
GMCh3 2/1/00 3-1

GEOMETRIC MODELING: A First Course

Copyright © 1995-1999 by Aristides A. G. Requicha
Permission is hereby granted to copy this document for individual student use at USC,
provided that this notice is included in each copy.

3. Representations

Representations were defined in the Introduction as symbol structures that correspond to
(mathematical models of) physical entites. Our focus in this course is on mathematical
models and computer representations that capture the shape of physical objects. This
chapter discusses fundamental properties of representation schemes, and outlines the
known approaches for representing geometric entities.

3.1 Representation Schemes

This section introduces basic notions and properties of representations through some
simple examples. First we need a few definitions. A polygon is a 2-D region of the plane
bounded by line segments called edges. Adjacent edges cannot be collinear. A vertex of a
polygon is a point of the polygon’s boundary where two adjacent edges meet. Two edges
may intersect only at a common vertex. That is, self-intersecting figures are not considered
polygons in this course. A simple polygon is a polygon without holes. Figure 3.1.1 shows
examples.

Figure 3.1.1 – A simple polygon with six vertices and six edges (left),
 a polygon that is not simple because it has a hole (center),

and a figure that is not a polygon because it self-intersects (right).

A set X is convex if the line segment pq lies entirely within X for every pair of points p, q
of X . Figure 3.1.2 shows a set that is not convex because it does not contain entirely a line
segment that connects two of the points of the set.

GMCh3 2/1/00 3-2

•

•

p

q

 Figure 3.1.2 – A polygon that is not convex

Given any set X , one can always construct infinitely many other sets that enclose X and are
convex. The smallest such set is called the convex hull of X . Figure 3.1.3 shows a set of
discrete points in the plane and its convex hull. Note that the convex hull of a set of discrete
points is a convex polygon whose vertices are a subset of the given points.

•
•

• • •

•

•

•

Figure 3.1.3 – A set of discrete points and its convex hull

Suppose now that we want to represent in a computer simple polygons. The set of objects
to be represented—in our example, the set of all the simple polygons—is called the domain
of the representation scheme. We propose a scheme, which we call Scheme 1, defined as
follows.

1. For each polygon, construct the set of its vertices, in arbitrary order.
2. For each vertex, construct a pair of real numbers with the coordinates of the vertex in

some agreed frame.
3. Make a list (i.e, a sequence of elements) containing all these pairs of reals.

Therefore the symbol structure used to represent a polygon in Scheme 1 is simply a list of
pairs of real numbers:

x1,y1() x2 ,y2() xn , yn()() .

This defines the format or syntax of the representation. Any representation obeying this
syntax is called syntactically correct.

The meaning or semantics of a representation must also be defined, by means of a
mathematical rule that associates the symbol structures to geometric entities. Each pair of
reals corresponds to a point. Since points are the lowest-level geometric entities in this

GMCh3 2/1/00 3-3

representation, we refer to them as primitives. A specific point, also called a primitive
instance, is represented by a pair of parameters, which are its coordinates.

The list of pairs is a structured representation, constructed with representations of primitive
instances. Now we need to provide a rule for associating the list to a polygon. But this
cannot be done unambiguously, as shown in Figure 3.1.4.

p 1

p 2

p 3p 4

p 5

p 1

p 2

p 3

p 4

p 5

Figure 3.1.4 – Two distinct simple polygons with the same vertices.

The figure shows that a representation in this scheme may correspond to several distinct
objects. We say that the scheme is ambiguous or incomplete. Representational ambiguity
has unpleasant consequences. Suppose that we wanted to write an algorithm for computing
the area of a polygon represented by the vertices shown in Figure 3.1.4. Should the
algorithm return the area of the polygon on the left of the figure, or the area of the polygon
on the right? We cannot write an algorithm to reliably compute the area, because we do not
know which polygon is being represented. An incomplete representation does not contain
enough information to designate a unique geometric object, and cannot support the
automatic computation of all the geometric properties of the object.

