TM-54

BLENDING AND OFFSETTING
SOLID MODELS

by

Jaroslaw R. Rossignac

PRODUCTION AUTOMATION PROJECT
July 1985

Technical Memorandum No. 54

PRODUCTION AUTOMATION PROJECT
Department of Electrical Engineering
College of Engineering and Applied Science

University of Rochester
Rochester, New York 14627

TM-54
BLENDING AND OFFSETTING SOLID MODELS
by
Jaroslaw R. Rossignac
Submitted in Partial Fulfillment
of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
Supervised by: Dr. Aristides A. G. Requicha
July 1985
The work reported in this paper was supported by the National Science
Foundation under Grant ECS-81-04646, and by companies in the Produc-
tion Automation Project’s Industrial Associates Program. Any opinions,
findings, conclusions or recommendations expressed or implied are the au-

thor’s and do not necessarily reflect the views of the N.S.F. or the Industrial
Associates of the P.A.P.

e it

ABSTRACT

A new generation of systems for modelling three—dimensional parts and
assemblies is emerging. These systems are called “solid modellers” and carry
complete (i.e., unambiguous) representations of the modelled solids, from
which the various properties of solids that are important in CAD/CAM can
be computed automatically. The geometric domain of current modellers is
limited by the types of surfaces they support, which usually are quadric
and toroidal. Part surveys show that the large majority of functional (non-
sculptured) mechanical parts could be represented in such modellers if facili-

ties were provided for the representation of fillets and roundings, collectively
called blends.

This thesis studies the semantics of blending operations and the ge-

ometric properties of blending surfaces, and develops a theory and algo-
rithms that allow the harmonious integration of blending facilities in dual-
representation solid modellers containing both Constructive Solid Geometry
(CSG) and Boundary (Brep) representations.

Entire solids or sub-solids can be globally blended with constant radius
blends through offsetting operations (shrinking and expanding). Offsetting
is used as the primary tool for specifying and representing blends in an
extended CSG scheme, but also has many important applications in other
areas of Computer Aided Design and Manufacturing. Offset or blended

solids are bounded by the standard surfaces supported by current modelers

and by canal surfaces, which are envelopes of families of spherical surfaces.

To accommodate solids bounded by canal surfaces and use them like
other solids in a dual-representation modeller, one must be able to perform
set membership classification operations on such solids. The algorithms
described in this thesis are based on explicit representations of canal sur-
faces and of their intersection—edges. To reduce the cost of computing
and processing such representations, all edges are approximated by smooth
piecewise—circular curves (PCC), and all canal surfaces by smoothly con-
nected pieces of tori or cylinders. PCC approximations are sufficiently
smooth for practical applications and very well suited for the required com-
putations.

An experimental modeller was implemented to demonstrate that the
proposed approach is viable.

VITA

Jaroslaw Roman Rossignac was born on June 26, 1955 in Warsaw,
Poland and emigrated with his parents to France in 1965. He obtained
a French “Baccalauréat” degree in Mathematics and Physics with Honors
in 1974. He received the first part of the French Engineer’s education at
the Lycée Lakanal, Sceaux, studying advanced Mathematics and Physics.
In 1976 he was admitted, through a national competitive examination to
the “Ecole Nationale Supérieure d’Electrici-té et de Mé-ca-ni-que” in Nancy,
France, where he received a standard education in Electrical and Mechanical
Engineering. During the last year, he specialized in Systems and Computer
Science and graduated Summa Cum Laude in 1979. That very year he came
to the University of Rochester as a graduate student in the Department of
Electrical Engineering. In August 1980, he was drafted in the French Navy
for sixteen months and worked as a software engineer developing real-time
systems. He resumed his doctoral work at the University of Rochester as
a research assistant with the Production Automation Project. In 1982,
he obtained his Master’s Degree in Electrical Engineering, and fulfilled his
teaching and courses requirements for the degree of Doctor of Philosophy.

"ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Professors Herbert
B. Voelcker and Aristides A. G. Requicha who provided excellent advice
on the matter of this thesis and other professional concerns. Their dedica-
tion to science and their high standards of professional excellence were a
constant source of encouragement and inspiration. Professor Requicha, as
the author’s advisor for this research, should be specially thanked for his
patience in repeatedly proof-reading this dissertation and for his advice and
help in tuning the finest details. The author’s thanks go also to Professors
Alexander Albicki and Christopher Brown, who provided help and showed
great interest in the progress of this research, to Doctor Robert Tilove, who
is responsible for the author’s interest in the blending problem, and to the
staff and students of the Production Automation Project for their assistance
and continual encouragement. And finally, the author would like to thank
his parents for their concern and support and Catherine for her dedication
in proof-reading this manuscript and in drawing many of the figures.

NOTATION

S complement of the set S

AUB Boolean union of the two sets A and B

ANB Boolean intersection of the two sets A and B

A-B Boolean difference of the two sets A and B: A— B=A(\ B
1S,kS,0S8 interior, closure, and boundary of the set S: S = kS [) kS
S* regularized complement of the set S: S° = kiS

AU B regularized Boolean union: A |J* B = ki(A |J B)
AN'B regularized Boolean intersection: A [|* B =ki(A ()] B)
A-'B regularized Boolean difference: A —* B = ki(A — B)

Str S expanded by r: Sfr ={P:3Q € S,||P- Q| < r}

Sir, S|'r shrinking: Slr = ?T_r, regularized shrinking: S|'r = §‘Tr‘
d(P,S) distance from point P to set S: d(P,S) = géfs P - Q|
R.(S) S rounded by r: R.(S) = (Sir)tr = |J {B(Q,r) C S}
F.(S) S filleted by r: F,(S) = R,(S) = (Str)ir

F!(S) modified filleting: F}(S) = R.(S') = k(F.(iS))

R;(S) regularized rounding: R, (S) = (S['r)tr

F*(S) regularized filleting: F*(S) = R:(S') = (Str)['r

®(S) radius of maximum convexity of S: ®(S) = sups_g, (s)*
E(S) radius of maximum concavity of S: & (S) = supg_ Fo(s)T
B.(S) constant distance set B,(S) = {P :d(P,S) = r}

F|, parallel faces, n-offset by r from the face F

{P—is} closest projection set of point P on the set S

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION
1.1 BLENDNG o e e e e e e e e e e e e 1
1.2 OFFSETTING o e e e e e h e e e e e e 8
1.3 THESIS ORGANIZATION o v i i i i e v i 9
CHAPTER 11
BLENDING
2.1 KNOWN APPROACHES TOBLENDING 10
2.1.1 Annotation L. L . e e e e e e e e e e 10
2.1.2 Function combination 0L, 11 .
2.1.3 Sculpturedsurfaces, 12
214 Sweeping L e e e e e e e e e e e e 13
2.2 SEMANTIC ISSUES IN BLEND SPECIFICATION 14
2.3 INTEGRATING BLENDINGINCSG 21
24 SEMANTICSOF GLOBALBLENDING 25
CHAPTER III
OFFSETTING
3.1 PRIOR WORK ONOFFSETTING 29
3.1.1 Interference and inclusiontesting 29
8.1.2 Designrulechecking 30

3.1.3 Cutter path generation 30

3.2
3.3

3.4

3.5

4.1
4.2
4.3

4.4

5.1
5.2

5.3

3.1.4 Mathematical Morphology
DEFINITIONOF OFFSETS« v v v v v o
TOPOLOGICAL PROPERTIES oo

3.3.1 Point/set distance L0

3.3.2 Closest projectionseto

3.3.3 Closure under offsetting
ALGEBRAIC PROPERTIES OF OFFSETTING

3.4.1 Invariance of inclusion under offsetting

3.4.2 Distributivity over Boolean operations

3.4.3 Combining offsetting operations

3.4.4 Commutativity with rigidmotions
BLENDING PROPERTIES OF OFFSETTING

3.6.1 Roundingandfilleting

3.6.2 Regularity of blendedsolids

3.5.3 Maximum convexity and concavity

3.5.4 Alternative blendingoperators

CHAPTER IV
BOUNDARIES OF OFFSET SOLIDS

CONSTANT-DISTANCESETS« v v v v v v ..
SMOOTH FACES AND SINGULARITIES
N-OFFSETS o o i i e e st e e e e e e e e
4.3.1 N-offsettingsmoothfaces
4.3.2 N-offsetting singularcurves
4.3.3 N-offsetting singularpoints
4.3.4 N-offsetting asolid’sboundary
4.3.5 Closure under n—offsetting
N-OFFSETTING STANDARDFACES
4.4.1 N-offsettingaplanarface
4.4.2 N-offsetting a spherical face e e e e e e e e e
4.4.3 N-offsetting a conical face e e e
44.4 N-offsettingacanalface

CHAPTER V
REPRESENTATIONAL REQUIREMENTS

SPECIFICATION v vt i it h e e e e e e e
REPRESENTATIONS o v 0 i v v vt e e
5.2.1 ConversiontoCSG e e e e
522 CSGO e e e e e e e e e e e e

6.1

6.2

6.3

6.4

7.1

7.2
7.3

CHAPTER VI
COMPUTATION IN CSGO

CURVE MEMBERSHIP CLASSIFICATION 77
6.1.1 Motivation L. 77
6.1.2 Curve classification algorithm 79
6.1.3 Curve/surface intersection 80
6.1.4 Summary of requirements 0.0 82

POINT MEMBERSHIP CLASSIFICATION 83
6.2.1 Motivation L. 0000 oL e e e 83
6.2.2 Neighborhoods 83
6.23 Algorithm 00 86
6.24 Offsetnodes 000 n e 87
6.2.5 Summary of requirements 92

BOUNDARY EVALUATION« oo oo .. 92
6.3.1 Non recursive algorithm 92
6.3.2 Incremental boundary evaluation 93
6.3.3 Surface/surface intersection 95
6.3.4 Patchesofoffsetnodes 95
635 Vertices s e 97
6.3.6 Summary of requirements00 0L, a8

COMPUTATIONAL REQUIREMENTSINCSGO 98

CHAPTER VII
APPROXIMATION OF EDGES

GENERATION OF INTERSECTION-EDGES 100
7.1.1 Constant parameter curveso 101
7.1.2 Intersection pointsand tangents 102
713 Cellularapproach00 0000 104
7.1.4 Matching intersection points 0L 0L 105
7.1.5 Interpolation 0000000 107
718 Precisiono L e e e e e e e e e e 108

TORUS PROFILEEDGES oo v oo v oo S 108

VERTICES o i i i i i i it e e i e e e e e e 110

8.1
8.2

8.3

8.4
8.5

9.1
9.2
9.3
9.4
9.5

CHAPTER VIII
PIECEWISE CIRCULAR CURVES

INTERPOLATION e v v i e et e e e e e
TWISTED BI-FARCS o o v i v e e v e e e
8.2.1 General equation T
8.2.2 Degeneratecase e e 0w e e e
8.2.3 Generalsolution 00000
8.2.4 Equi-sided controlpolygon
REPRESENTATION o v v v v v vv v v .
8.3.1 Minimal representation,
832 Controlpolygon e e
8.3.3 [Explicit trigonometric representation
8.3.4 Representation of curvesegments
8.3.5 A convenient representation
INFERRING TANGENTS« o v ...
APPLICATIONSOF PCC’S o v i v i e e e e e e
8.5.1 Approximationsof torusedges
8.5.2 Support of offsetting operations
8.5.3 Two—dimensional contouring
8.5.4 Three-dimensionalcurves
8.5.5 Cutterpathmodelling
8568 Sweepst e e e e e e e e e e e e e e
8.5.7 Wireframedisplay

CHAPTER IX
COMPUTATION WITH PCC’S

REPRESENTATION CONVERSION
ARCSUBDIVISION o o v v i v vt it e e e e
POINT EDGE PROJECTION ANDDISTANCE
LINE/SURFACE INTERSECTION
CIRCLE/SURFACE INTERSECTION

9.5.1 Conversion of trigonometric expressions

9.5.2 Applications to circle-surface intersection
9.5.3 Circle—cylinder intersection
9.56.4 Circle—cone intersection
9.56.6 Circle-torus intersection e e e e .
9.5.8 Circle-sphereintersection
9.5.7 Circle plane intersection

CHAPTER X
EXPERIMENTAL IMPLEMENTATION

10.1 BOUNDARY EVALUATION
102 PATCHES o i i i v v e e e e e
10.3 PROJECTION ON STANDARDSURFACES
104 PRIMITIVES o o 0 v v v i e o e oo
10.5 BOUNDARY OF PRIMITIVES
106 PMC o e e e e e e e e e e e e e e
10.7 CLASSIFICATION AGAINSTOFFSETS
108 PCC CLASSIFICATION o v v v v v v v v v
10.9 EXPERIMENTAL RESULTS

CHAPTER XI
CONCLUSION

11.1 BLENDING 0 v e s e e e e e e e e
11.2 OFFSETTING o v i it i v e e e e e e
11.3 PCC’S o e e e e e e e e e e e e e e e e e e
11.4 EXPERIMENTAL IMPLEMENTATION
11.5 SUMMARY OF CONTRIBUTIONS

APPENDIX A
CANAL SURFACES
Al DEFINITION i ittt
A2 EQUATIONo ittt

A3 PARAMETRIZATION o o v v i v v v e
A4 NORMAL TO THE CANALSURFACE

REFERENCES 0 v it e e e e e e e e

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10

LIST OF FIGURES

Blending e e e e e
Offsetting
RollingSphere
Filleting with standard primitives
Cylinder/cylinderblend
BRep Architecture
Dual architecture
Ricci’s blending e e e e e e e e
Specifying blended faces
Complex corners e e e e e e e
End conditionsofblends
Blend interference e e e e e e e
Detail obliteration e e e e e e e e
Non-smoothblends
Non-smooth junctions
Global blendinginCSG

OrderinginCSG e e e e e e e
Simpleblend
Semanticsof rounding
Semantics of filleting e e e e e e
Side effect of blending
Combining blending operations

Non-smooth filleting and rounding
Semantics of offsetting
Boundary ofoffsets
Expanding union e e e e e e
Shrinking a difference
Expanding intersections
Shrinkingunions
Expandingacylinder
Domain limitation e e e e e e e
Non commutative offsetting

Shrinkingeffect

..........

