied to solids should produce
other solids. This has two important advantages. First, the results of a Boolean operation
can be used as inputs to other Booleans, and a solid model can therefore be incrementally
constructed by successive Boolean operations (perhaps interspersed with other operations).
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Second, subtractive and additive manufacturing-process models are guaranteed to produce
solids.

Finite describability – Point sets used to model solids should be describable by a finite
amount of data, to ensure that they can be represented in computers, which have finite
memories. (Here we assume that real numbers can be represented exactly in computers,
i.e., we use the Real Random Access Machine model of computation.) Polyhedra can be
described finitely by the coordinates of their vertices plus connectivity information that
specifies how vertices define edges and faces. But polyhedral models have too small a
domain. What we need are models akin to polyhedra, but with curved faces.

Boundary determinism – A solid should be modeled by a set that is unambiguously defined
by its boundary. This may seem a truism, but actually there are examples, such as the
Lakes of Wada discussed in [Hocking & Young 1988], in which three or more bounded
sets all have the same boundary. Sets that exhibit such behavior are counter-intuitive and
poor models for physical objects. In addition, without boundary determinism we will not
be able to use BReps, which are one of the most popular schemes for representing solids.

It can be shown that sets that are bounded, regular and semi-algebraic possess all the
desired properties, and therefore provide appropriate models for solids. These sets are
usually called simply r-sets. Intuitively, r-sets are curved polyhedra with faces lying on
algebraic surfaces. A more precise characterization follows.

A semi-algebraic half space is a set of points that satisfy an algebraic inequality

{p : f (p) ≤ 0}

where f is a polynomial. For example, the inequality

ax + by + cz + d ≤ 0

defines a planar half space, i.e., the portion of 3-space which lies to one side of the plane
defined by the equation

ax + by + cz + d = 0  .

A semi-algebraic set is the result of a finite number of (standard, unregularized) set-
theoretic operations on semi-algebraic half spaces. For example, a finite solid cylinder is
the intersection of three semi-algebraic half spaces. One of these is cylindrical and the other
two are planar, as shown schematically in Figure 5.1.1. (Each half space itself is
unbounded; only bounded portions of the half space boundaries are shown in the figure.)

Because –f is also a polynomial, and –f ≤ 0 is equivalent to f ≥ 0, we could have defined
semi-algebraic half spaces with inequalities of the form f ≥ 0. Furthermore, the intersection
of the two halfspaces f ≥ 0 and f ≤ 0 is the set defined by the equation f = 0, and this is an
algebraic set, or algebraic variety, defined earlier in Chapter 4. Therefore algebraic sets are
special cases of semi-algebraic sets.
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Figure 5.1.1 – A finite cylinder is the intersection of a
cylindrical and two planar half spaces

It can be shown that the interior, boundary and closure of a semi-algebraic set are also
semi-algebraic. Therefore, a finite number of regularized Boolean operations on semi-
algebraic sets produces another semi-algebraic set. This implies that a set defined by CSG
on semi-algebraic half space primitives also is semi-algebraic. Furthermore, if the
primitives are r-sets, the result also is an r-set, because regularized Booleans preserve
boundedness, regularity and semi-algebraicity. This implies that CSG representations in the
domain of r-sets are always valid.

A polyomial has a finite number of coefficients, and a semi-algebraic set is the result of a
finite number of (non-regularized) Boolean operations on a finite number of half spaces
defined by polynomial inequalities. Therefore, a semi-algebraic set is always finitely
describable.

It is also true, but not trivially proved, that a bounded semi-algebraic set in 3-space is
determined uniquely by its boundary, which is semi-algebraic as well. In addition, semi-
algebraic sets do not exhibit certain pathological behaviors found in more general classes of
sets. For example, there are sets such as “Alexander’s horned sphere” or “Antoine’s
necklace” [Hocking & Young 1988], that are homeomorphic to spheres, and yet the portion
of 3-space which lies inside each of them is not a topological ball. Such sets are said to be
“wildly imbedded” in Euclidean space. Semi-algebraic sets cannot be wildly imbedded;
they are always “tamely imbedded”.