Now let us define Scheme 2 by modifying slightly Scheme 1. We keep the same rule for
constructing vertex-list representations, but restrict the domain to convex polygons.
Because the convex hull of a set of points is uniquely defined, a vertex list corresponds to a
single convex polygon. Therefore Scheme 2 is unambiguous.

Suppose that we construct a syntactically correct representation in Scheme 2, i.e. a list of
real-number pairs, that corresponds to the points shown in Figure 3.1.3. This list violates
the representation construction rules given above, because some of the points are not
vertices of the convex-hull polygon, and only vertices of a polygon should appear in its
representation. The representation is semantically incorrect, or invalid. The validity of
representations in Scheme 2 is not easy to establish. In essence, it requires that we compute
the convex hull of the set of points, and then verify that all the given points are vertices of
the hull.

We consider again the entire domain of simple polygons, but change the rules for
constructing representations, and define Scheme 3 as follows. We now require that the
vertices be listed in consecutive order, as one follows the boundary of the polygon. The
two polygons of Figure 3.1.4 have distinct representations in Scheme 3. The left polygon
is represented by the list

p1 p2 p3 p4 p5() ,

whereas the representation for the right polygon is

GMCh3 2/1/00 3-4

p1 p2 p4 p3 p5() .

A list of consecutive vertices is equivalent to an edge list. For example, the vertex list for
the left polygon of Figure 3.1.4 is equivalent to

p1p2 p2p3 p3p4 p4p5 p5p1() .

A planar polygon is completely determined by its edges, and therefore Scheme 3 is
unambiguous.

These examples show that minor modifications in the domain or in the representation
construction rules may change drastically the properties of a representation scheme.

We have seen several schemes for representing polygons in terms of their vertices. Are
there other significantly different schemes? The answer is yes. Scheme 4 provides an
example. Its domain is the set of convex polygons. But now we represent a polygon by a
list of planar half spaces. A half space is the region of a plane that lies on one side of an
infinite straight line. Figure 3.1.5 shows a half space primitive and its representation by a
three-tuple (d, , s). Here d is the (perpendicular) distance between the origin and the line,
or, equivalently, the length of the normal vector v , shown in the figure. The second
parameter is the angle the normal vector makes with the x axis. And s is a sign that
indicates the side of the line on which the half space lies. A positive s implies that the
“material” side is in the direction of v ; a negative sign denotes material on the opposite
direction to v .

Half
Spacev

s = +

Figure 3.1.5 – Representation for a primitive half space.

The polygon that corresponds to a list of half spaces is simply the (set-theoretic)
intersection of the half spaces. Figure 3.1.6 provides an example. The result is always a
convex polygon because each half space is a convex set, and it can be shown that the
intersection of convex sets also is convex. Scheme 4 is unambiguous, because the
intersection defines a unique set.

GMCh3 2/1/00 3-5

Figure 3.1.6 – A convex polygon defined as the intersection of five half spaces.

The examples presented above show that geometric objects may represented in many ways,
and that the following are important properties of representations and schemes.

• Domain – Which objects can be represented in the scheme? The domain is the geometric
coverage of a scheme.

• Validity – Does a representation correspond to (at least) one object in the domain?
Computation on invalid data is meaningless, and often causes system crashes.

• Non-ambiguity – Does a valid representation correspond to only one object in the
domain? Non-ambiguity, or completeness, is crucial for the automatic computation of
properties of the represented objects.

The following additional properties also help to characterize representation schemes.

• Uniqueness – Does an object in the domain have a unique representation in the scheme?
Uniqueness greatly facilitates testing objects for equality.

• Conciseness – How large are the representations? Representations in verbose schemes
consume large amounts of memory, and are difficult to transmit rapidly in distributed
environments.

• Ease of construction – How hard is it to construct a valid representation?
Representations in verbose schemes with complex validity conditions are difficult to
construct, especially by humans.