..........

..........

..........

.« .

.....

.........

Figure 3.11 Non-regularized filleting

Figure 3.12 Modified blending e e e e e e e e e
Figure 3.13 Classification on offsets of closedsets
Figure 3.14 Regularized blending

Figure 4.1 N-offsettingacurve
Figure 5.1 Face-offset primitive

Figure 6.1 NeighborhoodsinCSG
Figure 6.2 Neighborhoodsforoffsets
Figure 6.3 Classifying normal projections

Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 9.1
Figure 9.2
Figure 9.3
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure A.1

Constant parameter curve . . .
Intersection points out of Fp . .
Intersection parallel to u-curves
Parametricgrid
Errors of heuristic matching . .
Control triangle
Interpolating control polygon .
Degenerate case
Negative control polygon

Half-circles

Control polygon representation

Tangent approximation
Tangents and weights
Offsetting 2-D contours
Arc representation conversion

Subdivision
Circle-sphere intersection . . .
Primitives in original position

Torus/cylinder edge
Head wireframe
Cylinder/cylinder offset
Canal surface

.......

.............

........

................

................

..............

59
59
62
62
67
73
83
89
89

. . 102
. 103
. 103
. 106
. 108
. . 115
.. 115
.. 118
. 120
. . 120
. 123
. 1268
. 126
. 128

131

. 131
. 141
. 147
. . 153
. . 153
. 154
. 161

CHAPTER 1

INTRODUCTION

This thesis reports research on two closely related operations, called
blending and offsetting, which map solids onto solids. Blending is a catch—
all term for the creation of fillets, rounds, and similar smooth, localized
transitions between large-scale surface features of a solid object. Fig-
ure 1.1 shows that blending can be viewed as an addition or a subtraction
of material. Offsetting amounts to growing or shrinking solids (Figure 1.2)
and can be used to produce globally blended solids, as we shall see later.

1.1 BLENDING

The major types of blends encountered in practice can be categorizea
as follows:

o Surfaces governed by strong functsonal constraints. For example,
the surface joining the wing of an aircraft to the fuselage must meet
stringent aerodynamic requirements.

o Aesthetic blends. For example, the smooth transitional surface be-
tween the body and the stem of a wine glass is constrained by
appearance more than by function.

o Fairings [Veenman 82] are transitional surfaces that are relatively
large when compared to the surface features being blended. Their
shape is not strongly constrained by either function or aesthet-
ics. Typically, fairings connect functional features such as bearing
housings. Many examples are found in automobile transmission or
suspension parts, ducts and manifolds.

1

Chapter 1: Introduction 2

FIGURE 1.1: To fillet the concave edge of the solid S (left) we union to S a solid fillet
(center). A convex edge can be rounded by subtracting a similar fillet from S (right).

FIGURE 1.2: The solid (left) is shrunk (center) or expanded (right).

Chapter 1: Introduction

o Rounds and fillets are relatively small transitional faces found in
most machined, cast or molded parts. They serve to relieve stress
concentration, to simplify fabrication, or simply to improve ap-
pearance. Their shape is weakly constrained by function.

The shapes of fairings and of fillets are not crucial. Designers of-
ten specify only a few cross sections of a fairing or a maximum radius
for a fillet; the exact shapes are left to the discretion of manufacturing
engineers, who are expected to produce smooth blends from incomplete
specifications. In contrast, blends that are aesthetic or that have strong
functional constraints require precise control of shape.

Traditionally, blends have been specified in blueprints, but manual
drafting is rapidly giving way to computerized geometric modelling sys-
tems, which contain complete, unambiguous representations for solids [Re-
quicha 82, 83]. These representations permit (at least in principle) any
well-defined geometric property of any represented solid to be calculated
automatically.

Sculptured surfaces [Barnhill 74, Faux 79] can be used to model
blends, but this technology is computationally expensive and numerically
less robust than quadric-surface technology. Modelling sculptured objects
is undoubtedly important for certain applications [Sarraga 83] and solid
modellers that can accommodate them are beginning to emerge [Tiller
83], but the graceful meshing of sculptured surface and solid modelling
technologies is still largely at the research stage. On the other hand, in
many applications the objects are primarily unsculptured. For example,
a survey of about 100 parts of a Xerox copier showed that only one of the

parts contained a sculptured surface that did not have a blending function
[Samuel 76].

Our work explores alternative methods for dealing with rounds and
fillets in otherwise unsculptured, or functional parts. More specifically, we
focus on constant-radius rounds and fillets (hereafter called simply blends)
because they are the most common. Faces of constant-radius blends are
generated (conceptually) by a sphere that rolls tangentially to the surfaces

Chapter 1: Introduction

being blended. The face of the blend is included in the surface that bounds
the region swept by the rolling sphere (Figure 1.3).

Most modellers accommodate only solids bounded by standard sur-
faces (simple quadrics and, sometimes, toroidal surfaces) [Requicha 82,
83]. Surveys of parts indicate that such modellers would handle almost
all of the unsculptured mechanical parts if they could support blends.
Some fillets can be represented by a combination of cylinders, spheres
and tori (Figure 1.4), but most require non-standard surfaces and imply
true extensions of the modellers’ domains. For example, the filleted cylin-
der/cylinder intersection of Figure 1.5 cannot be represented in a modern
modeller such as PADL-2 [Brown 82]. The inability of current modellers
to represent all the important details of mechanical parts is one of the
major impediments to the widespread use of solid modelling in industry.

The design of blending facilities for solid modellers is strongly influ-
enced by modellers’ architectures. Most of the solid modellers use one of
the following two basic architectures. The single-representation systems
diagrammed in Figure 1.6 allow users to define solids by various techniques
but store and maintain only a boundary representation (BRep) for each
object. (A BRep is a graph whose nodes represent faces, edges and ver-
tices of a solid [Requicha 80].) Users of the dual-representation systems
of Figure 1.7 define objects primarily through constructive solid geometry
(CSG) but these systems also use a BRep, which is derived algorithmi-
cally from the corresponding CSG. (A CSG representation is a tree whose
internal nodes represent rigid motions or Boolean operators — regularized
union, intersection and difference, denoted UJ*, N*, —* [Requicha 80] —
and whose leaves represent primitive solids such as cuboids and cylinders.)
All application programs (for graphics, mass property calculations, etc.)
are supported from BReps in the single representation modellers, while
dual-representation systems may support application algorithms that op-
erate on either BReps or CSG, or both.

We are primarily interested in designing and implementing blending
facilities for dual-representation modellers such as PADL-2. We must
maintain consistency between BRep and CSG, and since algorithms for
converting BRep into CSG are not available, we must seek CSG-like spec-
ifications and representations for blended objects, and algorithms to com-
pute their boundaries [Requicha 85]. The basic geometric utilities (e.g., set

Chapter 1: Introduction

FIGURE 1.8: The sphere of specified radius rolls along the blended edge, remaining in
contact with the blended faces (top). The face of the blend is contained in the envelope of

thae wamian swmraméd hae dho accb . fr a2 Y

Chapter 1: Introduction 6

&

FIGURE 1.4: The concave edges of the solid (left) can be blended (right) with a combi-
nation of fillets defined in CSG (center). '

FIGURE 1.5: The concave edge of the union of two cylinders is blended with a constant
radius fillet. The result cannot be modelled with standard surfaces.

Chapter 1: Introduction

> T0 APPLICATION PGHS

GRAPHICS
MASSPROPS
[

°
.

B-REPS

: .
|
_:__,@_> CSG REPS

I

!

| .
|

|

|

|

I

FIGURE 1.6: Single-scheme BRep modeller.

|
|
l
; »{ B-BUILD
|
|
|

oy

| VOLATILE | -~ N GRAPHICS
| | REPS (CONVERT \ MASSPROPS
- °
I | CS6 ! / .
| SWEEP® I —

|
l
|
|
|
|
B-REPS jumemabp TO APPLICATION PGS
l
I
|
|

FIGURE 1.7: Dual-scheme CSG/BRep modeller. Both representations are consistent
and available for application programs.

Chapter 1: Introduction

membership classification [Tilove 80]) needed by application algorithms
must also be extended to accommodate blended objects. Provision of
blending capabilities in modellers raises issues of user specification, inter-
nal representation, and computation. Specification must be simple; users
should have to do little more than define the feature to be blended (edge,
pocket...) and a radius. This is essentially how blends have been tra-
ditionally specified in blueprints. User specifications should correspond
to mathematically defined shape modifications, which must be internally
represented in a modeller in a form suitable for the operations and the ap-
plications it supports. It should be possible to perform for blended objects
all the computations possible for unblended objects. Thus, one should be
able to test blended objects for interference, to evaluate their volumes and
moments of inertia, to display them in various styles, and so on. These
requirements raise complex computational problems, as we shall see.

Our approach is to introduce rounding and filleting operators in CSG.
The rounding operation transforms a solid by simultaneously rounding all
its convex edges and vertices with the same radius. The dual operation
fillets simultaneously all concave edges and vertices of a solid. The term
blending will refer to both operations. Blended solids can be combined
through Boolean operations and also used as arguments of other blending
operations. Thus to blend a single edge E, we first blend a simple sub-
solid that contains E, and then use Boolean operations to construct the
desired fillet and combine it with the original solid.

1.2 OFFSETTING

An offset object is an expanded or contracted version of an original
object. To expand a solid S by a positive distance r one adds to the solid
all the points exterior to S that lie within a distance r of the boundary
of S. To shrink (or contract) S by r one subtracts from S all the points
within a distance r from its boundary. Solid offsetting appears to be very
useful. Potential applications cover a wide range, from tolerance analysis
and clearance testing, through modelling of such physical processes as
coating or etching, to blending.

In this thesis we show that blending operations can be defined in
terms of offsetting, and we propose to represent blended solids in an ex-
tended version of CSG containing offsetting operators. The design and

Chapter 1: Introduction

the implementation of offsetting facilities for dual-representation mod-
ellers raise issues similar to those discussed above in the context of blend-
ing. In essence, one must devise representations for boundaries of offset
solids and set membership classification procedures, which are used for
boundary evaluation and various applications.

1.3 THESIS ORGANIZATION

The thesis contains five major parts: blending, offsetting, represen-
tations and algorithms to support offsetting, edge approximations, and
experimental implementation.

1)

2)

3)

4)

5)

Chapter two covers blending semantics and discusses the advan-
tages of our approach, which integrates blending in CSG through
a global blending operator.

Chapter three provides mathematical definitions and studies topo-
logical and algebraic properties of offsetting operations. It also
shows how offsetting operations can be combined to blend solids.
Chapter four studies the boundaries of offset solids and explains
how a superset of such boundaries can be computed.

Chapter five discusses requirements for representing offset solids in
a modeller. Chapter six presents algorithms for supporting offset-
ting — and therefore blending — operations in solid modellers. -

High level algorithms that compute approximations for intersection
edges of surfaces that bound offset solids are proposed in chapter
seven. The resulting approximations are PCC (Piecewise Circu-
lar Curves), whose nature, representations, and applications are
presented in chapter eight. Chapter nine develops the detailed
mathematics used in algorithms that operate on such PCC’s.

Chapter ten describes our experimental solid modeller, outlines its
architecture, presents some key algorithms, and discusses limita-
tions and possible extensions. '

CHAPTER 11

BLENDING

In this chapter we review prior work on blending, discuss semantic
issues that have an impact on the design of blending facilities for solid
modellers, and propose a new approach to blending solids defined in CSG.

2.1 KNOWN APPROACHES TO BLENDING

Blending has long been recognized as an important problem in geo-
metric modelling, but there is a relatively small body of research literature
devoted to it. Approaches known to the author may be summarized as
follows.