In summary, r-sets are bounded, regular, semi-algebraic sets. They are rigid, finite, solid,
closed under Boolean operations, finitely-describable, and uniquely determined by their
boundaries. Therefore, they provide suitable models for rigid, homogeneous solid objects.

Some authors and systems prefer a more restricted class of models: r-sets that are bordered,
connected 3-manifolds. Such sets have boundaries that are themselves closed 2 manifolds.
Manifold models have computational advantages. For example, one can be sure that an
edge is shared by only two faces, and this simplifies certain algorithms. However,
manifolds are not closed under Boolean operations, as shown by the glued-cube examples
of Figure 4.1.3.2.

R-sets need not be connected. For example, two disjoint cubes are an r-set. These cubes
are considered rigidly linked, and move together when rigid motions are applied to them. In
typical manifold-based systems, the two cubes are considered two distinct objects that can
be “assembled”, although they need not even be near each other. The two objects can be
moved together by applying a rigid motion to the assembly. Solids or assemblies made out
of components that are not in contact with each other are physically counter intuitive, but
cause no significant mathematical or computational difficulties.
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5.2 Boundary Representations for Solids

Boundary schemes are the most widely used representations for solids. The following
sections discuss basic concepts in boundary representations, and then focus on validity
issues, and how to help construct valid representations by means of so-called Euler
operators.

5.2.1 Boundary Graphs

Essentially, a BRep is a graph structure with nodes corresponding to faces, edges and
vertices in a cell decomposition of the solid’s boundary. Links between the nodes express
connectivity information. Figure 5.2.1.1 provides a simple example. The BRep graph is
shown only partially.

(a)

Solid

Face1 Face2 Face3 Face4 Face5

Edge5Edge2

Vertex3Vertex2

(x,y,z)

Combinatorial
Stucture

Metric
Information

 (b)

Figure 5.2.1.1 – A pyramid (a) is represented by a graph (b)
containing face, edge and vertex nodes.
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Observe that the top levels of the graph in the figure contain only connectivity information.
Together they constitute the combinatorial structure of the representation. The vertex
coordinates are the metric information associated with the representation. In the geometric
modeling jargon, the combinatorial structure is often called the topology, and the metric
information the geometry.

In the representation shown in the figure, the faces are all simple polygons, without holes.
When the polygons are all of the same type, for example, all quadrangles, or all triangles,
the BRep is called a tessellation. Tessellations with triangular faces are called
triangulations. Tesselations are used extensively in hardware accelerators for rendering and
other applications.

Faces with holes are used by many BRep modelers. They normally are represented by
introducing an additional level in the combinatorial structure between faces and edges.
Edges are grouped into closed circuits or loops, and face nodes point to loop nodes, which
in turn are linked to their associated edge nodes.

For polyhedral objects it is usually clear what is meant by a face or an edge. But for curved
objects intuition alone does not suffice. For example, what are the faces and edges of the
object shown in Figure 5.2.1.2? For solids bounded by free form or sculptured surfaces, it
is usually impossible to determine by inspection which portions of the boundary are the
actual faces in the underlying representation.

Figure 5.2.1.2 – What are the faces?

Faces and edges are best viewed as representational artifacts that must be carefully defined
by the designers of BRep schemes. First, let us assume that there is a set of primitive
surfaces (for example, planes and natural quadrics) for a boundary scheme. Then, typical
face definitions should satisfy the following conditions.

1. A face is a subset of the solid’s topological boundary.
2. The union of all the faces equals the boundary of the solid.
3. Each face is a subset of only one primitive surface instance.
4. A face is homogeneously 2-D, it has no dangling vertices or edges.
5. A face is a connected se
6. Faces are quasi-disjoint, i.e., meet only at edges or vertices.
7. A face is the largest subset of the boundary that satisfies all the previous conditions
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It can be shown that, under mild conditions, faces that satisfy these conditions are defined
uniquely [Silva 19??]. This does not imply that the corresponding BReps are unique. Two
representations for the same object may still differ simply because of a different ordering of
entities (permutational non-uniqueness), or different poses for the object (positional non-
uniqueness). The faces just defined are sometimes called c-faces, because they are
connected. Not all schemes use c-faces. For example, the PADL-1 system used so-called
b-faces which could have overlaps, and PADL-2 used m-faces, which need not be
connected.

