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2. Motions and Projections

2.1 Points and Vectors

Imagine a small solid object and let its dimensions decrease indefinitely. The result of this
conceptual experiment is modeled by a mathematical abstraction called a point. Modern
mathematics defines rigorously Euclidean spaces as sets whose elements, called points,
satisfy certain axioms. In everyday language we talk of “being at a point in space”, and in
geometric modeling we use Euclidean points to define mathematically the locations of
objects. In addition, sets of points serve to model more complicated objects, from
trajectories to physical solids.

Consider now a solid object in straight-line motion. The object’s velocity has a direction
and a magnitude, or speed, measured e.g. in meters per second. Velocities and other
physical entities such as forces that can be characterized by a direction and a magnitude are
modeled mathematically by vectors. Vectors may be added by using the familiar
parallelogram rule of analytical geometry and elementary mechanics. They may also be
multiplied by scalar numbers. Scalar multiplication changes the magnitude of the vector but
not its direction. In modern mathematics a vector space is a set of elements, called vectors,
with two operations defined on them—vector addition and multiplication by a scalar—that
have certain algebraic properties defined axiomatically. The vector-space axioms ensure that
the usual Cartesian vectors of analytic geometry are a special case of abstract vectors.
Interestingly, there are many other useful entities that are abstract vectors as well. Examples
include polynomials of degree ≤n, the spline functions we will discuss later in this course,
periodic functions with period T, continuous functions in a closed interval [a,b], and so on.
The theory of vector spaces applies equally well to all of these entities. This is a good
example of the power and elegance of abstraction in modern mathematics.

Points and vectors are intimately connected. In principle there are no privileged points or
directions in space, i.e., space is homogeneous and isotropic. But let us pick some
arbitrary point o  and call it the origin. (Typically, the origin is selected for convenience in
solving a specific problem.) Now each point p ≠ o  plus o  define a direction and a length.
Therefore, for a fixed origin o , each point p corresponds to a vector x , and conversely.
That is, there is a one-to-one correspondence between points and vectors. We are arguing
intuitively, but the argument can be rigorized by defining point difference as an operation
that produces a vector from two point arguments such that p – o  = x . We use the notation

p
o

← →  x

to signify that point p corresponds to vector x  in the fixed origin o . (We are using lower-
case boldface for points and italic boldface for vectors.)
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The correspondence between points and vectors depends on the choice of origin, as shown
in Figure 2.1.1. Here point p corresponds to vector x  when the origin is q. However, p
corresponds to y  when the origin is o . There is a simple relationship between x  and y.
Specifically, y  = x  + , where = q – o  is the difference of the two origins. Therefore the
effects of a change of origin are easy to evaluate.

p

q

o

x

y

Figure 2.1.1 Change of origin

In the geometric modeling field it is customary not to distinguish between points and
vectors, because a fixed “lab” or “master” origin is assumed to exist. By abuse of language
one talks of operations such as point addition, although addition is defined only for
vectors, and extending the vector operation to points produces results that depend on the
choice of origin.

The vector-space elements introduced above are called in this course simply vectors or
ordinary vectors, to distinguish them from free and applied vectors, which will be
discussed further on.

In a vector space it is always possible to select a minimal set of vectors e1, e2,  . . . , en such
that any vector of the space can be expressed as a linear combination

x = x1e1 + x2e2 + + xnen .

The e i are called a basis, and the x i are the components of the vector x  in the given basis.
There are infinitely many bases in a vector space, but they all have the same number n of
vectors, and n is called the dimension of the space. In this course we are primarily
interested in dimensions 2 and 3. The components of a vector in a fixed basis are unique,
and, conversely, a set of components determines a unique vector.

Therefore, for a fixed basis, there is a one-to-one correspondence between vectors and
arrays of components. We denote this correspondence as

x E← →  X .

It is convenient to arrange the components of a vector in a column matrix, and the vectors
of a basis in a row matrix:
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X =

x1

x2

xn

 

 

 
 
 
 

 

 

 
 
 
 

, E = e1 e2 en[ ].

Using matrix notation a vector can be written as x  = EX. The correspondence between
vectors and matrices preserves addition and multiplication by a scalar. The matrix Z that
corresponds to the sum of two vectors z  = x  + y  is the sum

Z = X + Y =

z1

z2

zn

 

 

 
 
 
 

 

 

 
 
 
 

=

x1

x2

xn

 

 

 
 
 
 

 

 

 
 
 
 

+

y1

y2

yn

 

 

 
 
 
 

 

 

 
 
 
 

=

x1 + y1

x2 + y2

xn + yn

 

 

 
 
 
 

 

 

 
 
 
 

.

For multiplication by a scalar, if z  = a x , then Z = a X, or

Z =

ax1

ax2

axn

 

 

 
 
 
 

 

 

 
 
 
 

.

The inner or dot product, denoted x  .  y,  is another useful operation defined on vectors. It
produces a scalar given two vector arguments. It is defined formally by a set of axioms.
The square root of the inner product of a vector with itself is the norm or length of the
vector, denoted

x = x.x .

A unit vector is a vector whose length equals unity. Two vectors are orthogonal if their dot
product is zero. The cosine of the angle between two vectors is given by

cos =
x.y
x . y

 .

The most convenient bases are the orthonormal bases, composed of unit vectors that are
pairwise orthogonal. In an orthonormal basis the inner product of two vectors is

x.y = X tY = x1y1 + x2y2 + + xnyn ,

where the superscript denotes matrix transposition, obtained by interchanging rows with
columns. This is the familiar formula from analytic geometry. (Note that this formula is not
valid in non-orthonormal bases.) The length in an orthonormal basis becomes

x = x1
2 + x2

2 + + xn
2 ,
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which is also a well-known formula. In a Euclidean space we define the distance between
two points p and q as the norm of the vector p – q.

Because points correspond to vectors, for a fixed origin, and vectors correspond to column
matrices, for a fixed basis, there is also a one-to-one correspondence between points and
column matrices. A pair (origin, basis) is called a frame or coordinate system. For a fixed
frame, points correspond to column matrices:

p
(E ,o)

← →    X .

The elements of the matrix associated with a point in a given frame are called the
coordinates of the point in that frame. The correspondences between points, vectors and
column matrices are very important, because they provide us with the computational tools
we need to represent and manipulate these entities. Matrices are easy to represent as arrays
in any modern programming language, and operations such as vector addition also are easy
to implement. Point and vector properties are computed by using their coordinates or
components in a convenient frame or basis. For example, the distance between two points
p and q with coordinate matrices X  and Y  is evaluated by the familiar expression

d(p,q) = (x1 − y1)2 + (x2 − y2 )2 + + (xn − yn )2 .