2.1.1 Annotation

The most obvious approach consists simply in treating a blend as an
attribute or “note” associated with an edge of the object and specifying
the radius of the blend. This approach was proposed for the PADL-1
system [Fisher 78] but never used. It was implemented at the University
of Cambridge [Braid 80], to generate “symbolic”, non-realistic graphic de-
pictions of blended objects. Because the geometry of the blend is not fully
specified, annotation per se is inadequate for the full range of applications
supported by a solid modeller.

10

Chapter 2: Blending

2.1.2 Function combination

More than a decade ago, Ricci [Ricci 73] devised a technique for
describing solids through blended versions of the usual Boolean opera-
tions. Specifically, he considered solids defined by inequalities of the form
f(P) < 1, where P is a point of Euclidean space. Ricci defined the blended
intersection of two solids A and B by the function

fFa N B(P) = (fA(P)k + fB(P)k)l/k

where the functions f4 and fp define respectively A and B. Blended union
and difference of two or more solids are defined similarly. When k ap-
proaches infinity, Ricci’s operators approach the usual Boolean ones. For
finite values of k the resulting solids are smoothly blended approximations
to the usual Boolean combinations, and the degree of approximation can
be controlled by varying k.

FIGURE 2.1: The union of a stripe with a circle is globally blended (left) by function
combination: an unexpected “boss” appears in the originally straight edge that should
not be modified by the operation. The difference of the two solids is rounded (right); the
resulting blends are not circular.

A significant advantage of this approach is that the implicit equation
of the blending surface (f(P) = 1) is known and can be used to compute

the intersection of curves with the boundary of the resulting solid. We .

11

Chapter 2: Blending

experimented with Ricci’s method and concluded that it produces nicely
rounded solids but may cause global object changes, because the effects
of blending are difficult to localize (Figure 2.1). We also found that it
does not provide easy control of the blending surface, which does not have
~ constant radius.

Very recent work at Cornell University [Hoffmann 85] also provides
techniques for deriving the implicit equation of a smooth blending sur-
face F by suitably combining the implicit equations of two surfaces to
be blended S, and S,. The technique is promising, because the resulting
surfaces are algebraic and of low degree. They are not, however, constant—
radius surfaces, and their integration in solid modelling systems requires
further study.

2.1.3 Sculptured surfaces

B-splines and other sculptured surfaces can be used to model most
blends encountered in practice. (Non-rectangular patches, which have
not been widely used until now, may be needed to model certain blended
regions, especially near blended vertices.) Direct specification of blending
surfaces by a user, e.g. by defining control points for a B-spline surface, is
very difficult, and therefore facilities must be provided for automatically
deriving the surface-defining data from simple user specifications. The
following approaches have been proposed:

o Recursive subdiviston: Polyhedra can be globally rounded by suc-
cessively chopping (chamfering) their edges [Catmull 78], [Doo 78a],
[Doo 78b]; some of the faces resulting from subdivision can be
replaced by curved patches [Veenman 82]. This approach seems
fruitful for designing solids with a generally rounded shape, but
inadequate for controlling the shape or extent of the blends, and
therefore has drawbacks similar to those of Ricci’s operations.

e Replacing edges by curved patches: Researchers at the Univer-
sity of Tokyo report a technique for fitting patches between faces
[Chiyokura 83]. The user marks all the edges to be rounded. Faces
bounded by marked edges are split into four regions. Groups of two
or more regions that share a marked edge are replaced by patches,
in such a way that user-marked edges are smoothly blended.

12

Chapter 2: Blending

o Conformal surfaces: Work under way at the University of Cam-
bridge uses conformal mapping techniques to generate blending
surfaces, which are then converted to B-splines [Rockwood 83].

Blending facilities based on sculptured surface techniques for dual-
representation solid modellers have the following two major drawbacks:

e A modeller for sculptured objects must be fully implemented if
blended objects are to be treated like other solids in the system.
This implies, for example, that Boolean operations on sculptured
solids must be supported.

¢ Patch manipulations are primarily surface operations, and tech-
niques for converting the representation of blending faces into a
CSG—compatible format are unknown.

2.1.4 Sweeping

Blending surfaces can be generated conceptually by sweeping (or
rolling) a sphere in contact with the surfaces to be blended. Solid fil-
lets can be generated by sweeping an appropriate (often non-constant)
cross—section along the edge to be blended. Therefore sweeping tech-
niques are potentially applicable to blending. Research on sweeping can
be summarized as follows:

o A recent version of the CSG modeller TIPS includes a sweep prim-
itive, defined by sweeping a constant planar cross—section along
specific trajectories [Shirma 83]. However, it is not clear how to
generate automatically the varying cross—section sweeps necessary
to model complex fillets.

o A program verifier for numerically—controlled machine tools at
General Dynamics [Fridshal 82] is based also on the TIPS sys-
tem, and supports volumes swept by cutters in motion, but the
mathematical and algorithmic methods used in the verifier have
not been described publicly.

o Curve/surface intersection is one of the most important geometric
utilities in a solid modeller. Morgan, at the General Motors Re-
search Laboratories, defined the problem of intersecting a line with

13

Ch_apter 2. Blending

the surface swept by a moving sphere in terms of a system of non-
linear equations, which can be solved by homotopy continuation
methods [Morgan 81]. These methods are robust, but fairly slow.

e Shaded displays of volumes swept by moving spheres are generated
at Delph University [Van Wijk 84] by ray—casting techniques, us-
ing algebraic root—find procedures for intersecting lines with swept
surfaces.

e Rolling-sphere surfaces are provided in several of the commercial
turnkey CAD/CAM systems, which are based primarily on wire-
frame representations [Requicha 80]. These systems have limited
capabilities for “trimming” the surfaces so as to properly match
abutting faces, and do not contain algorithms to support the op-
erations required by solid modellers. :

2.2 SEMANTIC ISSUES IN BLEND SPECIFICATION

Constant-radius blends are specified in drafting practice typically by
showing a rounded profile in an appropriate view, and by indicating the
nominal (or sometimes the maximal) value of the blending radius, which
may be toleranced explicitly or by a general note in the drawing. The
almost universally accepted interpretation for such a specification is that
it defines a blending surface generated by conceptually rolling a sphere
with the specified radius in contact with the faces being blended.

Specifying the blending radius and either the edge or the two faces
to be blended is convenient for users of solid modellers, and is a direct ex-
tension of current practice. (Two—face specification is more general than
edge specification, as shown in Figure 2.2). But what do such specifica-
tions mean exactly? In attempting to answer this question one is faced
with several issues:

o Complex vertices. What is the nature of the blending surface in
the neighborhood of a vertex where several convex and concave
edges meet (Figure 2.3) or where three edges with different blending
radii meet? Standard drafting practices seem to ignore these issues;
blended vertices are not specified precisely, but the consensus seems
to be that the resulting solids should be smooth.

14

Chapter 2: Blending 15

TN e ae s
B b ead e
.,

DSOS
0%

FIGURE 2.2: The union of two non intersecting spheres (top) can be filleted (bottom),
although the solid has no edges.

Chapter 2: Blending

FIGURE 2.3: Six edges that intersect at a common vertex are all blended with the same
radius. The blending surface near the common vertex should be smooth, but is not in this
example, which was generated in PADL-2 by using toroidal surfaces.

16

Chapter 2: Blending

2
DR

FIGURE 2.4: The concave edge E: (a) can be blended with the fillet (b). The fillet
endings of (c), (d), and (e) are “obviously wrong”. Bounding the fillet by the plane that
contains edges E; and E3 (f) seems reasonable. But what would we do if the edges E;
and Es were curved?

17

Chapter 2: Blending

o End conditions. How should blends be bounded when the edges
being blended terminate in complex vertices? Drafting practice
usually does not explicitly specify end conditions, and sometimes
it is difficult to infer how blends should end (see Figure 2.4).

o Blend interference. Consider the specification of Figure 2.5. How
should the two blends meet? Blend interference issues are resolved
in blueprints by providing additional graphic information, but it is
not clear how to specify analogous information in a solid modeller
in a way that is convenient for the user.

e Obliteration of detasls. When a blending surface extends over an
existing surface feature of an object, should the existing feature
“disappear”? Figure 2.6 illustrates the issue.

o Blend sequencing. Is order significant when blending operations are
specified sequentially in a modeller? Can blended objects be com-
bined by Boolean operations? Can edges that result from blending
operations be blended further? These issues do not arise in draft-
ing practice because a blueprint depicts only a final object and does
not record the intermediate steps in its definition.

o Lack of smoothness of the blending surface. Blending surfaces are
not always smooth. Lack of smoothness may be due to the local
behavior of the blend, e.g., when the radius of the rolling—sphere
exceeds the radius of curvature of the trajectory along which the
center of the sphere is moved (Figure 2.7). Global self-intersection
of the envelope of the sweep might also create sharp edges.

o Lack of smoothness at the junctions. A blending surface may itself

be smooth but join adjacent surfaces non—smoothly (Figure 2.8).

¢ These examples show that the specification of too large a blending
radius is one of the major causes of non—-smoothness.

Some of the issues discussed above also arise in current drafting prac-
tice but seem to be left to the common sense of manufacturing engineers,
while other issues are indigenous to computer-based modelling systems.
All must be considered by designers of blending facilities for solid mod-
ellers. Some awkward situations may be disallowed and flagged as errors,

18

Chapter 2: Blending 19

FIGURE 2.5: What is the shape resulting from these two blending operations?

FIGURE 2.6: Blending the concave edge of the L-shaped object (left) might obliterate
the circular hole, (center). A more reasonable interpretation (right) can be obtained by
blending a sub-solid before the hole is made. It is not easy to design algorithms for
“correctly” interpreting analogous but more complex cases.

Chapter 2: Blending

FIGURE 2.7: Global and local self-intersections of the surface of the sweep.

(a)

_ 7

(b) (c)

FIGURE 2.8: The concave edge is replaced by a circular blend. However, the blending
face is not smoothly connected to the original solid.

20

Chapter 2: Blending

but a reliable modeller must associate a valid solid object with any user
specification that is not recognized as an error. A less crucial but very
desirable feature is that a modeller ensure smoothness for all user—defined
blends. Unfortunately, guaranteeing smoothness algorithmically seems
neither easy nor cheap.

2.3 INTEGRATING BLENDING IN CSG

We propose a new approach to (constant-radius) rounding or fillet-
ing; its essence is to introduce in CSG a blending operator' that can be
used per se to blend solids globally, or can be combined with Boolean
operators to produce specific “blend primitives”, which are subsequently
added or subtracted to an original solid to produce the desired result.
This approach has significant advantages: '

¢ Blended solids can be represented in a form compatilbe with CSG,
and can be combined by Boolean operations or blended further
with different radii.

o Blend specification is independent of boundary representations,
and therefore retains all the advantages of CSG. For example, one

can easily parameterize blended solids and guarantee their validity. -

o The high-level logic of all the CSG-based algorithms in a modeller
is essentially unchanged; only a relatively small number of low—-level
geometric utilities is needed to support the new operator.

Our approach is illustrated in Figure 2.9. The sequence in which blends
are performed is obviously important because the result of a series of
Boolean operations generally depends on their order. Blended objects are
treated essentially in the same way as unblended objects, and therefore can
be blended successively and combined through Boolean operations. Some
of the ambiguities in specification can be avoided by ordering blends and
combining blended objects (see Figure 2.10 for an example).

! We shall see later that the blending operator is itself defined in terms of another
operator, called offsetting.

21

Chapter 2: Blending

FIGURE 2.9: All edges of the pocket (top-left) can be filleted with specified radius
(bottom-left). If the original solid is defined in CSG as the difference of two blocks (top—
right), the desired result can be obtained by globally rounding the subtracted block (bottom—
right) before subtraction. -

FIGURE 2.10: To fillet the concave edge of the solid (left) without covering the hole, one
can first fillet the solid without the hole (center), then subtract an extended version of the
hole (right).

22

Chapter 2: Blending

This example typifies our approach: to provide users with facilities to
define blends unambiguously, rather than to infer users’ intentions from
ambiguous specifications.

Global blending can still be used to produce localized fillets and
rounds through addition or subtraction of appropriate blend primitives.
These are specified by a three step procedure as shown in Figure 2.11.
First the user defines a simple sub—solid @ that contains the faces to be
blended and specifies a radius r for filleting Q. Typically, Q is the union
of two half-spaces for concave—edge blends or the intersection of two half-
spaces for convex—edge blends. Then, an oversized fillet B is produced
by a set difference operation between Q and its blended version. The re-
sulting solid may be theoretically unbounded, but in practice is bounded
by some large, system—defined region guaranteed to enclose the user’s uni-
verse. The third and final step eliminates the unwanted parts of B through
Boolean operations. Trimming the blend to the correct “size” is usually
accomplished by intersecting B with a box or another simple solid. The
resulting blend primitive P is a solid in its own right, and may be manip-
ulated in the same way as any other solid in the system. Presumably the
user will combine P with the original S to obtain a locally blended solid,
but P is available for other purposes as well. The combining operation
is a union for filleting concave edges or a difference for rounding convex
edges.