• Suitability for applications – Are there good application algorithms that operate on the
representations of the scheme? Experience shows that representation schemes are not
uniformly suitable for all applications. Many modeling systems use multiple
representation schemes, and convert between them as needed, depending on the
specific computations they support.

Representations often contain redundant data. For example, we could represent simple
polygons in a Scheme 5 by listing the polygon’s edges, with each edge represented by two
vertices. This representation contains two copies of each vertex, and therefore is redundant.
Redundancies are often introduced in representations to facilitate certain computations.
They can be considered as a manifestation of the trade-off between storing and
recomputing, which is ubiquitous in Computer Science. If we find that certain data are
often needed by our algorithms, we may decide to attach these data to the representations
rather than to recompute them as needed. Redundancy implies relationships or constraints

GMCh3 2/1/00 3-6

between the data stored, and complicates the analysis of the validity of a representation,
because one has to ensure that the implied constraints are satisfied.

Storing several representations for each object, in different schemes, is an extreme form of
redundancy. This is sometimes done in geometric modeling systems that support a variety
of applications, to ensure that each application has access to the most suitable
representation. Two unambiguous representations, in different schemes, are consistent if
they correspond to the same object. In a multiple representation system it is crucial that
representational consistency be maintained. Often this is achieved by invoking
representation conversion algorithms. A conversion algorithm is called consistent if it
guarantees that its output representation is consistent with its input representation.
Consistency maintenance in systems that offer powerful object editing facilities is a major
problem.

3.2 Methods for Representing Geometric Entities

Here we discuss known aproaches for constructing representation schemes for geometric
objects. It is useful to classify them into several categories that correspond to the
subsections below, although there is some overlap between categories.

3.2.1 Primitive Instancing

Every scheme has primitives, which must be instantiated to construct structured
representations. Primitives may be low level, e.g. the points used to represent polygons in
the previous section. But they also may be high level. For example, many modeling system
have solid primitives such as blocks and cylinders.

A primitive is a parameterized geometric entity, typically represented by a tuple containing a
type code (e.g. a string ‘point’ or ‘block’) followed by several real numbers that
correspond to specific parameter values. For example, a solid block aligned with the
principal axes can be represented by the 4-tuple

(‘block’, XSize, YSize, ZSize),

where the last three parameters are real numbers that define the dimensions of the block, as
shown in Figure 3.2.1.1.

GMCh3 2/1/00 3-7

XSize

YSize

ZSize

x

y

z

Figure 3.2.1.1 – A primitive block in standard pose.

To represent a block in a general pose one can add a fourth parameter, which is a
transformation that takes the block from its standard pose, shown in Figure 3.2.1.1, to its
actual pose.

Pure primitive instancing schemes, which have no structured representations, are not very
attractive. They are akin to a language that has words but no sentences. They tend to have a
small domain. In addition, each primitive type requires special-case algorithms for
evaluating its properties. Primitive instancing is important primarily in the context of other
schemes that not only instantiate primitives but also combine them into higher-level
structures.

3.2.2 Spatial Decomposition

Here the idea is to partition space into regions called cells, and to enumerate those cells
which are filled with material and therefore constitute the object being represented.
Decompositions into regular, fixed-size cells are called spatial enumerations. In 2-D, the
primitive square cells are sometimes called pixels (an abbreviation for “picture elements”),
and in 3-D, cubical cells are called voxels (an abbreviation for “volume elements”). Regular
decompositions usually represent only “staircase” approximations of the desired objects.
For reasonable accuracy, the decompositions become very large.

Hierarchical decompositions with cells of varying sizes are smaller than their regular
counterparts, because small cells are used only where required for an accurate
approximation. 2-D quadtrees are used extensively in image processing. Figure 3.2.2.2
shows a simple 2-D polygon with sides parallel to the principal axes, and its quadtree.