Faces of curved objects are represented as discussed in Chapter 4. Typically this involves a
representation for a host surface or patch, a set of bounding edges, and neighborhood
information. Host surface representation involves additional metric information (or
“geometry”) beyond vertex coordinates.

Edges also must be defined precisely. Typical BRep schemes use edges that satisfy the
following conditions.

1. An edge is a subset of a face’s boundary.
2. The union of all the edges associated with a face equals the face’s boundary.
3. Each edge is a subset of the intersection of two primitive surface instances.
4. An edge is a compact, connected 1-manifold. (Some schemes require that an edge be

homeomorphic to a line segment.)
5. Edges are quasi-disjoint, i.e., meet only at vertices.
6. An edge is the largest subset of the boundary of a face that satisfies all the previous

conditions.

Often the intersection of two primitive surfaces crosses itself and therefore is not a 1-
manifold. Then, the intersection must be segmented to satisfy the conditions just listed.

Normally, edges are parameterized and represented as explained in Chapter 4.
Approximations, for example by splines, are often used. This can cause delicate numerical
problems, because points on the edge do not necessarily lie in the surfaces whose
intersection creates the edge. Approximate representations in the (u,v) parametric spaces of
the surfaces involved are even more pernicious, because each edge is represented twice,
and the two representations do not coincide exactly.

Many BReps contain additional information that is redundant but important for algorithm
efficiency. For example, face normals may be stored, or edges may have back pointers to
the faces which share them. Additional links are used to facilitate graph traversal. An
example of a heavily linked BRep is the winged edge structure due to Baumgart in the mid
1970s, which is the intellectual root of many of the data structures in use today.

We describe the basic winged edge scheme for manifold objects with the help of the
example of Figure 5.2.1.3. Edges are oriented by (arbitrarily) selecting for each a start
vertex and an end vertex. Edges are depicted in the figure as vectors, to indicate their
orientation. By convention, we orient each face clockwise, as seen by an observer outside
the solid. The orientation of faces f1 and f2 are shown by the curved arrows in the figure.
Since the solid is a manifold, each edge will belong exactly to two faces. In one of these
faces, called the clockwise face (cw), the edge orientation agrees with the face orientation.
In the other adjacent face, called the counter-clockwise face (ccw), the edge and face
orientations are opposite. Therefore, the cw face of e1 is f1, and its ccw face is f2.
Following the orientation of f1, the next edge to e1 in its cw face is e2. This edge is called
the next clockwise edge (ncw) of e1. Similarly, the next counter-clockwise edge (nccw) of
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e1 in its ccw face f2 is e4. Each edge in the winged edge structure points to its ncw and
nccw edges. It also points to its two adjacent faces (not shown in Figure 5.2.1.4).

e1

e2

e3
e4

e5

e6f1
f2

Figure 5.2.1.3 – Edge and face orientations for a cube.

e1 e2 e3
e4 e6

f1 f2

e5

cw ccw

ncw

nccw

nccw

Figure 5.2.1.4 – A portion of the winged edge structure for a cube.

A face in the winged edge structure points to only one of its edges, as shown in Figure
5.2.1.4. The face-edge pointer is labelled to indicate if the face is the cw  or ccw face of the
edge. This information is sufficient to efficiently retrieve all the edges in a face. For
example, start with edge e1 of face f1. The next edge, e2, of f1 is found by following the
ncw pointer of e1. To get the next edge, observe that f1 is the ccw face of e2. Therefore, we
follow the nccw pointer of e2 and obtain e6. Continuing this procedure we get all the edges
of f1 in their correct order. Winged edge structures are attractive because they are relatively
concise, and provide efficient means for traversing the boundary by following pointers.

The winged edge structure was designed originally for manifold objects and for simply-
connected faces (i.e., faces without holes). It can easily be generalized to multiply-
connected faces by introducing in the structure another level that corresponds to the
separate edge loops that bound the faces. It can also be generalized to non-manifold
objects, although it becomes considerably more complicated.