The specification procedure just described is somewhat inconvenient
for users, but one can design interfaces that hide most of the annoying
details (e.g., trimming) for the common, simple cases. We think that
the ability to specify “manually” the blend primitive and to impose the
desired end conditions by direct trimming through Boolean operations
is a powerful and reasonable way to handle complexity. The second (or
trimming) step in the blend specification procedure is often unnecessary.

23

Chapter 2: Blending 24

\

N

N
N
NN

AV
N
(@)

N

FIGURE 2.11: To define a blend for filleting the concave edge of the solid (a) the user first
specifies a radius r and a sub-solid Q, which contains the concave edge. Q is the union of
two half-spaces that contain the blended faces (b). Subtracting Q from its globally filleted
version (c) produces the desired fillet B (d). The oversized fillet B is trimmed to P (e) by
Boolean operations and combined with the solid (f).

Chapter 2: Blending

2.4 SEMANTICS OF GLOBAL BLENDING

The semantics of blending is defined as follows. The globally rounded
version of a solid S, is the region swept by a ball of radius r as it moves
through S, remaining entirely inside of S at each “instant”. (Precise
mathematical definitions are given in chapter three.) Such an operation
rounds with the same radius r, all convex edges and vertices of §, as
illustrated in figure 2.12.

The dual operation is filleting, which is equivalent to rounding the
complement of a solid — see figure 2.13 — and intuitively generates the
region that cannot be reached by a ball that remains outside of S and
whose radius is r.

Mathematical definitions of global blending operations that preserve
regularity are proposed in chapter three. Such operations, when com-
bined with regularized Boolean operations and applied to regular solid
primitives are sufficiently powerful to produce the desired results for the
common fillets and rounds, and ensure that these results are valid solids.
Occasionally they produces surprising side—effects — e.g., fillets in un-
expected regions when complex solids are blended with relatively large
radii. Side effects are illustrated in Figure 2.14, which also shows how
CSG specification can be used to obtain the desired result. The general
approach is to define a sub—solid that contains all the features (edges and
vertices) that should be blended with the same radius, blend it globally,
and then combine it with the unblended parts of the original solid. ‘

To blend simultaneously convex as well as concave edges and ver-
tices of a solid, rounding and filleting operations can be combined (Figure
2.15). Such a combination of filleting and rounding in general is not com-
mutative and does not always produce smooth solids (see Figure 2.16 for
a counterexample).

As we shall demonstrate in chapter three, constant radius blending
can be expressed in terms of offsetting operations. The remainder of this
thesis will deal primarily with the mathematics of offset solids and with

the design of representatlons and algorithms that support offsettmg (and
hence blending) in CSG-based modellers.

25

Chapter 2: Blending 26

FIGURE 2.12: The ball of radius r remaining in S (left) cannot reach the convex corners.
The result is a globally rounded solid (right).

FIGURE 2.18: The ball of radius r remaining out of S (left) cannot reach the concave
corners, which are blended in the globally filleted version of S (right).

Chapter 2: Blending 27

2
) K20 2,

/
Yy, 0702

A

55

G, a7
o U

A 7y

FIGURE 2.14: Globally rounding the solid S (top-left) will produce two disconnected
parts (top-right) because the ball of radius r cannot penetrate the thin junction while
remaining in S. The desired result (bottom-right) can be obtained by first rounding a
sub-solid (bottom-left), then combining it with the thin unblended junction.

7

L

4°

NN\

LA

CHAPTER III

OFFSETTING

This chapter introduces ezpanding and shrinking transformations,
also called respectively positive and negative solid offsetting. We review
prior work, study the topological properties of offsets, and analyze how
offsetting operations can be combined with other offsetting operations,
with Boolean operations, and with rigid motions. Finally, we show how
the global blending operations defined in chapter two can be expressed in
terms of offsetting operations.

3.1 PRIOR WORK ON OFFSETTING

Variations of our offsetting operations have been used previously in
the following contexts. ‘

3.1.1 Interference and inclusion testing

Given two objects A and B, is A(1B = 0? Is A ¢ B? To answer
these questions it is often convenient to consider a point P of A and test it
for inclusion in an expanded or contracted version B’ of B, because point
inclusion — or point membership classification [Tilove 80] — is relatively
straightforward. This approach has been used for computing mass prop-
erties of solids [Lee 82] and for planning collision—free paths for robots
[Lozano-Perez 79]. In both applications, objects are expanded or con-
tracted by ad-hoc techniques that are related but not identical to our
offsetting operations.

29

Chapter 8: Offsetting

3.1.2 Design rule checking

In integrated circuit design, and especially in VLSI, it is important
to ensure that certain design rules of a geometric nature are not violated.
These rules typically involve minimal and maximal sizes, distances, and
overlaps between 2—-D rectangular entities. Variously-defined growing and
shrinking operations on polygons have been used for rule checking in many
CAD packages for VLSI. An exemplary package that supports the 2-D
analogues of our offsetting operations is discussed in [Barton 80].

3.1.3 Cutter path generation

Numerically controlled (NC) machine tools are typically programmed
in terms of cutter trajectories, which are specified by requiring that a cut-
ter move in contact with given surfaces. However, machine tool control
systems require trajectory specifications in terms of cutter centers or cen-
terlines (CL data). To generate CL data for a ball-ended cutter with
radius r from contact—surface information, one constructs a surface “par-
alle]” to the contact surface by “moving along the normal” by distance
r [Pressman 77, Faux 79]. (We refer to such an operation as normal
offsetting, abbreviated n—offsetting to distinguish it from solid offsetting
discussed in this chapter.)

CL data for cutting 2-D profiles with cylindrical cutters is generated
by n—offsetting planar curves. The current understanding of n—offsetting
of planar curves is summarized in [Tiller 84]. Briefly, there is no accepted
mathematical definition of n—offsetting for curves and surfaces that are
only piecewise smooth, and even when surfaces and curves are smooth, n—
offsetting may lead to undesirable cusps and self-intersections. Heuristic
approaches proposed in [Tiller 84] provide reasonable results in many but
not all of the possible cases.

We shall study n—offsets in chapter four and use them to generate the
boundaries of offset solids.

30

Chapter 8: Offsetting

3.1.4 Mathematical Morphology

As we shall see below, offsetting operations are special cases of
Minkowsky additions and subtractions. These are important in the field
of geometric probability, and have been studied extensively by the French
school of “mathematical morphology” [Matheron 75, Serra 82], which is
primarily motivated by problems of texture analysis for geological ap-
plications. A few of the properties presented below have been derived
independently in the mathematical morphology work.

3.2 DEFINITION OF OFFSETS

All sets discussed in this thesis are assumed to be subsets of the three—
dimensional Euclidean space (E?), and distances associated with offsetting
operations are assumed to be positive. Positive offsets are obtained by
expanding sets.

DEFINITION 3.1: The expanded version of a set S by distance r is:

Str={P:3Q € S such that ||Q - P|| < r}

It follows directly from this definition that both the empty set # and
the universal set E® are invariant under expansion. Positive offsets are
called generalized balls in the mathematical literature [Nadler 78]. The
following property (illustrated in Figure 3.1) shows that one can also define
positive offsets in terms of closed balls B(Q,r), where

B(Q,r)={P:|P-Q| <r}

PROPERTY 3.1: Sir is equal to the union of all the closed balls of radius
r whose center is in S.

PROOF: By definition of closed balls:
U B(@,r)={P:Pe | B(Q,r)}
Q€S QES

= {P:3Q € S such that P € B(Q,r)}
= {P:3Q € S such that ||P - Q|| <r}
= Sir

31

Chapter 8: Offsetting 32

N

1/

2N

R
3

x

WA

SOSK 7’%
N
:\\\\)
N

T

FIGURE 8.1: The expanded version of S is the region that can be reached by a sphere
of radius r whose center remains in S.

This alternative definition shows that one can think of S1r as being
the region swept by a solid sphere B(Q, r) of radius r, as its center Q moves
through the entire set S. It follows that expanding lower dimensional sets
(e.g. curves or surfaces) produces three dimensional sets.

Negative offsetting is defined in terms of positive offsetting and stands
for both regularized and non-regularized shrinking (defined below). Regu-
larized offsetting connotes expanding and regularized shrinking operations.

The topological closure of a set S is denoted kS and is defined as the
union of S with the set of all limit points of S. The tnterior of a set S is
denoted i{S and is defined [Mendelson 75] as the set of points P such that
S is a neighborhood of P, i.e., it contains an open ball around P. Regu-
larization is an operation that takes a set S into k:S, which is shorthand
for k(iS). Regularized operations are defined as their usual counterparts
followed by the regularization operation [Requicha 77a, Requicha 80].

DEFINITION 3.2: Regularized shrinking takes a set S into S|*r, defined as
the regularized complement of the expanded regularized complement of
S:

SFr=51r

Chapter 8: Offsetting

DEFINITION 3.3: Non-regularized shrinking takes a set S into S|r, defined
as the complement of the expanded complement of S:

Sir=Str

It follows from these definitions that § and E® are invariant under
negative offsetting, and that regularized shrinking takes lower dimensional
sets (e.g. surfaces or curves) into the empty set.

We shall prove below that regularized offsetting preserves regularity,
but non-regularized shrinking can produce lower—dimensional sets (sur-
faces, curves or points). Since we are interested in modelling transforma-
tions that take solids onto solids, we shall use non-regularized shrinking
only in conjunction with the dual expanding operation. As we shall see,
such combinations produce regular sets that are globally blended.

Offsetting is related to Minkowsky addition, S @ B, and subtraction,
S © B defined by [Matheron 75, Serra 82]:

SeB={P: P=Q+R,Q€ S,Re B}
SoB=Se&B

where S and B are sets and P, Q, R are points. Replacing B with the
closed ball B(O,r) of radius r centered at the origin yields:

SGBB(O,r) ={(P: P=Q+R,Q€eS,||R|| <r}
={P:3QeSs,|P-Q|<r}
= Sr
and _
Se B(0,r) =Str
= S|r
Matheron’s results applied to Minkowsky addition and subtraction of
closed balls can be used to derive some of the properties proven by other
means in this chapter. We shall not elaborate on Matheron and Serra’s

work, but we wish to mention that one can deduce from their results some
interesting properties, such as:

33

Chapter 8: Offsetting
o offsetting and filleting preserve convexity;
e given two closed and convex sets A and B, (Afr = Bir) = (A = B);

o denoting by Sy the translated version of the set S by a vector V:

Str= U Sy and Sir= Sy
Vi< i<

3.3 TOPOLOGICAL PROPERTIES

3.3.1 Point/set distance

When a set S is closed, there is yet another equivalent definition of
Str in terms of point/set distance. The distance d(P,S) between a point
P and a non—empty set S is defined [Nadler 78] by

d(P,s) = inf |P-Q

where inf denotes the greatest lower bound. It follows from this definition
that if P is in S then d(P,S) = 0.

The following properties of the distance will be useful later; they are
true for any non—empty set S.

PROPERTY 3.2: For any pair of points P and R, d(P,S) < d(R, S)+| R-P|.

PROOF: From the definition of d(P,S) and from the triangle inequality it
follows that, for any point R:

d(P,8) = jnt |IP - Q|
<inf(lP—-R -
< jnf (1P - Rl + IR - QI)
< - i -
<|IP Rl + jnf IR - Q|
<|IP - Rl + (7, 5)

PROPERTY 3.3: The distance d(P,S) is a continuous function of P.

34

Chapter 8: Offsetting
PROOF: We shall prove that
Ve>0 35>0 suchthat ||Q— P||<é=[d(Q,S)—-d(P,S) <e

By property 3.2: d(P,S) < d(Q,S) + ||P — Q||. Interchanging P and Q yields:
d(Q,8) < d(P,S) + ||P — Q||. Combining both results implies that:

|d(P,S) — d(Q,S)| < ||P - Q|
For a given €, we pick § = ¢ and we have

P —Qll <& =[d(P,5) - d(Q,S)| < e

PROPERTY 3.4: d(P,S)>0 < PeiS.

PROOF: Given d(P,S) = r > 0, all points Q of the open ball of radius r/2
around P are out of S, since, by property 3.2,

d(@,S) 2 d(P,S) - ||P - Q|

or d(Q,S) 2 r —r/2 = r/2. 1t follows that P has a neighborhood in S and
therefore P € ¢S, or, equivalently, P ¢ kS, because kS = iS for any set S
[Requicha 78].

Conversely, let P € 5. By definition of interior points: 3¢ > 0, such that the
open ball O(P,¢) of radius ¢ and center P is in S, and therefore out of S. For
each point Q € S, the point

e Q-P

R=P+_ X
2]lQ - P

d(P,5) = inf |P - Q|| 2 % >0

For any set S: P ¢S « P € kS. Therefore complementing property
3.4 yields: -

PROPERTY 3.5: PckS < d(P,S)=0.