GMCh3 2/1/00 3-8

0 1

23

0 1 2 3

0 1 2 3

0 1 2 3

Figure 3.2.2.1 – A 2-D object and its quadtree.

In the figure, quadrants are numbered 0, 1, 2, 3 in clockwise order, as shown at the top.
The quadtree has three types of nodes. Grey nodes correspond to cells that are neither
completely full nor completely empty. Such cells must be subdivided. Black nodes are full
and white nodes are empty. The root node of the quadtree corresponds to the entire space,
i.e., to a square box that encloses the object. The quadtree may be constructed by the
following (conceptual) procedure. If a cell is full or empty, mark it black or white,
respectively; otherwise mark it grey, subdivide it, and recurse.

Quadtrees are the 2-D analogs of binary search trees, and can be used for spatial search.
There is a large body of literature on algorithms for processing quadtrees [Samet 199?].
The 3-D analogs of quadtrees are called octrees. Both quadtrees and octrees are special
cases of k-d trees, which are studied in the theoretical computational geometry literature.
These are trees with k branches per grey node, and with cells of dimension d.

Issues of completeness and validity are trivial for most spatial decompositions. For
example, a spatial enumeration is always valid and unambiguous.

Decompositions into cells with curved boundaries that follow closely the object’s shape
also are useful, for example for finite-element analysis. (Finite element analysis, or FEA, is
a numerical technique for solving partial differential equations over complicated geometric
domains by subdividing the domain into cells, and approximating the solution within each

GMCh3 2/1/00 3-9

cell by a polynomial function.) A set of cells that decomposes an object is called a mesh in
the FEA field.

3.2.3 Constructive Methods

A constructive representation defines an object by a sequence of operations for constructing
the object. The most common constructive representations are called CSG (for Constructive
Solid Geometry), and use Boolean (set-theoretic) operations. The operation sequence is
typically stored as a tree. Figure 3.2.3.1 shows a simple 2-D object and its CSG tree, built
upon 2-D solid primitive rectangles and disks. The object in the figure is constructed as a
union of two rectangles, from which a disk is subtracted.

Figure 3.2.3.1 – CSG in 2-D.

The Boolean operations used in CSG are slightly modified set-theoretic union, intersection
and difference. To see why the modifications are needed, consider the example of Figure
3.2.3.2. The L-shaped object A is intersected with the rectangle B. Although both A and B
are 2-D solids, their set-theoretic intersection shown on the right is not. It has a dangling
edge.

A

B

Figure 3.2.3.2 – The intersection of two solids need not be a solid.

Solidity is preserved if we define a regularized intersection operation as follows. First we
perform the conventional intersection. Then we take its interior and find the closure of the
interior. Interior and closure are defined rigorously in a branch of mathematics called
topology. Here an intuitive understanding suffices. The sequence of operations which
consists of interior followed by closure is called regularization. Figure 3.2.3.3 illustrates

GMCh3 2/1/00 3-10

the regularization procedure for the intersection of Figure 3.2.3.2. The dangling edge has
no 2-D interior and therefore disappears, as shown at the center. The interior here is simply
a square that does not include its borders. Closure adds the boundary to a set, and therefore
produces the closed square shown on the right, which is a solid.

Interior Closure

Figure 3.2.3.3 – Regularized intersection.

Regularized union, difference and complement are defined similarly. A set that equals the
closure of its interior is called regular. Regular sets are used to model solids because they
have no dangling edges or faces, or other non-solid characteristics. We see that regularized
operations applied to regular sets produce other regular sets. In other words, regular sets
are algebraically closed under regularized Boolean operations. This is important, because it
implies that CSG representations for regular sets are always valid, since a sequence of
regularized Boolean operations on regular primitives produces another regular set.
Algebraic closure under the construction operations ensures that the result of an operation
in a modeling system is valid, and can serve as input for further operations. Thus complex
objects may be defined by successive operations on simpler ones.