Finally, there is an additional operation on vectors, called the vector product (also known
as cross, or exterior product), that is very useful, especially in 3-D. Here we define it in
terms of components in a right-handed, orthonormal, 3-D basis:

x × y = (x2y3 − x3y2 )e1 + (x3y1 − x1y3)e2 + (x1y2 − x2y1)e3 .

The result of a cross product is not truly a vector, and its definition depends on the
orientation or handedness of a basis. Right-handed orthonormal bases in 2 and 3-D are
shown in Figure 2.1.2. In this course we always use right-handed bases, and we can
ignore the subtleties of vector-product definitions .

e 1

e 2

e 3e 1

e 2

Figure 2.1.2 – Right-handed bases

The cross product of two parallel vectors is zero. For two non-parallel vectors, x  and y ,
the cross-product x  × y  is perpendicular to both x  and y . In particular, if E is a right-
handed orthonormal basis in 3-D, then
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e1 × e2 = e3

e2 × e3 = e1

e3 × e1 = e2

.

These equations are convenient for completing a basis when two of its vectors are known.

2.2 Transformations

Moving, sizing, and deforming objects are fundamental operations in geometric modeling.
Since objects are sets of points, what we need are transformations that map points onto
other points. The following subsections discuss linear and affine transformations, which
are the simplest and most commonly used in geometric modeling. For simplicity we
assume a fixed origin, and make no distinction between points and vectors.

2.2.1 Linear Transformations

A transformation T from a vector space onto itself is linear if it distributes over linear
combinations, i.e.,

T(ax + by) = aT(x) + bT(y).

Suppose we have two bases

E = e1 en[ ]
F = f1 fn[ ]

and we want a linear transformation that maps the vectors of E onto the vectors of F (see
Figure 2.2.1.1):

Tef (ei) = fi , i = 1, ,n.

e 1

e 2

f 1

f 2

x

y

Figure 2.2.1.1 - Transforming a basis E and a vector x .
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What is the effect of such a transformation on an arbitrary vector? Let x  be a vector and y
its transformed version

y = Tef (x).

 Write the vector x  in terms of its components in basis E

x = EX e

and use linearity to obtain

y = Tef (x) = Tef (e1 ) Tef (en )[ ]Xe = f1 fn[ ]Xe .

Now replace the basis vectors F by their components in basis E

y = EF1
e EFn

e[ ]X e = E F1
e Fn

e[ ]X e .

This shows that the components of y  in basis E are

Y e = M e Xe

where M e  is an n by n matrix whose columns are the components of the vectors of F in the
basis E:

M e = F1
e Fn

e[ ]
The last two equations are important for several reasons.

1. They show that, for a fixed basis E, each transformation corresponds to a square
matrix. Earlier on we had a correspondence between vectors and column matrices, and
now we have a correspondence between linear transformations and square matrices.

2. They give us computational tools for evaluating the effect of a transformation on a
vector. We simply multiply the square matrix that corresponds to the transformation by
the column matrix that corresponds to the vector. This is easily done via array
operations in any modern programming language.

3. They tell us how to construct a matrix that maps the vectors of a basis onto another.

Let us illustrate this matrix construction procedure. Many geometric modeling systems
attach coordinate frames to objects, and provide facilities for placing objects by aligning
frames. Consider the rectangle shown on the left in Figure 2.2.1.2, and suppose we want
to orient it such that it aligns with the rectangle on the right. All we need is a transformation
with a matrix whose columns are the components of the vectors F in the basis E. (In 2-D it
is easy to determine the required transformation by other means, but in a 3-D example it
would not be as easy.)
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e 1

e 2

f 1

f 2

Figure 2.2.1.2 - Orienting an object by frame alignment

For a specific example, let us determine the matrix that corresponds to a counterclockwise
rotation by an angle . The components of the vectors F are easy to calculate from
elementary trigonometry, as shown in Figure 2.2.1.3.

cos θ

cos θ

–sin θ

sin θ
 θ

 θ

e1

e2

f1

f2

Figure 2.2.1.3 - Derivation of a rotation matrix

We obtain

 F1
e =

cos

sin

 
  

 
  , F2

e =
−sin

cos

 
  

 
  ,

and therefore the rotation matrix is

M e =
cos −sin

sin cos

 
  

 
   .

Composition of successive transformations corresponds to matrix multiplication

T2(T1(x))
E

← →  M2
e M1

eXe .

And the inverse transformation, which maps a basis F onto a basis E corresponds to the
inverse matrix

M fe
e = Mef

e −1
.
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Matrix multiplication is not commutative, i.e., in general AB≠BA for arbitrary square
matrices A and B. The inverse of a matrix product reverses the order of the matrices:

(AB)− 1 = B−1A−1

Note that some linear transformations do not map a basis onto another. We will see
examples of these later.

2.2.2 Specific Linear Transformations

Here we investigate several interesting linear transformations in 2-D. The results apply also
to 3-D, with minor and obvious modifications.

Scaling – Consider the transformation with matrix

a 0

0 b

 
  

 
   .

To study its effect on a vector we multiply the corresponding matrices

a 0

0 b

 
  

 
  

x

y

 
  

 
  =

ax

by

 
  

 
  .

Here we are denoting the components of a 2-D vector by the customary x and y. The result
is a scaling by factors a and b along the x and y axes. If a = b the scaling is uniform or
isotropic and alters the size of an object but not its shape. If both scale factors equal unity,
the transformation is the identity and does not modify the object.

Figure 2.2.2.1 illustrates anisotropic scaling by its effect on a square located at the origin.

a=3
b=2

Figure 2.2.2.1 – Non-uniform scaling

Shear – Now let one of the off-diagonal elements of the matrix be non-zero. The result is a
shear, with the following matrix, and with the effect shown in Figure 2.2.2.2.

1 a

0 1

 
  

 
  

x

y

 
  

 
  =

x + ay

y

 
  

 
  .
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a=1

Figure 2.2.2.2 – Shear

Rotation – As we saw earlier, the matrix is

cos −sin

sin cos

 
  

 
  .

θ=–30

Figure 2.2.2.3 – Rotation

Reflection – Scalings with negative factors produce reflections. A reflection about the x
axis is shown below.

−1 0

0 1

 
  

 
  

x

y

 
  

 
  =

− x

y

 
  

 
  .