Chapter 8: Offsetting

3.3.2 Closest projection set
PROPERTY 3.6: d(P,S) = d(P,kS).

PROOF: Consider a point P out of S. Because S C kS, the definition of
distance implies that:
d(P,S) > d(P,kS)

To prove the reverse inequality, and therefore that d(P,S) = d(P, kS), we con-
sider an arbitrary point R of kS. By property 3.2, d(P,S) < d(R,S)+||P- R||,
and since d(R, S) = 0 (property 3.5), we have d(P,S) < ||P — R||. Therefore
d(P, S) is a lower bound on ||P — R|| for R € kS, and cannot be greater than
the greatest lower bound d(P, kS). Consequently

d(P,S) < d(P,kS)

We define the closest projection set {P—|S} of a point P on a set S, as
the set of points of kS, for which the distance d(P,kS) attains its minimum.
Intuitively {P—|S} is the locus of all points of kS that are closest to P. We
show that {P—|S} is a non—empty subset of the boundary of S.

DEFINITION 3.4: Given a point P out of S, the closest projection set of
P on S, denoted {P—|S}, is the set of points Q of kS that are at distance
d(P,S) from P. -

PROPERTY 3.7: Given a point P out of S, the closest projection set of P
on S is not empty.

PROOF: If P € kS then, by property 3.5, d(P,S) = 0 and P € {P—|S}.
Therefore {P—|S} # 0. Now let us suppose that P ¢ kS. By property 3.4
d(P,S) > 0. Let S' = kS [B(P,2r), where r = d(P,S). S’ is the intersec-
tion of two closed sets and therefore is closed, and it is also bounded, because
it is included in B(P,2r). Therefore S’ is compact since it is a closed and
bounded subset of E* (Heine-Borel theorem [Mendelson 75]). Clearly all points
of kS — S’ are at a distance from P larger or equal to 2r, and, by property 3.6,
d(P, S) = d(P,kS). It follows that d(P,S’) = r. Since, for a fixed P, ||P — Q||
is a continuous function of Q, the greatest lower bound of |P — Q|| for Q in the
compact set S’ is attained for at least one point Q of S’ ([Mendelson 75|, page
161) and hence of kS.

PROPERTY 3.8: Given a point P out of S, all interior points Q of S are
at a distance from P greater that d(P,S).

36

Chapter 8: Offsetting

PROOF: Let'@Q € ¢S. Then, by definition of interior points, there is an open
ball O(Q) around Q that lies in S. This implies that there are points R in O(Q),
and hence in S, that are at a distance from P less than ||P — Q|| (for example,
the points of the intersection of O(P) with the line segment (P,Q)). d(P,S) is
a lower bound of ||P — R|| for all R in S, and there is a point R in S such that
I[P — RJ| < ||P — Q||, therefore d(P,S) < ||P — R|| < ||P — Q||. Thus all interior
points Q of S must be at a distance from P greater than d(P, S), therefore:

VPeS, VQeiS ||P-Q| >d(P,S)

The boundary of a set S, denoted 35S, is defined [Mendelson 75] as the
set of points for which all neighborhoods intersect both S and its com-
plement S. It is also expressed as kS) kS [Requicha 78], or equivalently
as the difference kS — ¢S. From properties 3.7 and 3.8 we conclude that
points in the closest projection set of P on S are in kS but not in S,
therefore:

PROPERTY 3.9: Given a point P out of S, {P—|S} C aS.

The shortest distance from P to S (or, equivalently, to kS) is achieved
for at least one point of 8S. It follows immediately that:

PROPERTY 3.10: Given a point P out of S, d(P,S) = d(P,d5S). -

3.3.3 Closure under offsetting

If S is closed it contains its boundary, and therefore the inf in the
definition of d(P, S) is always attained at points Q of S, and therefore can
be replaced with min for closed sets.

PROPERTY 3.11: If S is closed then

d(P,5) = min||P - Q|

This leads to an alternative definition of positive offsets for closed
sets.)

PROPERTY 3.12: For S closed, Sir = {P:d(P,S) <r}.

37

Chapter 8: Offsetting
PROOF: First we show that
{P:d(P,S)<r}CStr

Let d(P,S) < r. Since S is closed the minimum of ||P — Q|| (in property 3.11)
is attained for at least one point Q of S:

3Q € S such that ||P — Q|| = d(P,S)
and therefore ||P — QJ| < r. By definition 3.1, this implies P € Str. To prove
the converse, let P € Str. By definition 1, 3Q € S such that |P — Q|| < r, and

therefore d(P,S) < r, by definition of distance d(P,S).

It follows that to expand a closed set S, one adds to it all points that
are out of S, and whose distances to 35 do not exceed r.

PROPERTY 3.13: For closed S, Sfr=S|J ((6S)Tr).

PROPERTY 3.14: For closed S, Sr is closed.

PROOF: It suffices to show that S{r contains all its limit points. Let P be a
limit point of S{r. Then any ball B(P,¢), with ¢ > 0, contains at least one point
R of S1r, such that R # P. By continuity of the point/set distance (property
3.3):

e—~+0 = R—-P = d(R,S)—d(P,S)

R € S1r implies d(R,S) < r, and the limit d(P,S) is also less or equal to r.
Therefore, by property 3.12, P € Str.

PROPERTY 3.15: d(P,S)<r = Pei(Str).

PROOF: Given a point P such that d(P,S) < r, we shall prove that there
is a neighborhood of P in S{r. By definition of point/set distance, (VQ €
S, |[P-Q| =2r) = d(P,S) > r, and therefore

d(P,S)<r = 3Q€ S suchthat [P - Q|| <r
It follows that Je > 0 and 3Q € S such that ||P — Q|| £ ¥ — e. Therefore

VR € B(P,e), [R-Q| < |[R-P||+||IP-Q|| = e+r—e=r, and B(P,¢) C S1r,
and therefore P € i(S1r).

Chapter 8: Offsetting 39

§

\.)

FIGURE 8.2: The point P is at distance r from S, but is in {(S1r) and not in 6(STr).’

We show below that all points of the boundary of Str are at a distance
r from S. However, as one can see on Figure 3.2, the converse is not true.

PROPERTY 3.16: k(S1r) = (kS)ir.

PROOF: S C kS, and since, as we show later, offsetting preserves set inclu-
sion, Str C (kS)fr. This implies k(S1r) C k((kS)Tr) because closure pre-
serves inclusion relations. By property 3.14, (kS)fr is closed and therefore
k((kS)tr) = (kS)tr. It follows that '

k(S1r) C (kS)tr

Now we must prove the reverse inclusion. Given P € (kS)ir, d(P,kS) < r,
and, by property 3.6, d(P,S) < r. Therefore, as in the proof of property 3.8,
Ve > 0, 3Q € B(P,¢), such that d(Q,S) < d(P,S), and therefore d(Q,S) < r,
which, by property 3.15, implies that Q € §(S1r). It follows that P is a limit
point of {(S1r), therefore P € ki(S1r), and, since ki(Str) C k(S1r), P € k(S1r)
and

(kS)tr C k(S1r)

PROPERTY 3.17: P€d(Sfr) = d(P,S)=r.

Chapter 8: Offsetting
PROOF: Given P € 3(S1r), since the closure of a set is the union of the set
with its boundary, P € k(S1r), and by property 3.16, P € (kS)tr. It follows
that d(P,kS) < r because kS is closed, and, by property 3.6, that
d(P,S)<r

On the other hand, since P ¢ #(S1r), from property 3.15 it follows that

d(P,S)>r

PROPERTY 3.18: P& Sfr = d(P,S)>r.

PROOF:

PeStr" = Pek(i(5Tr)
P € k(k(Str)) since iX = kX
P € i(k(S1r)) since iX = kX
P ¢ i(k(S1r))
P¢ t'((kS)Tr) by property 3.16
d(P, kS) > r from property 3.15
d(P,S) > r from property 3.6

IR 25 20 20 2

PROPERTY 3.19: Sir is regular for closed S.

PROOF: By definition, Str is regular if and only if it is equal to the closure
of its interior: Sfr is regular < Str = ki(Sfr). A set contains its interior,
therefore ¢(Str) C Str, and, for any two sets A and B, we have: A C B =
kA C kB. It follows that ki(S1r) C k(Sfr). By property 3.14, Str is closed,
and therefore it is equal to its closure k(S{r). Combining the last two results
we have ki(S1r) C Str.

To show that Str C ki(Str), we consider any point P of Str. Since S is closed,
by property 3.12, d(P, S) < r. If d(P, S) < r then, by property 3.15, P € i(S1r)
and therefore P € ki(S1r). By properties 3.7 and 3.9, if d(P,S) = r then
3Q € 38 such that |P — Q|| = r. Ve > 0, the ball B(P,¢) contains a point
I # P, for instance

€Q-P

2Q-Pj| °’

such that ||I — Q|| < r, and therefore d(I,S) < r, which implies, by property
3.15, that I € i(S1r). Therefore P is a limit point of §(S1r), i.e., P € ki(Str).

I=P+

Chapter 8: Offsetting

Since regular sets are closed, and regularized shrinking is defined via
regularized operations (definition 3.2), it follows from property 3.19 that:

PROPERTY 3.20: Regularized offsetting operations take regular sets into
regular sets.

This property is important since it shows that any combination of
regular sets (e.g., solid primitives) through regularized Boolean or reg-
ularized offset operations is a regular set. We can add regularized offset
operators to the set of Boolean operators supported in CSG thereby defin-
ing an extended version of CSG called CSG with offsetting (abbreviated
CSGO). Any set represented by a CSGO tree with regular primitives is
guaranteed to be regular because of property 3.20.

3.4 ALGEBRAIC PROPERTIES OF OFFSETTING

In this section we analyze how offsetting operations can be combined
with other offsetting operations, with Boolean operations, with rigid mo-
tions, and with inclusion relations between sets.

3.4.1 Invariance of inclusion under offsetting

PROPERTY 3.21: The inclusion relation between any two sets is invariant
under offsetting.

PROOF: Consider any two sets A and B, such that A C B. By definition 3.>1,
VP € Afr, 3Q € A such that |P — Q|| < r. Since A C B, Q € B and therefore
P € Bir by definition 3.1. It follows that

ACB = AlrCBir
Applying this result to complements yields A ¢ B = Atr C Btr, and therefore:
BcC A=A C B = Alr c Btr = Bir C Afr = Blr C Alr
To prove the same property for regularized shrinking operations, we apply
AC B=- Ajr C Bir
to regularized complements of any sets A and B:

AcB > Z‘Tr - E‘Tr

41

Chapter 8: Offsetting

Because ¢ and k operators preserve inclusion and the complement operator re-
verses it:

BCA = AcCB = A'cB

It follows that: BC A = AfrC B'1r. Complementing again both sides
of the last inclusion relation yields

B'ir cAtr
which, by definition, is equivalent to B{'r C A['r. Therefore:

‘BCA = Bl'rCAlr

3.4.2 Distributivity over Boolean operations

PROPERTY 3.22: ForanysetS: Str=S|r and S|r = Sir. For S regular:
S*tr=8Fr and S ['r=35r.

PROOF: By definition 3.3: Sir = Sir = Str and S|r = Str = Sir. Fér
any regular set A: T‘ = A. This follows from property 3.2.8 of [Requicha
78). (For regular sets regularized Boolean operators are a Boolean algebra and
therefore have all the properties of the usual Boolean operators.) Any operator
preserves set equality, therefore, for any regular sets A and B: A=B =
A =F". Applying the above to regularized complements of A and B yields:

—

A=B = A =B & A=B

Combining both implications yields: A =B & A’ =B". Since, by prop-
erty 3.19, S'tr is repxlar, we obtain Sl"r‘ = S'1r by complementing both

sides of S['r = S {r . We can replace S by S in S['r = S'tr , and obtain
S'P'r=STr for regular S.

PROPERTY 3.23: Expanding transformations distribute over the union of

any two sets and also over the regularized union of any two regular sets.

Chapter 8: Offsetting

PROOF: For any two sets A and B, (A |J B)tr can be expressed as:

(AUB)r={P:3Qsuchthat Q€ (A|J B) and |P - Q|| < r}
= {P : 3Q such that ((Q €A)or (Qe B))
and ||P - Q|| < r}
= {P:(3Q € A such that |[P - Q| < r)
or (3Q € B such that |P - Q|| < r)}
= {P:(3Q € A such that |P - Q| < r)}
U {P:(3Q € B such that |P - Q|| < r)}

= (atr) U (Btr)

We used here the fact that the union of two sets defined by properties a and
bis: {P:a(P)}U {P:b(P)} = {P: a(P) or b(P)}. By property 3.20, for A
and B regular, Afr and Bfr are also regular. Since for regular sets |J is the
same as |J* [Requicha 78], for any two regular solids A and B, (A |J* B)tr =

(atr) U (BI).
‘This property is illustrate Figure 3.3.
PROPERTY 8.24: Regularized shrinking transformations distribute over

the regularized intersection of any two regular sets and non-regularized
shrinking distributes over the intersection of any two sets.