Union

Difference

Result

Figure 3.2.3.4 – Non-uniqueness of CSG

CSG representations are non-unique. For example, the L-shaped object on the right in
Figure 3.2.3.4 may be defined as a union or as difference of two primitive rectangles, as
shown on the left. Deciding whether two representations correspond to the same
object—sometimes called the same-object detection problem—is not easy. In particular, the

GMCh3 2/1/00 3-11

null-object detection problem, which consists of checking if a representation corresponds to
the null object, is non trivial. Note that to detect a collision or interference between two
objects A and B it suffices to check if the intersection of A and B is null. In CSG it is very
easy to represent the intersection, but hard to determine if it is empty.

3.2.4 Sweeping

Sweeping could be considered a constructive method, but we will treat it separately because
it is sufficiently distinctive. The Minkowski sum of two sets A and B, denoted A + B, is the
region swept by the set B when its reference point takes all possible positions within A.
The orientation of B is fixed during the sweep. Figure 3.2.4.1 illustrates the definition.
Here A is a rectangle, and B is a disk with its reference point at the center. The Minkowski
sum shown on the right is a larger rectangle with rounded corners. The additional region
generated by the sweep is highlighted by darker shading. The center of the figure shows
the disk B at several of the positions it takes during the sweep.

A

B

Figure 3.2.4.1 – Minkowski sum of a rectangle with a disk.

A Minkowski sum with a disk in 2-D or a ball in 3-D is also called a solid offsetting
operation. Offsetting is useful for rounding and filletting objects, and for various other
applications [Rossignac & Requicha 1984].

The Minkowski difference A – B is defined as

A − B = c(cA + B) .

(Some texts use a different definition, which amounts to adding to A the reflection of B
about the origin.) The Minkowski sum is a growing operation, and often called dilation,
whereas the difference is a shrinking operation (because we grow the complement of A),
often called erosion. These two operations are studied at length in a field called
“mathematical morphology” [Matheron 1975, Serra 1982], and applied extensively in
image processing [Haralick 19??].

When A is a 2-D planar set and B is a line segment normal to the plane of A their
Minkowski sum is called a translational sweep or extrusion. (Oblique sweeps can also be
defined.) Figure 3.2.4.2 shows and example. Extrusions are use extensively in mechanical
CAD systems.

GMCh3 2/1/00 3-12

A B

Figure 3.2.4.2 – An extrusion operation.

A Minkowski sum is not the most general form of sweep, because the moving set must
maintain a fixed orientation, and cannot change its size or shape. An interesting
generalization involves a planar set, or cross-section, that translates along a possibly curved
trajectory, or spine, while undergoing changes. The resulting sets are (usually) 3-D solids
called generalized cylinders or generalized cones, and are popular in computer vision
[Ballard & Brown 19??].

A planar set may also be described by sweeping a disk of continuously-varying radius
along a planar spine. The spine plus a function that defines the changes in radius constitute
the medial axis transform or skeleton of the set. The notion extends to 3-D, by using solid
balls instead of disks. Medial axis transforms have a variety of applications, from image
processing [????] to finite element mesh generation [Srinivasan et al 19??].

3.2.5 Interpolation and Approximation

Interpolation and approximation methods typically are used to define higher-dimensional
entities from lower-dimensional primitives. For example, a set of points may define a curve
segment or a subset of a surface (often called a patch in the modeling jargon). We will
discuss specific schemes later in this course, when we study curve and surface modeling.
Here we present some fundamental notions through a simple example.

Suppose, for concreteness, that we want to represent a planar, 2nd. degree parametric
polynomial curve whose generic point p(u) has coordinates

x(u) = au2 + bu + c

y(u) = du2 + eu + f

where u is the parameter, and the 6 coefficients a, b, c, d, e, f are initially unknown. If we
require, for example, that

p(0.0) = p1

p(0.5) = p2

p(1.0) = p3

the curve will pass through 3 given points p1, p2 ,p3 . We say that the curve interpolates the
points. Writing the equations above in terms of point coordinates we obtain 6 linear
equations in the 6 unknown coefficients, which, barring singularities, can be solved
uniquely. Therefore the 3 points represent unambiguously the curve.