Figure 2.2.2.4 – Reflection about the vertical axis

Reflections about the horizontal axis, or about the origin can be constructed similarly.

Orthographic projection – Consider now

1 0

0 0

 
  

 
  

x

y

 
  

 
  =

x

0

 
  

 
  .
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This transformation zeroes the y component and does not affect the x component. It
corresponds to a perpendicular or orthographic projection on the x axis.

Figure 2.2.2.5 – Orthographic projection on the horizontal axis

Orthographic projection does not map a basis onto another basis. It is called a singular
transformation, and cannot be inverted. The projection causes a loss of information about
the y components of the vectors. Knowledge of the x component is insufficient to recover a
vector, because many vectors project on the same point of the x axis.

2.2.3 Rigid Motions

A translation is a mapping that associates to each vector x  the sum x  + , where  is a
constant vector. Translations are not linear transformations and cannot be computed by
matrix multiplication as we have been doing (but see Section 2.6.1 below). The
components of a translated vector y = x +  are

Y = X + D  ,

where D is the column matrix that corresponds to the translation vector . A translation is
shown in Figure 2.2.3.1.

Figure 2.2.3.1 - Translation

Compositions of translations and linear transformations are called affine transformations.
Both translations and linear transformations are practically important, and their non-
uniform behavior with respect to components is computationally inconvenient. Separate
procedures must be written for dealing with translations and linear transformations, and
they cannot be composed by matrix multiplication. (We will see later that both
transformations can be treated uniformly if we introduce homogeneous coordinates.)
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Typically, in geometric modeling we do not want to change the shape of a transformed
object. Transformations are applied primarily to locate and orient objects. Transformations
that preserve distance are called isometries (from the Greek, meaning “same measure”).
Isometries that also preserve the signed angles between vectors are called in this course
rigid motions. (This is not entirely standard terminology; some texts consider “rigid
motions” and “isometries” as synonyms.) It can be shown that rigid motions are affine and
must be compositions of translations and rotations.

The matrix that corresponds to a rotation in an orthonormal basis is a special case of a so-
called orthogonal matrix. These matrices can be inverted easily, by transposition:

Morth
−1 = Morth

t  .

General matrix inversion requires numerical procedures, which tend to be unstable when
the matrix is almost singular, and always introduce numerical errors. But inversion of
rotation matrices can be done swiftly and without round-off, by swapping rows with
columns.

Sets that are related by a rigid motion are called congruent. In the geometric modeling
jargon we often refer to an entire class of sets congruent to one another as a rigid object,
and call each individual set an instance of the rigid object. The location and orientation of an
instance, collectively called its pose, may be defined by a rigid motion that takes the set
from an initial, standard pose to its final pose. Figure 2.2.3.2 shows several congruent
triangles in the plane.

Figure 2.2.3.2 – Instances of a triangle

The notion of congruence is fundamental in Euclidean geometry. Euclid’s original
formulation defined congruence informally: two figures were said to be congruent if they
could be “superposed”. The rigorous definition in terms of rigid motions is only about one
century old. In the spirit of Felix Klein’s famous “Erlangen program”, Euclidean geometry
may be viewed as the study of those properties of geometric objects that are invariant under
rigid motions, and two objects are considered equivalent if they are related by a rigid
motion, i.e., if they are congruent. Rigid motion invariants (also called Euclidean
properties) are such things as distances, angles, perpendicularity, and so on, which are the
main subjects of study in high school geometry. We will see later that there are other kinds
of geometries, each with its fundamental transformations, analogous to the rigid motions of
Euclidean geometry, and with its notion of geometrical equivalence, analogous to
congruence.
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2.3 Free and Applied Vectors

We defined translation of a vector x  as the addition to x  of a vector , as shown in Figure
2.3.1. Vector translation does not correspond to the intuitive notion of translation of an
“arrow” by translating its endpoints, without changing the length or the direction of the
arrow. An alternative notion of vector that behaves more like an arrow also is useful in
geometric modeling, as the following example illustrates.

x
x + 

Figure 2.3.1 – Translation by vector addition

Consider the right, circular cylinder shown on the left in Figure 2.3.2. The cylinder is
characterized completely by two scalar parameters—its diameter D and height H—plus a
point c—the center of a base—and a vector a along the cylinder’s axis. Suppose now that
we want to move the cylinder to a different location and orientation, shown on the right in
the figure. Mathematically, moving the cylinder corresponds to applying a rigid motion T
to it. How can we compute the values ′ c  and ′ a  that characterize the cylinder after the
application of T? Clearly ′ c = T(c). But ′ a ≠ T(a)  because T has a translational
component.

a

a'
c

c'

D

H

Figure 2.3.2 – Moving a cylinder

This example, and many similar situations, can be handled conveniently if we introduce a
new entity, called a free vector, that is not affected by translations. Free vectors and the
ordinary vectors defined earlier differ only in their behavior with respect to translations.
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The cylinder in our example can be described by scalars D and H, point c, and free vector
a. Intuitively, it is helpful to think of a as being attached to the point c. This notion may be
formalized by defining yet another entity, called an applied vector, which consists of a pair
(p, x), where p is a point and x  a free vector. Equivalently, we can define an applied
vector as a pair of endpoints (p, q) with q = p + x . An applied vector is transformed by
applying a transformation to both endpoints. In Figure 2.3.2 the pair (c, a) is an applied
vector, which transforms as shown on the right in the figure.

Free and applied vectors are used extensively in geometric modeling. For example, the
normal direction to a surface is often represented by a free vector plus the point at which the
normal is calculated, i.e., by an applied vector. (Point information is unnecessary for
planar surfaces, which have a single, constant normal.) Tangential directions for curves are
treated similarly.

2.4 Change of Basis

Let x  be a vector with components X e  in basis E. Consider a new basis F, obtained from E
by a transformation Tef , with a corresponding matrix Mef

e  in basis E. Each vector of the
new basis can be written in terms of its components as

fi = EFi
e

and we can summarize these n equations by the matrix equality

F = f1 fn[ ] = EF1
e EFn

e[ ] = EMef
e .