PROOF: Given two regular sets A and B, by applying De Morgan’s laws to
(A* B)'r and by using the above property, we obtain:

(A B)r= (AT B)ir
= (X‘ U -B_‘)Tr’
=@ U (B'r)
=@1t) N (Br)
=(Al'r) " (Bl'r)

The same demonstration holds for non-regularized shrinking of any two sets if
one replaces regularized complement, union and shrinking operators by their
non-regularized counterparts.

Since the Boolean difference can be expressed in terms of intersection,
negative offsetting can be distributed over the difference (Figure 3.4).

PROPERTY 3.25: For any sets A and B: (A — B)|r = (Alr) — (Bir) and for
A and B regular: (A —* B)['r = (Al*r) —* (Bfr).

43

Chapter 8: Offsetting

FIGURE 8.8: The union (top—right) of two blocks (top-left) is expanded (bottom-right).
The same result is obtained by expanding the two blocks (bottom-left) before the union.

B T

. X

FIGURE 8.4: The solid defined as A —* B (left) is offset into A'r —* Bir (right).

Chapter 8: Offsetting
PROOF: For regular A and B:

(A-"B)'r=(AN* B')'r
= Al'r ()" B''r property 3.24
= Al'r ()" Bfr" property 3.22
= () =" (B1)

The same demonstration holds for any sets A and B, if one replaces regularized
difference, complement, and shrinking by their non-regularized counterparts.

On the other hand, expanding is not always distributive over the reg-
ularized intersection (Figure 3.5) and shrinking is not always distributive
over the union (Figure 3.6). More specifically,

PROPERTY 3.26: (A N* B)tr c (Afr) N* (B1r).
PROOF: From definition 3.1, it follows that

(ANBNr={P:3Qe (AN B),IQ-Pl|<r}
c{P:3Q€A,|Q-P||<rand 3R€ B,|R- P|| <r}
C (Atr) N (Btr)
To prove that the above inclusion holds for regularized intersection let P &
(¢8)tr. By definition 8.1 it follows that 3Q € ¢S such that |[P — Q|| < r, and
therefore Je > 0 such that the open ball of radius € and center Q isin S. Let I
be a point of such a ball, such that I also lies in the segment PQ (for instance
let I =Q+ $75=3p)- IP-1I|| <r~§ <randd(P,S) <r, because I € S.
From property 3.15 it follows that P € i(Str). We proved that (1S){r C i(S1r),
and therefore that k((iS)Tr) C ki(Str), which by property 3.16 implies

(kiS)1r C ki(Str)
It follows that

(AN B)tr c ki((A N B)tr)
C ki ((ATr) N (BTr)) because k and i preserve inclusion
= (atr) [} (Btr)

Since A ¢ B = B" c A", applying De Morgan’s laws and property
3.22 to the complement of the above inclusion, one obtains:

45

Chapter 8: Offsetting

O
O

(L

FIGURE 8.5: Given two disjoint spheres A and B (left) A{)* B = 0 and therefore
(A B)tr = 0. However (Afr) [* (B1r) # 0 (right).

FIGURE 8.6: The shrunk version (center) of the union of two balls (left) differs from the
union of the shrunk versions of the balls (right).

46

Chapter 8: Offsetting

PROPERTY 3.27: (A UU* B)lr D (Alr) U* (Blr).

Therefore to offset a solid S defined in CSG as a Boolean combi-
nation of primitives P;, one cannot in general offset each primitive and
combine the results. However, this can be done in special cases. To
characterize such cases, let us define the positive formulation of a CSG
representation as follows. First, replace all the regularized difference op-
erators by regularized intersection operators and complement their right
operands (A —* B — A()* B"); then propagate the complements down
to the primitives using De Morgan’s laws (AJ* B — 4 ()*B" and
A B — A" U*B"). The result is called the positive formulation of
a solid’s CSG representation, and is a Boolean combination of regularized
untons and of regularized intersections of the original primitives P; or of
their regularized complements P;".

Properties 3.23 and 3.24 imply that, if the positive formulation of the
CSG expression of a solid S is the regularized intersection of primitives
P;, S|'r can be expressed as the regularized intersection of P;|*r; similarly
positive offsets by r of solids represented in CSG as the union of primitives
P;, can be expressed as the union of P;ir.

As we shall see in the following chapter, offsets of standard primitives*
can be defined in CSG in terms of standard primitives (see Figure 3.7 for
an example).

It follows that a restricted class of offsetting operations can be per-
formed in CSG without extending the geometric domain of current-
generation modellers, but in general offsetting requires new surface types
as shown in Figure 3.8. For offset solids that cannot be expressed in stan-
dard CSG one can obtain a useful approximation as follows. Let S be any
solid defined in CSG, and let P; be the primitives of a positive formulation
of S. From properties 3.23 and 3.26 it follows that S{r is included in the
solid obtained by replacing in the positive formulation of S each primitive
P; by its expanded version P;{r. Therefore the appropriate combination of
offset primitives provides a CSG formulation of a solid that is guaranteed
to contain Str. Similarly, from properties 3.24 and 3.27 it follows that
replacing each primitive by P;|*'r produces a solid that is contained in S|*r.

? The following solids are considered as standard primitives: sphere, cylinder, cone,
cuboid, and torus.

47

Chapter 8: Offsetting 48

FIGURE 38.7: To expand a cylinder (top) we union two cylinders and two tori (center).
The boundary of the result is smooth (bottom).

Chapter 8: Offsetting 49

FIGURE 8.8: The shrunk version of the union of two cylinders cannot be obtained in
CSG with standard primitives.

Chapter 8: Offsetting

3.4.3 Combining offsetting operations

PROPERTY 3.28: For any set S: (S1a)tb = S1(a +b).

PROOF: We remind the reader that a and b are assumed positive. We shall
use the equivalence:

(3Q: P Q|| <band |Q - R| < a) & (I[P - Rl < (a+)

The “=>" implication follows from the triangle inequality. The “<=” implication
can be proven by choosing Q on the line segment (P, R), in such a way that:
|P - Qll < b and ||Q — R|| < a, which is always achieved for:

aP + bR

V=@

Using the above equivalence, we have:

(Sta)td = {P : 3Q € Sta such that |P — Q|| < b}
= {P :3Q and 3R € S such that
P —Qll <band|lQ - Rl <a}
= {P :3R € S such that ||[P - R|| < (a +)}

PROPERTY 3.29: For any set S: (Sla)|b = S|(a +b), and for regular S:
(Sira)l*b = S[*(a +b).
PROOF:

(SI'a)l'd = (SPa) 1b by definition 3.2
= (5" 1a)th
=S"t(a + b)‘ by property 3.28
= S['(a +b) by definition 3.2

From definition 3.3 it follows that the same demonstration holds for non-—
regularized shrinking if one replaces regularized shrinking and complement by
their non-regularized counterparts.

From properties 3.28 and 3.29 it follows immediately that:

PROPERTY 3.30: Two expanding operations commute, two regularized
shrinking operations commute, and two non-regularized shrinking oper-
ations commute.

On the other hand, expanding operations do not alwdys commute
with shrinking operations. A counterexample is shown in Figure 3.9.

50

Chapter 8: Offsetting

3.4.4 Commutativity with rigid motions

Offsetting transformations are defined in terms of distances which are
invariant under rigid motions, therefore:

PROPERTY 8.31:

operations.

Rigid motion transformations commute with offsetting

51

Chapter 8: Offsetling

FIGURE 8.9: The union of two disjoint spheres (a) is not altered by the combination of
shrinking (b) followed by expanding (c). However, expanding (d) followed by shrinking (e)
produces a different result.

N

7

\Za

FIGURE 8.10: S is the regularized union of two intersecting spheres of radius a (left), and
®(S) = a. Shrinking by r < a produces convex vertices, and therefore ®(S}r) =0 < (a—r).

52

Chapter 8: Offsetting 53

3.5 BLENDING PROPERTIES OF OFFSETTING

3.5.1 Rounding and filleting

In this section we show that global blending can be modelled by a
combination of two offsetting operations. In chapter two we introduced
the notion of globally blended solids with constant radius r. A precise
definition follows.

DEFINITION 3.5: The rounded version with radius r of a solid S is

R.(S)=UB(Q,r) with B(Qr)cSs

Rounding replaces all convex edges by blends of specified radius. All
concave edges can be filleted by the dual operation.

DEFINITION 3.6: The filleted version with radius r of a solid S is

F,(S) = R,(S)

It follows that R,(S) =F,(S) and F,(S)=R.(S).

To prove that the blending operations defined above correspond to
combinations of offsetting operations we shall use the following properties.

PROPERTY 8.32: S =Alr = ACS|r

PROOF: Let S = Atr and let P be any point in A. By definition 3.1, VR € S,

||lP—R|| > r. Therefore P ¢ S1r, and it follows that P € E = S|r by definition
3.3.

PROPERTY 3.33: S =A|r = SirC A

PROOF: Complementing S = Alr yields S = Alr = Afr by property 3.22.
It follows, by property 3.32, that A C S|r. By complementing both sides we
obtain S|r C A, and, by definition 3.3 S{r C A.

Chapter 8: Offsetting

PROPERTY 38.34: Slrir C S C Strlr

PROOF: Let X = S{r. By property 3.32 S C X|r and therefore
S C Strlr
Replacing S with S we obtain S c Strir. Complementing this relation yields

Strlr C S. Since Strlr = Strir = S|rir, by property 3.22 and definition 3.3 it
follows that .

SlrtrC S

PROPERTY 3.35: R.(S) = S|rir and F,(S) = Sir|r

PROOF: Let B(Q,r) C S. VP € B(Q,r), ||P- Q|| > r and, by definition 3.1,
Q ¢ B(Q,r)tr. Since S C B(Q, r) and since expanding preserves set inclusion,
Q ¢ Str, and therefore Q € Sir = S|r. By property 3.1 it follows that B(Q,r) C
S|r1r and therefore:

B(Q,r)CS = B(Q,r)C Slirtr
By definition 3.5 it follows that R,(S) C Slrir. To prove the reverse inclusion we
consider a point P € S|rir. By definition 3.1, 3Q € S|r such that ||[P—- Q|| < r.

For such Q we have P € B(Q,r), and also, by property 3.1 B(Q,r) C S|rir.
From property 3.34, it follows that B(Q,r) C S, and therefore:

PeSirir =3Q : PeB(Q,r)CS
which, by definition 3.5, is equivalent to S|rfr C R,(S). Combining both
inclusions, one obtains R,(S) = S|rir. F,(S) = Sirlr can be derived from

R,(S) = S|r1r by applying definition 3.6 and property 3.22.

From the above properties it follows clearly that

R.(8) c S C F.(S)

3.5.2 Regularity of blended solids

PROPERTY 3.36: For S open: Sir, S|r, R.(S), and F,(S) are open.

b4

Chapter 8: Offsetting

PROOF: Let S be an open set. By definition 3.1, VP € S1r, 3Q € S such
that ||P — Q|| £ r. By definition of open sets, VQ € S, 3¢ > 0 such that there
is an open ball of center Q and radius 2¢ in S, and therefore B(Q,¢) C S. Let
us consider any point R of B(P,¢). First notice that since ||P — Q|| < r and
|P — R|| < ¢, we have ||R — Q|| < r + €. Then consider the point

R-Q
T=Q+er 2
teR=qQl

T is in B(Q,€) and therefore in S. We have

-Q

R-T=(IR-Ql -9z e

and ||R — T)| = ||R — Q|| — € < r. Therefore R € Str. We proved that for any
point P € Str, de¢ > 0 such that B(P,¢) C Str, and therefore Str contains an
open neighborhood around any of its points. It follows that S{r is open.

For open S, S is closed, therefore, by property 3.14, Str is closed and ?T; is
open. Since, by definition 3.3, Str = S|r, it follows that S|r is open for open S.
We proved that expanding and non-regularized shrinking preserve the property
of being open; consequently, for open S, R,(S) and F,(S) are also open.

PROPERTY 3.37: For S closed: Sir, S|r, R,(S), and F,(S) are closed.

PROOF: By definition 3.3 S|r = E_T: For S closed, S is open and by property

3.36 Stris open and therefore ?T_r is closed. By property 3.14 Str is also closed.
Combining these two results implies that, for closed S, R,(S) and F,(S) are also
closed.

PROPERTY 3.38: R,(S) is regular for closed S.

PROOF: Let S be a closed set. Then by property 3.37 S|lr is closed and by
property 3.19 R,(S) is regular.

PROPERTY 339: S=R,(S) JA:S=Atr and S=F,(S) © 34: 5= Alr.

Chapter 8: Offsetting

PROOF: Let S = Afr. By property 3.32, A C Sjr, and since expanding
preserves inclusion (property 3.21), Atr C S|rtr, which implies that S C R,(S).
But, by property 3.34, R.(S) C S, and therefore

3A:S=Afr = S=R.(9)

On the other hand, suppose that S = R,(S); then S = S|r{r by property 3.35.
Choosing A = S|r yields S = Afr. It follows that:

S=R,(S) & 3A:S=Afr
Applying this equivalence to complements of S and A, we obtain:
S=R,(S) ¢ 3JA:S=A4Atr
which, by definition 3.6 and property 3.22 is equivalent to

S=F.(S) ¢ 3A:S=Alr

PROPERTY 840: For a <r, S = R,(S) implies S = R,(S) and S = F,(S)
implies S = F,(S).