GMCh3 2/1/00 3-13

An interpolating curve passes through the given points but may have large oscillations
between the points. An alternative approach is to require that the curve approximate the
points, i.e., pass near the points without necessarily containing them. If we select a specific
approximation method that ensures a unique result, the points will represent the curve
unambiguously. Approximation methods tend to produce smoother, better-behaved curves
than interpolation, and are widely used.

In a similar vein, points or curves may represent parametric surface or solid patches
through interpolation and approximation schemes.

3.2.6 Boundary Methods

An object may be represented by its boundary plus the host space (e.g., an unbounded
cylindrical surface) in which it lies. We already saw an example of a boundary
representation scheme. It was Scheme 3 for representing polygons by their edges,
discussed in Section 2.1. Knowledge of the boundary of a set does not always determine
uniquely the set. However, for the objects we normally encounter in geometric modeling,
boundary information does suffice to determine the “inside” unambiguously.

Boundary representations lower the dimensionality of the entities we must represent. For
example, for a 3-D solid we need only represent its 2-D faces. And for each face, we need
only represent its 1-D edges (plus host surface information). Thus, one can “recurse in
dimension”, eventually ending out with 0-D point primitives.

Additional data may be required for entities that lie in certain host spaces. For example, a
closed contour of edges on a spherical surface cuts the sphere into two bounded
subsets—see Figure 3.2.6.1. Therefore, the edge-set is an ambiguous representation. It
must be augmented with neighborhood information that indicates which of the two possible
faces is to be selected.

Figure 3.2.6.1 – Two faces lying in a spherical surface and having the same boundary.

The neighborhood of a point p with respect to a set S in Euclidean 3-space is the
intersection of S with a solid ball centered on p and with a radius R, as R approaches zero.
Figure 3.2.6.2 shows the neighborhoods of (i) a midpoint of an edge of a polygon and (ii)
a vertex of the polygon. There are many ways of representing neighborhoods
computationally. For polygons and other objects represented by edge-lists, neighborhood
information is often encoded by ordering the edges, and orienting them consistently. For
example, we may require that an observer moving along the edges in the specified direction
see the material to his or her left. This convention is shown by the arrows in Figure
3.2.6.2.

GMCh3 2/1/00 3-14

p

q

Figure 3.2.6.2 – Neighborhoods for points on a polygon’s boundary.

The validity of boundary representations is a relatively complex issue. The validity
conditions depend on the domain of objects to be represented, and on the details of the
specific boundary representation scheme. Validity will be discussed later in this course,
when we study the various geometric entities of interest such as curves or solids.

3.2.7 Hybrid Methods

It is possible to construct hybrid schemes, which combine several of the methods described
earlier. For example, one can define extrusions by means of translational sweeps, and then
combine the extruded objects by using Boolean operations, thus defining a
sweep/constructive hybrid.

The main problem with hybrid schemes is the difficulty of writing algorithms for
processing such representations. One approach is to implement separate algorithms to deal
with each of the individual schemes, and then combine the results. An often simpler
approach consists of converting a hybrid representation into a single-scheme
representation, and then writing algorithms for this scheme. For example, the
sweep/constructive hybrid could be converted to a BRep, and this representation used for
developing the required algorithms.

3.3 Mathematical Underpinnings

3.3.1 Mathematical Models and Computational Representations

The framework introduced in Chapter 1 may be formalized as follows [Requicha 1980].
Let M be a space whose elements are abstract entities called mathematical models. In
geometric computation, mathematical models usually are point sets in Euclidean space. As
we will see later in this course, sharper characterizations of models exist for the various
entities we will consider, e.g., curves or solids. M is called a mathematical modeling space.