5.2.2 Validity of BReps
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The validity of BReps is a complicated issue. For concreteness and simplicity, we will
consider a specific representation scheme: boundary triangulation for polyhedral objects.
(The discussion is easy to generalize to other BRep schemes.) The domain of the scheme is
the set of all polyhedral r-sets. The faces are triangles and the edges are line segments. In
addition, faces have the face properties 1-7, and edges have the edge properties 1-6 of
Section 5.2.1. This BRep scheme is a simplified version of the scheme illustrated in Figure
5.2.1.1. To convert the representation in the figure to the triangulation scheme, the base of
the pyramid would have to be split into two triangles by introducing an additional edge.
The validity conditions for the boundary triangulation scheme are the following:

1. Each face must have exactly 3 edges, otherwise it will not be a triangle.
2. Each edge must have exactly two vertices, otherwise it will not be a line segment.
3. The edges associated with a face must form a loop or closed circuit, to ensure that they

enclose a 2-D area. This condition is satisfied if and only if each vertex in a face
belongs exactly to two of the face’s edges.

4. The faces must form one or more closed surfaces or shells, to ensure that they enclose a
3-D volume. This condition is satisfied if and only if each edge belongs to an even
number of faces. (Had we restricted the domain to manifold polyhedra, an edge would
have to belong exactly to two faces.)

5. Each 3-tuple of coordinates must correspond to a distinct point in 3-space.
6. Edges must either be disjoint or intersect at a common vertex, otherwise there would be

missing vertices in the representation.
7. Similarly, faces must either be disjoint or intersect at a common edge or vertex.

These conditions are easy to establish intuitively, and can be derived mathematically.
Conditions 1-4 are combinatorial. They are easy to check algorithmically by counting nodes
or links in the boundary graph. In contrast, conditions 5-7 are metric, i.e., they involve
coordinates of vertices and equations of lines and planes. They are computationally
expensive to check, because they require intersection tests.

We conclude that validity checking for BReps is not computationally attractive, and should
be avoided. Most geometric modeling systems attempt to imbed the required validity
conditions in the algorithms used to construct the representations, instead of testing
representational validity after the BReps are built. In the next section we discuss a set of
constructors that help ensure BRep validity.

Some modeling systems also provide users with operations, sometimes called tweaking,
that manipulate boundaries directly. For example, in Figure 5.2.2.1 a sharp edge is
chamfered, i.e., replaced by a face. This operation can be implemented by Boolean
subtraction, but many BRep systems strive for higher processing speed, and simply
modify the boundary graph directly, by adding a new face, with associated edges and
vertices. The mathematical meaning of tweaking operations is not always well defined, and
many systems do not ensure that such operations produce valid solids.
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Figure 5.2.2.1 – A chamfering operation.

5.2.3 Euler Operators

The Euler operators for BRep manipulation were introduced in the geometric modeling
literature by Baumgart in the mid 1970s. They were originally used in mathematics
textbooks to prove Euler’s theorem, which states that the Euler characteristic χ of a closed,
connected, compact, orientable 2-manifold satisfies the equation

= f − e + v = 2 − 2h ,

where f, e and v denote the number of faces, edges and vertices, and h is the number of
holes or handles of the manifold.  This expression assumes that faces are simply
connected, i.e., have no holes. If there are s connected surfaces, or shells, Euler’s theorem
can be applied to each connected component:

f1 − e1 + v1 = 2 − 2h1

f2 − e2 + v2 = 2 − 2h2

Summing all of these expressions yields

f − e + v = 2s − 2h ,

where f, e, v and h denote total numbers. The Euler characteristic is a topological property
of the surface. It is invariant under homeomorphisms, independent of how the surface is
decomposed (under mild conditions that decompositions must satisfy), and depends only
on the number of shells and handles.