What are the components of x  in the new basis? Since

x = EX e = FX f = EM ef
e X f

we conclude that

X e = Mef
e X f

Recall that when we apply a transformation Tef  to a vector x , the vector is transformed into
a second vector y,  and the column matrices of the two vectors are related by

Y e = Mef
e X e

The last two equations are very similar but correspond to different procedures. The first
governs the change of components of a fixed vector when a basis changes. The second
gives the components of a transformed vector in a fixed basis. Note that the same matrix is
involved in the two equations, but there is a “reversal of direction” between the two matrix
actions. The change of basis equation can also be written in terms of the inverse matrix

X f = Mef
e −1

Xe .
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The need for inversion has a simple geometric interpretation, illustrated by the example of
Figure 2.4.1. Consider a vector x  in base E, on the left in the figure. If we rotate the basis
by an angle  to obtain basis F, as shown in the center of the figure, the components of x
change. Now let us apply in basis E the inverse transformation to x , rotating it by the angle
– , so as to obtain y , as shown on the right. The components of y  in basis E are the same
as the components of the original x  in basis F.

f 1

f 2

e 1

e 2
x x

e 1

e 2

y

Figure 2.4.1 – Vector transformation versus change of basis

2.5 Homogeneous Coordinates

We begin this section with a pragmatic view of homogeneous coordinate methods. We then
explain them geometrically, and finally show how they can be used to compute perspective
projections.

2.5.1Transformations in Homogeneous Coordinates

Translations and linear transformations can be treated more uniformly if we introduce a
different system of coordinates, called homogeneous coordinates. For simplicity we work
in 2-D, but generalizations to 3-D or n-D are straightforward. We continue to make no
distinction between points and ordinary vectors. Suppose that we have a vector x  with
components X , and want to apply to it a linear transformation with matrix M, so as to
obtain another vector y  with components Y . We introduce an additional component and
associate with the vector x  the column matrix

X* =
x

y

1

 

 

 
 
 

 

 

 
 
 

=
X

1

 
  

 
  .

The elements of X*  are called homogeneous coordinates. We also add a third row and
column to the linear transformation matrices as follows

M* =
a b 0

c d 0

0 0 1

 

 

 
 
 

 

 

 
 
 
.

This matrix can be written in block format as
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M* =
M 0

0 1

 
  

 
  ,

where M is the usual 2 by 2 linear transformation matrix, and the two-zero row and column
are both denoted by 0. Multiplying the matrices

M*X* =
M 0

0 1

 
  

 
  

X

1

 
  

 
  =

MX

1

 
  

 
  =

Y

1

 
  

 
  = Y*

shows how to evaluate the effects of a linear transformation in the new, augmented-matrix
format. Scalings, shears, rotations, and so on, can be achieved by replacing M in the 3 by
3 matrix above by the various matrices we discussed earlier.

Until now we have gained nothing with this approach, and we have lost some
computational efficiency because 3 by 3 matrices require more storage and more
computation than their 2-D counterparts. But let us now investigate what happens if the
elements of the third column of the matrix become non-zero. Consider

M* =
1 0 a

0 1 b

0 0 1

 

 

 
 
 

 

 

 
 
 

,

and apply it to a generic vector:

Y* = M* X* =
1 0 a

0 1 b

0 0 1

 

 

 
 
 

 

 

 
 
 

x

y

1

 

 

 
 
 

 

 

 
 
 

=
x + a

y + b

1

 

 

 
 
 

 

 

 
 
 

.

This is precisely the result of translating x  by a vector with components (a, b). Therefore
we have found a method for computing both translations and linear transformations by
matrix multiplication. In particular, rigid motions in the plane are associated with 3 by 3
matrices. In 3-D they correspond to 4 by 4 matrices. For reference, the three matrices that
correspond to rotations about the x, y and z axes are:

x :

1 0 0 0

0 cos − sin 0

0 sin cos 0

0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

y :

cos 0 sin 0

0 1 0 0

−sin 0 cos 0

0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

z :

cos −sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

Uniform treatment of translations and rotations is computationally important. It implies that
we only need one procedure to implement both, and that matrix-multiplication hardware can
be used for both. We will see later that homogeneous coordinates also can deal with
projections, which are needed for displaying objects.
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2.5.2 Geometric Interpretation

Homogeneous-coordinate methods were introduced above as convenient “recipes”. But
they have a rich body of mathematics and geometric intuition underlying them. Here we
explore it briefly. First we generalize slightly, and write the homogeneous coordinates of
an Euclidean point p as

P* =
x

y

w

 

 

 
 
 

 

 

 
 
 

.

We have increased the dimension of our space by one. In addition, since we identify points
at w=1 with Euclidean points, we have placed the standard Euclidean plane at w=1. Figure
2.5.2.1 illustrates this construction.

p

q

r

x

y

w

w=1

L

Figure 2.5.2.1 - The Euclidean plane imbedded in an auxiliary 3-space

Now we connect an Euclidean point p with the origin, obtaining a straight line L. It is clear
that for each p there is a corresponding L. Furthermore, since L goes through the origin, it
is uniquely determined by any point q lying on it. This implies that p also is uniquely
determined by any q of L. The coordinates of any such q are called the homogeneous
coordinates of p. If we multiply the three coordinates by the same number k, we obtain
another point r of the same L. Points q and r (or any other points of L) are equivalent, in
that they all define the same line and also the same Euclidean point p. Therefore, the
homogeneous coordinates of p may be multiplied by any non-zero number without
affecting the point. In particular, if w≠1 and is not zero, we can always scale all the
components so as to normalize the coordinates:

x / w

y / w

1

 

 

 
 
 

 

 

 
 
 

.

The set of all lines through the origin of our auxiliary 3-D space is called the projective
plane. The elements of the projective plane are called projective points. (This terminology
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can be confusing since projective points are actually lines.) For each Euclidean point p
there is a corresponding line L and projective point p∗ . Therefore we can manipulate
Euclidean points through operations on their projective counterparts. This is precisely what
we are doing when we multiply the homogeneous coordinates of a point by a 3 by 3
matrix. Figure 2.5.2.2 illustrates the procedure. Our goal is to apply an affine
transformation T to an Euclidean point p. We do this in a roundabout fashion. First we
imbed the Euclidean point in projective space, obtaining p∗ . Then we apply a projective
transformation T* , which corresponds to a matrix M* , and generate a transformed
projective point q∗ .  Finally, we normalize, i.e. project the result on w=1, to get the desired
q.

p q

p * q *

T

T *

Imbed Normalize

Figure 2.5.2.2

An Euclidean line lying in w=1 corresponds to a plane through the origin of the auxiliary 3-
space. Such planes are the projective lines. Therefore, each Euclidean line has a
corresponding projective line.