The set of all syntactically correct representations constitutes another space called
representation space. A representation scheme is formally defined as a mathematical relation
s from M to R, as shown in Figure 3.3.1.1. The relation has a domain D, called the domain
of the scheme, and a range V. A representation is valid if it belongs to V. A valid
representation is both syntactically and semantically correct.

GMCh3 2/1/00 3-15

M
Mathematical Modeling Space

R
Representation Space

Domain D Range V

s
Representation

Scheme

Figure 3.3.1.1 – Representation schemes as relations

A representation r in V is unambiguous or complete if it corresponds to a single model m in
M, i.e., if the inverse image of r is a single-element set: s−1 (r) = m{ } . It is unique if

s s−1 r()[] = r{ } . A representation scheme is unambigous or complete if the inverse relation

s−1 is a function. It is unique if s is a function.

3.3.2 General Topology and Regular Sets

The notions of interior, boundary, and so on, are formally defined in a branch of
mathematics called point-set, or general topology [Mendelson 1975]. The main concepts of
general topology that are of interest in geometric modeling are summarized below.

Let W be a set of abstract elements (the “world”) and d : W × W → ℜ , where ℜ denotes
the set of real numbers, a function called a metric or distance, that satisfies the following
axioms, for all x, y, z of W .

1. d(x, y) ≥ 0
2. d(x, y) = 0 ⇔ x = y
3. d(x, y) = d(y, x)
4. d(x, z) ≤ d(x, y) + d(y,z)

A pair (W , d) with these properties is called a metric space. An important example of a
metric space is the Euclidean space with its usual distance.

An open ball of radius R > 0 and centered at a point x of W is the set

B(x; R) = y ∈W : d(x ,y) < R{ }.

A subset X of a metric space W is open if it contains an open ball about each of its points.
Let W be the real line with its usual distance; an open ball is an open interval. Similarly, an
open ball in E2 is a disk (without its bounding circle), and in E3 it is a solid sphere (also
without its bounding surface). Open sets in a metric space have the following properties:

1. The empty set Ø and the universe W are open.
2. The intersection of a finite number of open sets is open.
3. The union of any collection of open sets is open.

GMCh3 2/1/00 3-16

The intersection of an infinite collection of open sets need not be open. For example the
intersection of the open intervals (–1,1), (–1/2, 1/2), (-1/3, 1/3), ..., is a set consisting of
the single point {0} and therefore not open.

A topological space is a pair (W , T) where W is a set (the universe) and T is a collection of
subsets of W , called open sets, that satisfy properties 1-3 above (by definition). T is called
a topology. It is clear that any metric space with its open sets defined via open balls is also
a topological space. Its (metrically-defined) open sets constitute the space’s natural
topology, which is sometimes also called the topology induced by the metric. However, the
axiomatic definition of topological space given just above is more general, does not require
any notion of distance, and includes spaces in which no metric can be defined. Usually,
several topologies can be associated with a single set W , resulting in several different
topological spaces.

A neighborhood N(x) of a point x in a topological space (W ,T) is any subset of W that
contains an open set that contains x. For example, the closed interval [0,2] contains the
open ball (0.9, 1.1) and therefore is a neighborhood of the point 1. Note that in the
geometric modeling jargon “neighborhood” often has a more restricted meaning, explained
in Section 3.2.6. Topology provides a notion of “nearness” that does not depend on
distance. Thus, a point y is near a point x if y belongs to a neighborhood of x. General
topology can be developed in terms of this notion of nearness—see [Henle 19??].

A subset X of a topological space (W , T) is closed if its complement cX is open. Note that
closed sets are not the opposite of open sets. Some sets may be both closed and open, e.g.,
Ø and W , whereas others may be neither closed nor open, e.g. the interval [0,1), which
includes 0 but not 1.