To discuss Euler operations we need to introduce a BRep scheme more general than the
boundary triangulation scheme of the last section. Now faces and edges may be curved,
and they are open, in the sense that a face does not include its bounding edges, and an edge
does not include its bounding vertices. We require that open faces and edges be
homeomorphic to open disks and open line segments, respectively. Otherwise, faces and
edges have the properties listed in Section 5.2.1, just like their counterparts in the
triangulation scheme. The new representation is called a cell decomposition of the
boundary.
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Euler operators manipulate cell decompositions. To describe what they do, it is convenient
to draw a cell decomposition of a closed surface in the plane. The result is called a Schlegel
diagram, and can be constructed as follows. Suppose that we have a cubical surface made
of an elastic material. We can imagine a balloon in which we drew the edges of a cube. We
cut a slit in the back face, between two points a and b, as shown in Figure 5.2.3.1, and
then we open the surface and force it to lie in a plane.

e1

e2

e3

e4

a b

Figure 5.2.3.1 – The surface of a cube with a slitted back face.

e1

e2

e3

e4
a b

q

p

Back Face

r

Figure 5.2.3.2 – Schlegel diagram for the surface of a cube.

The result is shown in Figure 5.2.3.2. Observe that the top and bottom curves both
correspond to ab, and therefore must be identified. This means that points p and q in the
figure are actually the same point. The arrows in the figure serve to indicate how point



GMCh5 3/2/99 5-11

correspondences are established. Thus, if the arrows were drawn in opposite directions, p
would be identified with r instead of with q. The back face of the cube is mapped onto the
region bounded by the two circular arcs and the four labelled edges. After the cut, we
deformed the surface elastically, and therefore the planar diagram is homeomorphic to the
surface with a slit. If we identify points as indicated above, the Schlegel diagram is
homeomorphic to the original, uncut surface. The outer, circular edges ofen are not drawn
in a Schlegel diagram, and the back face is then understood to be the remainder of the
plane.

Now we will successively remove elements of this cell decomposition, as shown in the
following figures. In Figure 5.2.3.3 we remove the bottom, front edge and merge the front
and the bottom face. Note that the resulting, merged face is no longer planar. Intuitively,
we can think of these operations as erasing lines drawn on a balloon. The operation
illustrated in this figure is called kfe, for “kill face and edge”.

kfe

Figure 5.2.3.3 – Removal of an edge and a face

Figure 5.2.3.4 – The result of another kfe (left) and a resulting face (right).

Another application of kfe yields the result shown on the left, in Figure 5.2.3.4. The
resulting cell decomposition contains an unusual face, shown on the right in the figure. The
points on the dashed edges do not belong to the face. We can open up the face at the
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vertical, intruding edge, and deform the face homeomeorphically into an open disk.
Therefore it is a valid cell.

Two more kfe operations produce the result shown on the left of Figure 5.2.3.5. Now we
need a new operation, termed kev, for “kill edge, vertex”, which produces the
decomposition shown on the right in the figure.

kev

Figure 5.2.3.5 – Applying a kev operation.

Three more kev operations produce the result shown on the left of Figure 5.2.3.6. Observe
that we are drawing explicitly the back face, to emphasize that there are two faces in the
decomposition. Applying kfe we produce a decomposition with a single face, as shown on
the right in the figure.

e1

e2

e3

e4
a b

Back Face
e1

e3

e4
a b

Back Face

kfe

Figure 5.2.3.6 – Applying kfe to end out with a single face.

Now we remove two more edges and vertices via kev operations and generate the
decomposition shown on the left of Figure 5.2.3.7. Here we show explicitly the two
vertices associated with the remaining edge.
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e3

a b

Back Face

a b

Back Face

kev

v1
v1v2

Figure 5.2.3.7 – Generating a single face and single vertex decomposition.

If we remove this edge and one vertex, via kev, we end out with a decomposition that
contains only one face and one vertex, as shown on the right. This diagram corresponds to
a spherical balloon in which only one vertex has been drawn. The face therefore is
topologically equivalent to a sphere minus one point, which is a valid cell because it is
homeomorphic to an open disk. To see that this is true, project a sphere onto a plane by
using the North pole as the center of projection. Figure 5.2.3.8 illustrates the analogous
procedure in 2-D. It is clear that points on the sphere map one-to-one onto points on the
plane, and so do open sets. Therefore the mapping is a homeomorphism, and the sphere
minus a point (the North pole) is topologically equivalent to the whole plane, which is itself
equivalent to an open ball. If this last statement is not obvious, map the interval [0,1)
through the function f (x) = x / (1− x) , which is a homeomeorphism since it establishes a
one-to-one correspondence between points and also between open sets—see Figure
5.2.3.9. The result is a semi-infinite line starting at the origin. Now, if we apply a similar
mapping in every direction emanating from the origin, the image of the unit open disk
centered at the origin is the entire plane.