The projective plane is “larger” than the Euclidean plane, because there are lines through the
origin that do not intersect the w=1 plane. These are the lines that lie in the w=0 plane. That
is, the projective plane has an additional projective line, which is the w=0 plane of the
auxiliary 3-space. A projective point with homogeneous coordinates (a, b, 0) does not have
a corresponding Euclidean point. What is the geometric meaning of such a point?

To answer this question let us consider an Euclidean point with homogeneous coordinates

p(t) =
at + c

bt + d

1

 

 

 
 
 

 

 

 
 
 
.

When t varies from minus infinity to plus infinity, this point traces in w=1 an Euclidean
line with direction defined by (a,  b). Because these are homogeneous coordinates, we can
divide all of them by t, without affecting the corresponding point:

p(t) =
a + c /t

b + c / t

1/ t

 

 

 
 
 

 

 

 
 
 
.

When t tends to either plus or minus infinity, the homogeneous coordinates of p tend to
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a

b

0

 

 

 
 
 

 

 

 
 
 

.

Therefore this is a point at infinity along the line of direction (a, b). It is not an Euclidean
point, but it is a projective point. We see that the projective plane consists of all the points
of the Euclidean plane augmented by the points at infinity.

Note that all parallel lines with a given direction have the same point at infinity. More
surprising is the fact that the same point at infinity is reached travelling towards both plus
and minus infinity. This implies that a projective line is more like a circle than an ordinary
line. The projective plane is a closed surface with interesting properties (which we will not
investigate in this course).

2.5.3 Change of Frames

Consider two frames E = (E, q) and F = (F, r), as shown in Figure 2.5.3.1. A generic
point p corresponds to two different vectors in E and F, satisfying the following relations:

p
E

← →  x

p
F← →  y

x = + y

= r − q

e 1

e 2
f 1

f 2

q

r

p

x

y

Figure 2.5.3.1 – Change of frames

The coordinate matrices of p in frames E and F,  denoted Pe  and P f , are given by



GMCh2 12/30/99 2-19

P f = Y f

Pe = X e = Y e + De = Mef
e Y f + D e = Mef

e P f + De

where De  is the column matrix of the components of  in basis E, and Mef
e , as usual,

denotes the matrix that corresponds in basis E to the linear transformation that maps the
vectors of basis E onto those of basis F. The second equation immediately above follows
from coordinate relations in vector translation and change of basis, derived earlier. The two
equations may be summarized in matrix form as

Pe

1

 

 
 

 

 
 =

Mef
e D e

0 1

 

 
 

 

 
 

P f

1

 

 
 

 

 
 

or

P*( )e
= Mef

*( )e
P*( ) f

with

P*( )e
=

P e

1

 

 
 

 

 
 , P*( ) f

=
P f

1

 

 
 

 

 
 , Mef

*( )e
=

Mef
e D e

0 1

 

 
 

 

 
 .

These equations show that the effect of a change of frame on the homogeneous coordinates
of a point is analogous to the effect of a change of basis on the components of a vector.
Whereas a change of basis is associated with multiplication by a matrix Mef

e , a change of
frame involves an augmented matrix. This matrix has a simple interpretation. First note that
the frame F  may be defined by an affine transformation that maps the origin q of frame E
onto the new origin r, and maps the basis E onto the new basis F.  This transformation
may be decomposed into a rotation that maps E onto F, followed by a translation by the
vector . In homogeneous coordinates the composition corresponds to the matrix product

I De

0 1

 

 
 

 

 
 

Mef
e 0

0 1

 

 
 

 

 
 =

Mef
e D e

0 1

 

 
 

 

 
 = Mef

*( )e
.

 Therefore Mef
*( )e

 is the matrix that corresponds to the projective transformation that maps
frame E onto frame F. This is a direct analog of the situation we encountered in a change of
basis.

We know that the columns of matrix Mef
e  consist of the components of the vectors of F in

the basis E. Therefore, the frame F = (r, F) corresponds to the homogeneous-coordinate
matrix

Mef
*( )e

=
F1

e Fn
e De

0 0 1

 

 
 

 

 
 .
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This matrix may also be interpreted as follows. The first n columns contain the coordinates
of the points at infinity in the directions of the vectors of basis F. The last column is the set
of coordinates of an Euclidean point, the origin r of the frame. All of these coordinates are
relative to frame E.

2.5.4 Perspective

Thus far we have only used homogeneous-coordinate matrices with a last row whose off-
diagonal elements are null. Let us now investigate wnat happens when they are non-null.
Consider the product

1 0 0

0 1 0

−1/ d 0 1

 

 

 
 
 

 

 

 
 
 

x

y

1

 

 

 
 
 

 

 

 
 
 

=
x

y

1 − x / d

 

 

 
 
 

 

 

 
 
 

.

(We use a –1/d term for reasons that will be obvious soon.) The result is no longer on the
w=1 plane. Normalizing it we obtain

x

1 − x /d

y
1 − x /d

1

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

.

What is the physical meaning of this transformation? We will answer this question with the
help of Figure 2.5.4.1, which shows how to project a point on the y axis of the Euclidean
plane from a center of projection v  lying on the x axis at x=d. By similarity of triangles

′ y 

y
=

d

d − x
, ′ y =

y

1 − x / d
.

This is precisely the y coordinate we computed above by matrix multiplication.
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x

y
y'

d

p

Center of
Projection

v

Figure 2.5.4.1 – Central projection of a 2-D point on the vertical axis

In 3-D, an analogous argument shows that multiplication by the matrix

1 0 0 0

0 1 0 0

0 0 1 0

0 0 −1/ d 1

 

 

 
 
 
 

 

 

 
 
 
 

provides us with the x and y coordinates of the projection of a point on the xy plane, from a
center of projection on the z axis at z=d. Projection on a plane is a fundamental operation
for the generation of a display—see Figure 2.5.4.2.

Eye

Object

Projection

Figure 2.5.4.2 – Drawing an object by projecting it on a plane

The two-dimensional perspective transformation discussed earlier affected both the x and y
coordinates of a point. Figure 2.5.4.3 illustrates the effect of a perspective on a rectangle.
The result is not a 1-D projection on the y axis. Rather, it is a deformed 2-D object.
Orthographic projection of this deformed object on the y axis produces the desired 1-D
image.
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y

v

p

p '

q

q '

Figure 2.5.4.3 – Perspective transformation applied to a 2-D solid

In 3-D the perspective transformation produces a deformed 3-D object, which must be
projected orthographically onto the xy plane to generate the desired 2-D image. Computing
a planar projection involves matrix multiplication, followed by normalization and
orthographic projection. This latter involves essentially no computation, since it amounts to
ignoring the z coordinate. But normalization is relatively expensive, because it requires a
division.