A point x is a limit point of a subset X of a topological space (W , T) if each neighborhood
of x contains at least another point of X different from x. Limit points of X need not belong
to X . For example, 0 and 1 are limit points of the open interval (0,1) but do not belong to
the interval.

The closure of a subset X of a topological space (W , T), denoted k X (this is not standard
notation), is the union of X with all its limit points. It can be shown that k X is the smallest
closed set that includes X , and that X is closed if and only if X = k X.

A point x of a topological space (W , T) is an interior point of a subset X of W if X is a
neighborhood of x, i.e., if X contains an open set that contains x. The set of all interior
points of X is called its interior, and denoted iX in this course. It can be shown that iX is
the largest open set that is included in X . Thus, a set is always bracketed by an open and a
closed set, which are the set’s interior and closure.

A point x of a topological space (W , T) is a boundary point of a subset X of W if every
neighborhood of x intersects both X and its complement cX. The boundary of X , denoted
∂X , is the set of all boundary points of X . It can be shown that ∂X is a closed set, and that
the boundaries of a set and of its complement are the same, i.e., ∂X = ∂cX. Also, any
subset X decomposes W into three pair-wise disjoint subsets:

W = iX ∪ X ∪ icX .

It can be shown that the collection of sets of the form

′ X = X ∩ ′ W ,

GMCh3 2/1/00 3-17

where ′ W is a subset of a topological space (W , T) and X is an open set in the topology of
(W , T), is a topology ′ T for ′ W . ′ T is called the relative or induced topology, and
(′ W , ′ T) is called a topological subspace of (W , T). The sets that constitute the relative
topology ′ T are called relatively open, or open– ′ W . It is important to note that the
definitions of closure, interior and boundary depend on the topology being considered. For
example, let W be Euclidean 3-space and ′ W a 2-D Euclidean plane. A solid disk X lying
in ′ W is closed both in W and ′ W ; however, the relative boundary of X in the 2-D
topology of ′ W is a circle, whereas its boundary in the 3-D topology of W is the disk
itself.

The geometric modeling notion of neighborhood of a point p with respect to a set X
corresponds to an open ball centered at p in the relative topology induced in X by the
underlying Euclidean space.

A function f from a topological space (W , T) to another topological space (V, S) is
continuous if, for every open set X of V, the inverse image f −1(X) is an open set of T. It is
a homeomorphism if it is continuous and has a continuous inverse. One can show that a
homeomorphism establishes a one-to-one correspondence between the elements of the two
sets W and V, and also between the open sets of the topologies T and S . Two sets related
by a homemorphism are called homeomorphic or topologically equivalent. Properties that
are invariant under homeomorphisms are called topological properties.

A subset X of Euclidean space is bounded if it can be enclosed by a ball of finite radius. It
is compact if it is both closed and bounded. Boundedness is not a topological property, but
compactness is.

A space is connected if it is not the union of two disjoint non-empty open sets.
Connectedness also is a topological property. A disconnected set can always be
decomposed into a union of disjoint, connected open sets called its connected components.
A space is path-connected if every pair of points of the space can be joined by a curve that
lies entirely within the space. Path-connectedness and connectedness are equivalent for the
sets we normally consider in geometric modeling, but not for general sets.

A subset X of a topological space (W , T) is a closed regular set [Kuratowski & Mostowski
1976], or simply a regular set, it it equals the closure of its interior:

X = kiX .

The operation that consists of taking the closure of the interior of a set is called
regularization, and denoted by rX . The regularized set operators are defined by
regularization of their standard counterparts:

X ∪* Y = r(X ∪Y)

X −* Y = r(X − Y)

X ∩* Y = r(X ∩Y)

c*X = r(cX)

GMCh3 2/1/00 3-18

It can be shown [Kuratowski & Mostowski 1976] that the regular sets with the regularized
set operations are a Boolean algebra, and therefore have the same algebraic properties as
general sets with the standard set operators.