PROOF: The property is true for a = r. Let r = a + b with b > 0 and
let R,(S) = S. By property 3.39 3A such that S = Afr, and therefore S =
At(b+ a). By property 3.28 S = (Atb)Ta, which by property 3.39 implies that
S = Rqa(S). Now let S = F,(S). From definition 3.8, it follows that § = R,(S),
and we just showed that, for a < r, this implies that S = R,(S), which is
equivalent to S = F,4(S).

Since, by property 3.35, R.(S) = S|rir and F,(S) = Sftr|r, for any
r > 0, 34 such that R,(S) = Atr and 3B such that F,(S) = Blr, it follows
by property 3.39 that rounding and filleting are idempotent operations:

R.(R,(5)) = B.(S) and F,(F,(S)) = F.(S)

which implies by property 3.40 that rounding R,(S) or ﬁlletihg F,(S) with
a radius a < r has no effect.

56

Chapter 8: Offsetting

3.5.3 Maximum convexity and concavity

To analyze the effect of rounding and filleting we need a measure of
the mazimum concavity and convezity of a solid. Intuitively the radius
of mazimum convezity ®(S) of a solid S corresponds to the radius of the
largest ball that can reach all points of S, while remaining in S. Similarly
the radius of mazimum concavity ®(S) of a solid S corresponds to the
radius of maximum convexity of S.

Because R,(S) is the region swept by a ball that remains in S, we can
define % formally as follows.

DEFINITION 3.7 The radius of maximum convexity ’I?(S) and the radius
of maximum concavity ®(S) of a solid S are defined by:

®(S)= sup r and E(S)= sup r
S=R,(S) S=F,(S)

Since S = R,(S) ¢ S = F,(S), we have

PROPERTY 3.41: ®(S) = ®(S)

PROPERTY 3.42: r< ®(S)=R,(S)=5 andr < E(S) = F.(S)=S.

PROOF: By definition 3.7 Ve > 0, 3a > ®(S) — € such that S = R,(S). By
property 3.39 this implies that 3A such that S = Afa. Let ¢ = R(S) —r. It
follows that @ > r. Replacing a with b+r yields S = Af(b+r), which by property
3.28 is S = (Atb)tr. Replacing Atb with B yields 3B such that S = B1r, which
by property 3.39 is equivalent to S = R,(S). Applying this result to S yields
r < ®(S) = R.(S) = S, which is equivalent to r < & (S) = F,(S) = S.

PROPERTY 3.43: (R(Str) 2 B(S) +r) and (E(Slr) 2 ¥(S) +r).

PROOF: Let us suppose that ®(S1r) < ®(S) + r. It follows that 3a > 0
such that a < ®(S) and ®(Str) < a + r. For instance we can pick a =
(®(Str) + ®(S) —r)/2.

a < ®(S) R,(S) = S by property 3.42

3A : 8 = Ala by property 3.39

3JA: Str = Af(a + r) by property 3.28
Str = Ra4r(S1r) by property 3.39

®(S1r) > a + r by definition 3.7

VIR AR

b7

Chapter 8: Offsetting

which contradicts ?(STr) < a + r. Exploiting this result we obtain:

E(Slr) = ®(S1r) by properties 3.41 and 3.22
> ®(S) + r proven above
> ®(S) + r by property 3.41

Expanding by r increases & by at least r. The effect on & of shrinking
by r cannot be so easily predicted. Figure 3.10 shows that shrinking by r
can reduce ® by more than r. '

3.5.4 Alternative blending operators

The filleting operator of definition 3.6 is the dual — with respect
to the non-regularized complement — of the rounding operator of defi-
nition 3.5, and therefore properties of F,(S) can be simply derived from
properties of R,(S). Unfortunately, the operator F, has two drawbacks:

o when applied to regular sets, F, does not always produce regular
sets (see Figure 3.11);

e in limit cases F, produces counter—intuitive results (see Figure
3.12). Such cases occur when the filleting ball of radius r out-
side of S cannot reach some cavity that any ball of radius a < r
could reach. Hence rounding a regular solid is not equivalent to
filleting its regularized complement.

To guarantee regularity and achieve intuitively expected results in
the limit cases of Figure 3.12, we define a modified filleting operator F!:

DEFINITION 8.8: F!(S) =R,(8') .

For any closed set S, F/(S) is the closure of the set obtained by filleting
the interior of S:

PROPERTY 3.44: For S closed, F!(S) = k(F.(i5)).

b8

Chapter 3: Offsetting 59

FIGURE 8.11: The regular solid S (left) is first expanded to S1r (center) then shrunk to
Strir (right). The result contains an isolated point and therefore is not regular.

FIGURE 8.12: Filleting the solid S (left) produces F,(S) (right). A presumably more
useful result can be obtained by F,(S) (center).

Chapter 8: Offsetting 60

PROOF:
F!(S) = R, (§‘)' by definition 3.8

0|

err by property 3.35

i

I
)|

"tr .Lr by definition 3.3 and property 3.22

(ksS)Trlr)

= ki ((ktS)Trlr)
= ki (T_k——_S.Trlr) since kiS = kkS = 1kS

= ki((ikS)trlr)
=kt ((:'S)Trlr) since S is closed
= k((t’S)Trlr) by property 3.36 for open iS

Because it is defined in terms of regularized complements, modified
filleting always produces regular sets.

Both rounding and modified filleting operations use non-regularized
shrinking which produces open sets as intermediate results and forces
one to deal with open sets in the modeller, and specifically to support
expanding operations on open sets. This is not difficult to do because
most computations on offsets rely on point/solid classification (as shown
later), which is actually easier for open sets.

For instance, given a point P and a set S, we wish to find whether P
is in i(S1r), on 8(S1r), or in i(STr). For d(P,S) # r, the classification of P
with respect to Sir is simple and is independent of S being closed or open.
Let us suppose now that d(P,S) =r.

PROPERTY 3.45: For S open, d(P,S) =r ¢ P € 3(S1r).
PROOF: Let d(P,S) = r. First let us prove that P € k(Str):
d(P,S) = r = d(P,kS) = r by property 3.6
= P € (kS)ir by property 3.12
= P € k(Str) by property 3.16

Now let us prove that P ¢ ¢(S1r): By property 3.8, for open S,VQ € S,Q €4S
and ||P — QJ} > r, therefore P ¢ Str, and since §(S1r) C STr, P¢ c(STr) It
follows that

P € k(S1r) — i(S1r) = 8(S1r)
The inverse implication is true for all S by property 3.17.

Chapter 3: Offsetting

It follows that, for open S, the classification of P with respect to Sir
can be deduced from d(P,S).

On the other hand, let us suppose that S is closed and that d(P,S) =r.
We know that P € Str, but we do not have enough information to decide
whether P € i(S1r) or P € 8(S1r). These two possibilities are demonstrated
in Figure 3.13. In boundary evaluation algorithms described in chapter
five, we must distinguish between points in i(S{r) and points on 3(S1r).
Such a distinction requires the classification of the neighborhood of the
point with respect to Str. Neighborhoods and their classification will be
discussed later.

We conclude that point membership classification with respect to the
expanded version of a set S is simpler when S is open than when S is
closed.

Nevertheless dealing with non-regular sets requires care in the imple-
mentation of a modeller, and therefore, instead of the blending operators
discussed above, we propose to support regularized blending which ensures
regularity and is defined as follows:

DEFINITION 3.9: The regularized rounding operator is R; (S) = S|*rir,
and the regularized filleting operator is F;(S) = Sir['r.

From property 3.22 it follows that F;(S) = R; (§*)‘.

In limit cases regularized blending will produce intuitively surpris-
ing results (Figure 3.14), but for common objects, regularized and non-
regularized blending produce the same result. Therefore, for simplicity of
exposition, we focus in the sequel of this thesis on these regularized blend-
ing operators. In essence this reduces blending to regularized offsetting.
Therefore, all that we have to discuss is how to support expanding and
regularized shrinking operations on regular sets.

61

Chapter 8: Offsetting 62

FIGURE 8.18: Both points P, and P; are at distance r from S. The point P, is in {(S1r),
but P; is on 8(Str). To distinguish between “in” and “on” points, neighborhoods of such
points must be classified with respect to Sir.

FIGURE 8.14: Given the solid S (left), regularized blending produces counter-intuitive
results, R;(S) (center—top) and F, (S) (center-bottom). More intuitive results are obtained
by non-regularized rounding R, (S) (right-top) and modified filleting F/(S) (right-bottom).

CHAPTER IV

BOUNDARIES OF OFFSET SOLIDS

Explicit representations for the topological boundaries of solids play
an important role in solid modelling. Multiple-representation solid mod-
ellers such as PADL-2 contain boundary representations, which are used
to support calligraphic displays and other applications.

This chapter discusses mathematical properties of the boundaries of
offset solids with a view to computational applications. In particular, we
construct supersets of the boundary of an offset solid because representa-
tion conversion algorithms that evaluate boundaries [Requicha 85] operate
on such supersets. (Boundary evaluation for offset solids is discussed in
the following chapters.)

4.1 CONSTANT-DISTANCE SETS

DEFINITION 4.1: The set of all points at distance r from a set S is called
a “constant—distance set” and denoted B,(S).

First we show that to obtain a superset of the boundary of an offset
solid, one need only consider expanding transformations. In chapter three
(property 3.17) we showed that 8(S1r) is contained in the set of points
that are at distance r from §, therefore:

PROPERTY 4.1: 9(Str) C B,(S).

By definition, the boundary of any set S is equal to the boundary of
its complement S; and for regular S, to the boundary of §* [Requicha 78,
property 3.3.3]. These facts are used in the following proofs.

63

Chapter { : Boundaries of offset solids

PROPERTY 4.2 9(S|r) C B,(S).

PROOF:
8(Slr) =8 (:9:1?) by definition 3.3
=0 (§Tr)
C B, (_§) by property 4.1

PROPERTY 4.3: For regular S: 9(S['r) c B,(5").

PROOF:
8(Sl'r) =8 (E‘Tr') by definition 3.2
=4 (§'Tr) since _S—‘Tr is also regular
C B, (_S_‘) by property 4.1

Observe that, d(P,S) = r > 0 implies d(P,8S) = r (property 3.10), and
therefore:

PROPERTY 4.4: For any set S, B,(S) c B,(35)

However, B,(8S) may include points that are not in B,(S); for exam-
ple, the points of B,(8S) that lie in S are not in B,(S).

Since for any solid S, 8S = 88, and for regular S, S = 85", combining
properties 4.1, 4.2, 4.3, and 4.4 one obtains:

Although properties 4.1 to 4.3 give us sharper results, i.e., smaller
supersets, in the remainder of this chapter we shall investigate supersets
which are larger than B,(8S), but are easier to deal with computationally.

64

Chapter {: Boundaries of offset solids
4.2 SMOOTH FACES AND SINGULARITIES

The boundaries of objects of interest in solid modelling may be de-
composed into three disjoint sets: the smooth faces, the singular curves,
and the stngular points, defined as follows.

e A smooth face is a connected set of points Q of 3S that have two—
dimensional neighborhoods N;(Q) in 38, such that 85 is G! contin-
uous within N,(Q) [Barsky 84], i.e., it has continuous unit normal.

o A stngular curve C is a connected set of points Q@ of 35 that do
not belong to the smooth faces of 8S but have one-dimensional
neighborhoods N;(Q) in C such that C is G! continuous within
N:(Q) [Barsky 84], i.e., it has continuous unit tangent.

o The singular points of S are the set of points Q of 85 that do not
belong to the smooth faces or to the singular curves of 8S.

For a flat—faced polyhedral solid, the smooth faces are the (2-D)
interiors of what are usually considered the solid’s faces. The singular
curves are the edges without their end-points, and the singular points are
the vertices. When a solid is curved, however, the singular curves and

points typically are a subset of the edges and vertices that appear in the
BRep of the solid.

To find a superset for B,(3S) — and thus for 3(Str), d(S)r), and
- 8(8['r) — we argue as follows. Let P be a point at distance r from 85. We
know from properties 3.7 and 3.9 that the minimum distance is achieved
for at least one point Q of 8S. This point must lie either in a smooth
face, or in a singular curve, or be a singular point of S. In the following
subsections we analyze each of these cases separately and construct sets
of points that are guaranteed to include all points of B,(85).

65

Chapter 4 : Boundaries of offset solids

4.3 N-OFFSETS

4.3.1 N-offsetting smooth faces

Let P be a point of B,(3S) and suppose that the minimum distance
from P to 8S is achieved at a point Q that belongs to a smooth face F of
S.