It is easy to prove that a perspective maps lines onto lines. It also maps line segments onto
line segments, but there is a subtlety, illustrated in Figure 2.5.4.4. Observe that the
projection of the line segment pq on the horizontal axis and with viewpoint (i.e., center of
projection) v  extends to infinity on the right and on the left. (It is a segment of a projective
line that goes through a point at infinity.) This happens because q is behind the viewpoint,
and one of the projecting rays is horizontal and meets the horizontal “screen” at infinity.

p

q

v

r

p 'q ' r'

Figure 2.5.4.4 – Projection of a line segment

A line drawing of a polyhedral object may be produced by projecting the endpoints of its
edges and connecting the projected endpoints with line segments, provided that the object
does not extend behind the viewpoint. To ensure that this condition is satisfied in an
arbitrary scene, one must clip it, i.e., remove those portions that lie behind the viewpoint,
before computing the projection of the scene.
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2.6 Applications in Robotics and Simulation

A robotic manipulator is a kinematic chain, i.e., a collection of solid bodies—called
links—connected at joints. The most common joints are the revolute joint, which
corresponds to rotational motion between two links, and the prismatic joint, which
corresponds to a translation. Most of the industrial robot “arms” in use today have only
revolute joints. Figure 2.6.1 shows an idealized robot with two links and two revolute
joints. The first, vertical link rotates by an angle  about its axis, and the second link rotates

by an angle  in the vertical plane defined by the two links. The angles  and are called in
robotics joint angles.

A

B

θ

φ

z

y

C

x

Figure 2.6.1 – Stick-figure model for a 2-link robot

A robot interacts with the objects involved in a task primarily through its “hand”, or end
effector. The pose of the hand with respect to the “lab” frame is crucial, and one must be
able to relate hand coordinates to lab coordinates. This can be done by rigidly attaching
coordinate frames to each link, and then performing successive changes of frames along the
kinematic chain. Frame A in the figure is the base, or lab frame. Frame B is attached to the
first link, and therefore rotates about the y (vertical) axis of A. Frame C is attached to the
second link and rotates about the z axis of B.   C is the hand frame of the robot. The
relationship between hand and base coordinates may be expressed in terms of  the matrices
that describe the relative motions of the two links in each joint:

X a = Mab
a Xb = Mab

a Mbc
b X c .

Frame B may be constructed by first translating A by the length L1 of the first link along y,
and then rotating by  about the y axis in basis A. Therefore
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Mab
a ( ) =

cos 0 sin 0

0 1 0 0

− sin 0 cos 0

0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

1 0 0 0

0 1 0 L1

0 0 1 0

0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

=

cos 0 sin 0

0 1 0 L1

−sin 0 cos 0

0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

.

Frame C may be obtained by a translation along the x axis of B by the length L2 of the
second link, followed by a rotation about the z axis of B:

Mbc
b ( ) =

cos −sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

1 0 0 L2

0 1 0 0

0 0 1 0

0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

=

cos −sin 0 L2 cos

sin cos 0 L2 sin

0 0 1 0

0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

.

Note that these matrices depend on the joint angles. Let us fix some point in the hand, with
coordinates X c . The coordinates of this point in the lab frame are functions of the joint
angles, and can be computed by multiplying the matrices above:

X a = Mab
a ( )Mbc

b ( )Xc

The robot’s motors control the joint angles directly, and the relationship between hand
coordinates and joint angles is fundamental in robotics. It gives us the trajectory in lab
coordinates for any temporal evolution of the joint angles. The velocity and the acceleration
are obtained by differentiating the positional relations. In robot programming typically one
seeks to drive the hand along some specific trajectory in lab coordinates. To find the
corresponding joint angles involves inverting the relationships derived above. This problem
is often called “inverse kinematics”.

Suppose now that we want to create a graphic simulation of the robot motion. The first link
is a fixed line segment in frame B, with endpoints on the y axis of B at y=0 and y=–L1.
The positions of these endpoints in frame A may be computed by the equation

X a = Mab
a ( )X b ,

by using the appropriate coordinates Xb  for the endpoints. Now we repeatedly increment
the angle   by some small amount, compute the endpoints of the first link, and display it at
its updated position. The result is an animation of the motion of the first link. A similar
procedure may be used for the second link, since we also have an equation for computing
the lab coordinates of fixed points in C.

This simulation procedure is not restricted to robotic problems or to simple stick objects.
Suppose we have, for example, a model of a human figure with various articulations and
“links” of complex shapes. We associate a frame with each link and compute the matrices
that relate the frames in terms of some appropriate parameters. Then, we step along the
parameters and display the objects in their updated poses.

Realistic simulation of machinery can be done by the techniques outlined above. However,
smooth and realistic animation of the motion of humans and animals raises difficult
problems. For example, how should we change the joint angles at the ankles, knees and
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hips to achieve a realistic walk? These issues are beyond the scope of this course. They are
addressed in advanced courses in computer graphics and animation.

2.7 Applications in Rendering

Processing a model to generate a display is called rendering in computer graphics. There
are many sophisticated techniques to produce realistic displays. Underlying all of these is
the need to map points of the model in “world coordinates” onto points of the screen, and
this can be done by homogeneous-coordinate transformations. Computationally, what we
need is a function WorldToScreen that takes an argument WorldPoint in 3-D and
produces a 2-D ScreenPoint.Given this function, a simple line drawing of a
polyhedron can be generated as follows.

Clip model to remove points behind view point
for each edge of the model do
DrawLine(WorldToScreen(EndPoint1), 

    WorldToScreen(EndPoint2))
end

In this pseudo-code, DrawLine is a primitive drawing routine that operates in screen
coordinates. Drawing packages often provide a more convenient primitive routine that
draws a polyline, i.e., a connected set of line segments defined by an array of vertices.
DrawLine is simply a more restricted version of DrawPolyline, operating only on two
vertices. Clipping may be used also to select a region of the object to be rendered.

How is the WorldToScreen function specified and implemented? Figure 2.7.1 illustrates
the geometry involved.

Xw

Yw

Zw

Xv

Yv

Xs

Ys

Viewplane

Screen

Viewport
Viewpoint

Figure 2.7.1 – World to screen transformation



GMCh2 12/30/99 2-26

The world to screen transformation is also called the viewing transformation. It is the
composition of a projection onto the 2-D viewplane with a 2-D transformation between the
viewplane and the viewport, which is the region of the screen where the image is to appear.
There are several ways of specifying a set of viewing parameters to define the viewing
transformation. The specification should be easy to understand by users, and therefore
should refer to entities whose geometrical meaning is clear. Computation of the various
matrices involved should be transparent to users.