Figure 5.2.3.8 – Projecting a sphere on a plane using the North pole as the viewpoint.

Finally, we can make the single-face, single-vertex object didappear completely by
invoking the ksfv operator, which kills a face a vertex and a shell, i.e., a connected
surface.

The destructive operators introduced above have constructive inverses. We reverse the
destruction procedure described earlier, and build the cubic surface decomposition by
beginning with the empty set and applying msfv, “make shell, face and vertex”. Then we
apply mev, “make edge and vertex”, to obtain the decompositions shown in Figure
5.3.2.7. We continue with several applications of mev and mfe, “make face and edge” until
we obtain the original decomposition.
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f (x)

0 1
Figure 5.2.3.9 – Mapping a line segment into a semi-infinite line.

The make and kill operators are called Euler operators . Observe that the operators do not
change the Euler characteristic of the surface. For example, mfe increases the number of
faces and the number of edges by one. Thefore, the expression = f − e + v  remains
invariant. (It is this property that makes the operators useful in the proof of Euler’s
theorem.)

To be able to construct tori and other surfaces with holes we need an additional pair of
operators. Consider the two blocks shown on the left in Figure 5.2.3.10. We can glue
them as shown on the right in the figure. To do this we kill the bottom face of the top block
(but keep the edges that bound that face), and introduce an extra edge on the top face of the
bottom block. The extra edge is needed to ensure that the new (open) face of the joined
cubes is homeomorphic to an open disk, and therefore is a valid cell. In addition, we
change the number of shells from 2 to 1, which causes a decrease of 2 in the generalized
Euler’s formula = f − e + v = 2s − 2h . Increasing the number of holes by one has the
same effect on the Euler characteristic, and the operator is usually called kfmeh, for “kill
face and make edge and hole”, for reasons that will be apparent after we present below
another example of its application.. It corresponds to a mathematical operation on
manifolds called the connected sum, which glues two manifolds to produce another
manifold.

The operator kfmeh can also be applied to a single shell, for example to connect two
opposite faces of a cube, as shown in Figure 5.2.3.11. Initially we draw the two small
shaded faces within the top and bottom face of the cube (with the necessary extra edges).
Then we kill the small faces and connect the associated edge loops by a new vertical face,
analogous to a cylinder. We need to add an extra edge to the new face to ensure that it is
homeomorphic to an open disk. The outcome of the operation has one less face than the
original, one more edge, and a through hole. In this case, kfmeh does precisely what its
name implies.
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New Edge

kfmeh

Figure 5.2.3.10 – Glueing two shells.

New Edge

kfmeh

Through Hole

Figure 5.2.3.11 – Making a through hole.

The Euler operators provide convenient means for constructing complex BReps, and help
ensure that they are valid. The early literature on geometric modeling stated erroneously that
the Euler operators guarantee the validity of BReps. It is easy to see that this claim is false.
Assume that the dimpled cube shown in Figure 5.2.3.12 was built trhough Euler
operations. By simply changing the coordinates of one vertex we obtain the set of self-
intersecting faces shown on the right, which does not correspond to a valid BRep.
Therefore, a representation constructed with Euler operators may or may not be valid,
depending on the specific values of the metric data assigned to the faces, edges and
vertices.  

The most important properties of Euler operators were established by Mäntylä [Mäntylä
1984]. He showed that it is always possible to assign metric data to a BRep constructed via
Euler operators so that the BRep is valid in the domain of orientable manifold objects.
Conversely, any valid manifold BRep can be constructed by a sequence of Euler
operations. In essence, Euler operators ensure that the combinatorial conditions for validity
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are satisfied. The resulting BRep may or may not be valid, depending on the metric data
associated with it. Unfortunately, metric conditions are expensive to check.

Figure 5.2.3.12 – Changing the coordinates of one vertex may invalidate a BRep.