Standard or quasi-standard graphic packages such as PHIGS or OpenGL use sets of
viewing parameters that provide a user with great flexibility in view specification. Here we
discuss a simple set of parameters which is convenient for debugging geometric
algorithms. It makes several assumptions about the relations between the geometric entities
involved in view specification, and trades flexibility for ease of use.

The viewing transformation is specified by the following parameters.

4. The viewpoint p.
5. A sphere of radius R and centered at a reference point r.

The user should ensure that the sphere he or she specifies encloses the object to be
displayed, and that the sphere does not enclose the viewpoint. We make the following
assumptions.

1. The reference point is the origin of the (xv ,yv )  coordinate system in the viewplane.
2. The viewpoint and the reference point define the line of sight. The line of sight is

perpendicular to the viewplane.
3. The orientation of the viewplane coordinate system is as defined in Figure 2.7.2. In the

figure we assume that the entire configuration (viewpoint, viewplane, sphere, and
reference point) has been translated so that the reference point is at the origin. The
frame (xt , yt , z t) is constructed as follows. Its z axis coincides with the line of sight rv.
The x axis is tangent to the parallel to the sphere at the point where the line of sight
intersects the sphere. And the y axis is tangent to the meridian at the same point. The
frame (xv ,yv ,zv)  is (xt , yt , z t) translated to the origin, and therefore the two frames have
the same orientation.

4. The viewport coincides with the entire window, whose width W  and height H are
known to the system through interaction with the window manager. (The window need
not cover the whole screen.)

Xt

Yt
Zt

Xw

Yw

Zw

v

r

Figure 2.7.2 – Orientation of the viewplane frame
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When the viewpoint is on the positive yw axis (top view) by convention we set

xv = xw

yv = −zw

zv = yw

.

And for a bottom view, when the viewpoint is on the negative yw, axis we set

xv = xw

yv = zw

zv = − yw

.

When the viewpoint is not on the y axis of the world coordinate system, the geometry in
Figure 2.7.2 implies that the viewplane frame can be computed as follows:

zv = v − r
v − r

xv =
yw × zv

yw × z v

yv = zv × xv

.

Here we denote by x v the unit vector along the xv axis, and similarly for the other vectors.

The viewing transformation may be computed by moving the object, viewpoint, sphere,
and viewplane so that the reference point moves to the origin, the viewpoint moves to the
positive z axis of the world frame, and the x and y axes of the viewplane coordinate system
become coincident with those of the world frame. Because we moved the entire
configuration, the projection of the object on the viewplane, in viewplane coordinates, is
not affected by the motion. This projection is easy to compute in the new position, simply
by using the familiar perspective transformation matrix that corresponds to a viewpoint on
the z axis.

How do we find the correct motion? It is a translation that takes the reference point to the
origin, followed by a rotation that maps the viewplane basis vectors onto the world basis.
This rotation is easy to compute, because it is the inverse of a transformation Twv that takes
the world basis Ew onto the viewplane basis Ev. This latter has a corresponding matrix
whose columns are the components of the vectors of Ev in basis  Ew, as we saw in Section
2.2.1.

After projection on the viewplane, we need to scale the result so as to fit in the available
screen viewport. Figure 2.7.3 illustrates the geometry involved.
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V

d

Rθ

Zv

Yv

Figure 2.7.3 – Projecting a sphere on the viewplane

Note that the projection of the sphere is a disk of radius V slightly larger than R. By using
simple trigonometry we find the value for V:

d = v − r

sin =
R

d

V =
R

cos
=

R

1 − sin2
=

R

1 − R / d( )2

The sphere projection is tightly enclosed by a square of size 2V, centered at the origin of
the viewplane. Now we have to map it into a viewport of width W  and height H, as shown
in Figure 2.7.4. Recall that we assume that the viewport occupies the entire window. First
we scale uniformly to ensure that the transformed square fits into the available viewport
area. The scale factor k must be such that 2kV is less than or equal to the minimum
dimension of the viewport, which in general is not square, and therefore:

k =
min(W, H )

2V
 .

Next, we translate the scaled square so that its center coincides with the center of the
viewport. (We could also choose to place it elsewhere in the viewport, but the center is
perhaps best.) This requires a translation by W /2 in x and H/2 in y.
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2V

W/2

H/2

Viewport

2kV

Enclosure
of Sphere
Projection

Xv

Yv

Xs

Ys
Viewplane

Figure 2.7.4 – Scaling and translating the sphere projection into the viewport

We can summarize the entire procedure as follows.

1. Translate the center of the sphere to the origin. This is a translation by the vector –r,
with corresponding matrix

M1 =

1 0 0 −rx

0 1 0 −ry
0 0 1 −rz
0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

 .

2. Rotate the axes so that the viewplane frame coincides with the world frame. To do this,
first compute the viewplane basis vectors (xv , yv, z v) as explained earlier in this section.
Then, construct the matrix that corresponds to the world to viewplane basis
transformation:

Xv Yv Zv 0

0 0 0 1

 
  

 
  

Finally, invert it, which can be done by transposition because the transformation is a
rotation.

M2 =

Xv
t 0

Yv
t 0

Zv
t 0

0 1

 

 

 
 
 
 

 

 

 
 
 
 

.

3. Apply a perspective with viewpoint on the z axis at a distance

d = v − r  .
The corresponding matrix is
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M3 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 −1/ d 1

 

 

 
 
 
 

 

 

 
 
 
 

 .

4. Project orthographically on the xy plane:

M4 =

1 0 0 0

0 1 0 0

0 0 0 0
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5. Scale to fit in the viewport. First compute V and k as explained above, and then
construct the matrix:

M5 =

k 0 0 0

0 k 0 0

0 0 1 0

0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

.

6. Translate to the center of the viewport:

M6 =

1 0 0 W / 2
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7. Compute the viewing matrix by composing all the previous transformations:

Mview = M6M5 M4M3 M2M1.

To transform a point from world to screen we multiply its world homogeneous coordinates
by the viewing matrix, and then normalize the homogeneous coordinates of the result by
dividing by the fourth, or w , coordinate.

We explained how to compute a viewing matrix for a simple set of viewing parameters by
moving the entire scene (including the viewplane) to a convenient position, projecting,
scaling, and translating to the screen. The same approach can be used with more elaborate
viewing parameters. The viewing matrix is transparent to the users of a graphics package,
but must be computed internally by the package whenever a user changes the viewing
parameters.
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2.8 Mathematical Underpinnings

There are two major aproaches for developing Euclidean geometry rigorously. They are the
synthetic approach, based on a modern version of Euclid’s postulates, which were first
formulated around 300 B.C., and the analytic approach, which can be traced back to
Descartes in the 1600s and uses algebraic methods. Synthetic geometry is a more
sophisticated version of high school geometry. The analytic approach is followed in this
text because it is the most useful computationally. Most of the material summarized below
may be found in Halmos’ classic text [Halmos 1958]. Many other good books cover linear
algebra and geometry, for example [Bloom 1979], [Nomizu 1979], and [Porteous 1981].

A vector space defined over the real numbers is a set V together with two operations, called
vector addition, denoted x  + y, and scalar multiplication, denoted ax  (or a.x), that have the
following properties, for all vectors x , y , z  of V, and for all reals a and b. The first four
properties pertain to the vector sum, and the last four to the scalar multiplication.

1. Commutativity: x  + y  = y + x
2. Associativity: x  + (y  + z ) = (x  + y) + z
3. Existence of identity: There exists a unique vector 0 , called the zero or null vector, such

that x  + 0  = x
4. Existence of inverse: For each x  there is a unique vector –x  such that x  + (–x) = 0
5. Associativity: a(bx) = (ab)x
6. Existence of identity: 1x  = x
7. Vector distributivity: a (x  + y) = ax  + ay
8. Scalar distributivity: (a + b) x  = ax  + bx

Vector spaces can be defined more generally over any set of scalars that constitute an
algebraic field. (For basic notions of algebra see any text on discrete structures, e.g.
[Preparata & Yeh 1973].) The same axioms apply, but real numbers are replaced by field
elements.

An affine space is a set A of elements called points, together with a vector space V and a
mapping, called point difference, that takes two points p, q of A and produces a vector x
of V, and has the following properties. (Point difference is denoted simply by a minus
sign.)

1. For all p,  q, r of A,  p – r = (q – r) + (p – q)
2. For every point q of A and for every vector x  of V there is one and only one point p

such that x  = p – q

Property 2 implies that one can add a vector to a point and obtain another point. It also
establishes a one-to-one correspondence between A and V for a fixed “origin” q. This
correspondence can be used to extend operations defined in V to corresponding operations
in A. But care must be taken to ensure that the results are not dependent on the selected
origin. For example, one can show that p + q depends on the choice of origin, and
therefore is an illicit operation, whereas the average (p + q)/2 is independent of origin. For
other examples see [Goldman 1985].

A transformation T in a vector space V is affine if there exists a linear transformation T* on
V such that, for all x ,  y of V

T(x) − T( y) = T*(x − y) .
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One can show that compositions of affine transformation also are affine, and that all affine
tranformations are compositions of translations and linear transformations.

Linear and affine transformations can be defined in an affine space A by using the one-to-
one correspondence between A and the underlying vector space V. If a vector x
corresponds to a point p (when q is selected as the origin for A), then we define T(p) as
the point that corresponds to the vector T(x). For this definition to be meaningful for some
specific T, one must show that it does not depend on the origin q.

The theory of determinants can be constructed rigorously by using vector space concepts. It
can be shown that all the matrices that correspond to a linear transformation T (in different
bases) have the same determinant. Transformations that have positive determinants are
called direct, whereas transformations with negative determinants are called opposite. If a
direct transformation maps a basis onto another, the two bases are said to be equally
oriented, or to have the same orientation. If the transformation between two bases is
opposite, the bases have different orientation. The bases of V can be divided in two
equivalence classes, such that any two bases in one class have the same orientation, and
any two bases from different classes have different orientations [Artzy 1978, Bloom 1979].
V is oriented if one of the two equivalence classes has been selected as positive. This
selection of positive orientation is arbitrary, but it is customary to assign a positive
orientation to “right-handed” bases.

The inner, or dot product, denoted x . y, is an operation that takes two vectors x , y  of a
vector space V and produces a scalar, and that satisfies the following properties. For any x ,
y , z  in V and any scalar a:

1. Commutativity: x . y = y . x
2 . Distributivity: x .(y  + z ) = x . y + x . z
3. Associativity: x .(ay ) = a(x . y)
4. x . x ≥ 0
5. x . x = 0 if and only if x  = 0

A transformation T in a vector space V is an isometry if it preserves the norms of vector
differences, i.e., if for all x,  y in V

T(x) − T(y) = x − y .

A general isometry is always the composition of a translation with another isometry that
does not affect the origin. Isometries that leave the zero vector invariant are called
orthogonal transformations. It can be shown that all orthogonal transformations are linear
[Bloom 1979], and therefore a general isometry is an affine transformation. It can also be
shown [Halmos 1958] that a linear transformation is orthogonal if and only if the following
conditions are satisfied:

T(x) = x

T(x).T(y) = x.y

T(x) − T(y) = x − y

These conditions are equivalent: any one of them implies the other two. Thus, orthogonal
transformations are those linear transformations that preserve norms and inner products of
vectors. They map orthonormal bases into orthonormal bases. A matrix that corresponds to
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an orthogonal transformation in an orthonormal basis is also called orthogonal, and has a
determinant that equals either +1 or –1.

A rotation is defined rigorously as an orthogonal transformation with positive determinant.
Rotations can be used to define precisely the notion of signed angle. We give here a brief
outline of how this can be done, and refer the reader to texts such as [Artzy 1978], [Bloom
1979] or [Dieudonné 1969] for details. Consider the Euclidean plane and choose a positive
orientation for it. Given two unit vectors x  and y  of the plane there is a unique rotation R
that maps x  to y . We associate with R an entity  called the angle between x  and y  (in that

order). We set  = 0 when R = I, the identity transformation, and define the angle
associated with the composition R2 • R1  to be the sum of the corresponding angles, 1 + 2 .
This suffices to derive most of the standard trigonometric notions and expressions.
However, to associate a “measure”, i.e., a real number, with an angle one must venture
outside of geometry. Thus, consider a circle of unit radius and a rotation that corresponds
to a given angle and maps a unit vector onto another. The measure of the angle in radians is
the real number obtained by computing the length of the arc of circle defined by the two
vectors. Clearly this construction involves notions from integral calculus.