Given a bi-parametric representation F(u,v) of F, |P — F(u,v)| is
minimal for v = uy and v = vy with F(ug,v) = Q. Therefore at F(uo,vo),
d||P — F(u,v)||?/8u = 0, and 8||P — F(u,v)||?/dv = 0. These two conditions
imply that P lies on the normal to F at Q. Such a point @ belongs to the
normal projection of P on F, defined as follows.

DEFINITION 4.2: The normal projection of a point P on a face F is the
set of points Q of F for which (P — Q) is orthogonal to F at Q.

Since ||P — Q|| = r, P is generated by displacing a point Q of F by a

distance r along the normal to F at Q. The set of all points P generated -

in this manner is usually a pair of faces “parallel” to F, called the n—offset
of F.

The n-offset of a smooth surface F is usually defined® as a surface
parallel to F [Willmore 58, p. 116] obtained by offsetting each point @ of
F by r along the oriented unit vector N(F,Q) normal to F at Q. (A similar
definition is used for n—offsets of smooth curves in two dimensions.) Our
definition of n—offset for a smooth face is a direct extension of the usual
one. We distinguish between positive and negative n—offsets. Assuming
that at each point Q of a smooth face F, N(F,Q) has unit length and
predefined orientation, the positive n—offset of F by distance r is:

F||f ={P:3Q € F such that P =Q +rN(F,Q)}
and the negative n—offset is:

F|l; ={P:3Q € F such that P=Q —rN(F,Q)}

The global term “n—offset” denotes the union of the positive n—offset
with the negative one:
Fll,=F|F U Fll¥

* N-offsets near singularities are not defined in the literature.

66

Chapter {: Boundaries of offset solids

Given a point Q in F, let Q' and Q” be the corresponding n—offset
points defined by Q' = Q@ + rN(F,Q) and Q" = Q — rN(F,Q). The three
normals N(F|},Q'), N(F|;,Q"), and N(F,Q) are parallel [Willmore 58].

Let k, and k; be the principal curvatures of F at Q. The principal
curvatures k. and k| of F||, at Q' and Q" are [Faux 79]:

ks

k
- a
ko = lirkb

¢ 1xrk,

and k=

Thus, n—offsetting by r transforms points of F where one of the princi-
pal radii of curvature equals r, into singular points of F||,, at which the
curvature becomes infinite. Such points lie on the concave side of F. It
follows that, even though F is smooth, F||, can have singularities or can
cross itself. For instance, the negative n—offset by r of a spherical face of
radius r, whose normal is oriented towards the exterior, is not a surface
but a single point, the center of the sphere.

FIGURE 4.1: The ellipse C (left) is n—offset by a distance r. Each point of C is moved
by r along the normal. The n-offset curves C||, (right) are not conics. The interior curve
is self-intersecting.

Willmare alen shaws that the eniryes of Fil_ that carresnond ta lines
mensions. The set of circles and lines is closed under n—offsetting, but the
set of conics is not (see Figure 4.1 for a counterexample).

67

Chapter 4 : Boundaries of offset solids

4.3.2 N-offsetting singular curves

Let P be a point of B,(8S) and suppose that the minimum distance
from P to 8S is achieved at a point Q that belongs to a singular curve C
of S.

Given a parameterization C(t) of C, ||P — C(t)|| is minimal for some
t = to such that C(to) = Q. Therefore d|| P — C(t)||?/dt = 0 for t = to. This
equation implies that (P —Q)-T(to) = 0, where T(to) is the tangent to C at
Q. T(to) is well defined since C is a singular curve of S. Thus, Q belongs
to the normal projection of P on C, defined as follows.

DEFINITION 4.3: The normal projection of a point P on a curve C is the
set of points Q of C, for which (P - Q) is orthogonal to the tangent to C

at Q.

Together with |P — Q|| = r, the requirement that @ belong to the
normal projection of P on C implies that P belongs to the circle of radius
r centered at Q and lying in the plane normal to C at Q. It follows that
the set of points P, for which the minimal distance to 4S5 is equal to r and
is attained in at least one point Q of a singular curve C of S, is contained
in the sweep of a circular cross—section of radius r along C. For simplicity
we shall refer to such a set of points by the term canal face of radius r and
spine C. Such canal faces are part of canal surfaces of spheres of constant
radius [Monge 1849] mathematically defined and analyzed in Appendix A.
To use a consistent terminology we shall say that canal faces are n-offsets
of their spines.

4.3.3 N-offsetting singular points

Finally, let P be a point of B,(dS) and suppose that the minimum
distance from P to 35S is achieved at a singular vertex Q of S. This implies
that P belongs to the sphere* of radius r centered at Q.

‘ “Sphere” stands here for spherical surface.

68

Chapter 4 : Boundaries of offset solids

4.3.4 N-offsetting a solid’s boundary

The previous discussion shows that any point of 3(Str), 8(S)'r), or
d(S|r), belongs to the superset of B,(4S) defined as the union of:

— n—offsets by r of all smooth faces of 85;
— canal faces of radius r around all singular curves of 45;

— spheres of radius r centered at all singular points of 9S.

We refer to this union simply as the “n—offset” of 45.

4.3.5 Closure under n—offsetting

Using a set of faces that is closed under n—offsetting is extremely
important for the implementation of offset operations in a solid modeller.
The faces of an offset solid are subsets of the n—offset of the original solid’s
boundary, as we have shown in this chapter. Closure under n—offsetting
implies that no faces of a new type have to be introduced to support
offsetting. We show in the following section that “standard” faces (which
lie in planes, cylinders, cones, spheres and tori) supported by current
modellers, together with canal faces are closed under n-offsetting. (It
is worth noting that the set of general quadrics is not closed under n-
offsetting; for example the n—offset of an ellipsoid is not a quadric surface).

4.4 N-OFFSETTING STANDARD FACES

Since n—offsetting is defined in terms of distances and of intrinsic
properties of solids, it commutes with rigid motions, and therefore n—
offsetting can be studied in any coordinate system. We shall use a param-
eterization F(u,v) of face F of 3S. We denote by A the surface in which F
lies. The set of possible values for (u,v) defines the extent of F in A.

4.4.1 N-offsetting a planar face

Any planar face can be defined in some local coordinates as a bi—
parametric patch F(u,v) = (u,v,0) for some set of values (u,v). The normal
to F is constant: N(u,v) = (0,0,1). It follows that the n—offset of F is
F(u,v)|lr = (u,v,%r), which is composed of two planar faces obtained by
translating F by r along the Z-axis.

69

Chapter {: Boundaries of offset solids

4.4.2 N-offsetting a spherical face

In its origin—centered coordinate system, a spherical face of radius
a can be defined by F(u,v) = aN(u,v). The n—offset is composed of two
spherical faces of radius |a + r| centered at O: F(u,v)|, = (a £ r)N(u,v).

4.4.3 N-offsetting a conical face
A conical face can be defined by F(u,v) =vZ + 07:?;]\,(“)’ where Z

is the unit vector along the Z-axis and a is the tangent of the tip half-
angle. The parameter u corresponds to the angle around the Z-axis, and
v corresponds to the Z—coordinate of the intersection of the normal to
F at F(u,v) with the Z-axis. The normal does not depend on v and is
N(u) = Vl-f:;(cos u,sinu,—a). The n—offset is

a

V1+ad?
Replacing v with wF 5@ yields F(u,w)|, =wZ+ V%N(“) F @Z’

which is composed of two faces. Each face lies on a version of the original

F(u,0)|lr =vZ + (v +r)N(u)

cone translated by q:@ along the Z—-axis. The correspondence between
points on the original face and their n—offset counterparts is defined by

the parameter substitution v=w F 'Jélf_ﬁ

4.4.4 N-offsetting a canal face

We use a parameterization of canal faces in terms of the spine C(u),
which is the smooth space curve along which the center of the circle is
swept, and of the normal N(u,v), which is a unit vector orthogonal to the
spine at C(u). The canal face is F(u,v) = C(u) + aN(u,v). Its n—offset is

F(u,v)]l, =C(u) + (a £ r)N(u,v)

It is composed of two canal faces, which have the same spine as F, but
radii equal to |a + r|. The resulting faces need not be smooth; they may
contain edges of regression analyzed in Appendix A.

Cylinders and tori are special cases of canal faces, and therefore their
offsets are respectively cylinders and tori of the same spine, but different
radii.

70

CHAPTER V

REPRESENTATIONAL REQUIREMENTS

Our primary goal is to support offsetting operations in solid mod-
ellers that contain both CSG and BReps, and to ensure that the solids
that result from offsetting operations are treated like other solids in the
modeller, i.e., that they can be displayed, combined by Boolean opera-
tions, further offset, and so forth. This section discusses representational
requirements for achieving this goal.

5.1 SPECIFICATION

We demonstrated in chapter two how models of solids that contain
constant radius rounds and fillets can be specified in terms of simple
primitives combined through Boolean operations and blending operations,
which take a solid S and a distance r and return a globally filleted solid,
F:(S), or a globally rounded solid, R;(S). In chapter three we proved
that such global blending operations can be modelled by a combination
of expanding and regularized shrinking operations: F?(S) = Sir*r and
R; (S) = S[*rtr.

To provide blending and offsetting capabilities, we develop in the fol-
lowing chapters tools for supporting offset operations in dual-representa-
tion solid modellers, in which solids are specified by a sequence of op-
erations applied to sub-solids (typically these operations are Boolean set
operations and rigid motions). We propose to add to the specification
syntax two regularized offsetting operators, which take a solid S and a
distance r and return Str or S}'r.

71

Chapter 5: Representational requirements

5.2 REPRESENTATIONS

Solid definitions in current dual-representation modellers are stored
in CSG trees, which are automatically converted by the systems into con-
sistent BReps. How should these representations be extended to support
offsetting?

5.2.1 Conversion to CSG

The (conceptually) simplest approach is to treat offsetting operations
as “volatile commands” that are executed to transform an object and dis-
carded. Execution of the commands should produce both a CSG represen-
tation and a BRep for the offset solid that results from the operation. Such
an approach has the advantage that standard CSG-oriented algorithms
may be used for all applications. We investigated this approach and found
that it is difficult to generate automatically CSG representations for offsets
of complicated solids, and that the resulting representations are difficult
to manipulate algorithmically, although CSG representations for offsets of
simple solids, e.g. standard primitives, are easy to generate.

To represent offset solids in CSG we must support primitives of a new
type. Property 3.13 shows that the expanded version of a solid § can be
expressed as the union of § with the expanded version of the boundary of
S. Since the boundary of S is the union of faces, and expanding distributes
over the union, we can express the expanded version of S as the union of S
with all the expanded versions of the faces of S. Clearly offset operations
could be supported in CSG if expanded versions of faces were available.

Computation on CSG often uses the fact that standard primitives
can be expressed as intersections of half-spaces, which are bounded by
simple surfaces, and for which point—-membership classification is simple.
The computational complexity of classification against expanded faces is
similar to the classification against offset solids. (As we shall see later, it
is based on the computation of point/set minimum distance.)

Classification with respect to expanded faces could be simplified if, for
a given face F bounded by edges E;, one could produce a CSG expression
for Fir in terms of simple half-spaces. Suppose that the face F is part of

72

Chapter 5: Representational requirements

FIGURE 5.1: The expression in CSG of the expanded version of a face uses the region
B, bounded by ruled surfaces.

the boundary of a half-space H. Then, as indicated in figure 5.1, F{r can
be expressed in CSG as:

Fr = ((HTr ~* Hlr) N B) U <al .‘E‘Tr) ’

where E;tr are regions bounded by canal surfaces of radius r and spine
E;, and where B is a region bounded by ruled surfaces that contain all
lines normal to H at points Q of E;. Such ruled surfaces depend on the
edges E;, as well as on the direction of the vectors normal to H along these
edges. This direction generally is not constant along an edge. Therefore,
the classification of points with respect to half-spaces bounded by such
surfaces is not an easy task, even though these surfaces have a reasonably
simple parametric expression. It is not even clear what these half-spaces
are, since the ruled surfaces can cross themselves. Besides, such auxiliary
surfaces do not contribute to the boundary of offset solids and one should
try to avoid introducing unnecessary complexities in the solid modeller.

We would like to point out that this approach is very successful in two
dimensions, where the auxiliary surfaces become straight lines. Therefore,

73

Chapter 5: Representational requirements

the offset of a two dimensional solid defined in CSG can be easily expressed
in CSG, provided that the faces of the solid are closed under n—offsetting
(and this is the case for lines and circles).

Instead of trying to express expanded primitives by intersections of
some half-spaces, one could introduce new primitives such as Ftr, which
are defined by a superset of their boundary and by a rule for point mem-
bership classification. Such an approach is a special case of our approach
to offsetting solids. It might be investigated as an economical tool for
specifying fillets and rounds: the user would define fillets by expanding
and shrinking union of faces instead of whole sub—solids. In three dimen-
sions the above approach does not really simplify the problem, and “face
offsetting” can be made available as a side product, if solid offsetting is
supported.

5.2.2 CSGO

We opted for an alternative approach, in which offset solids are repre-
sented by an extended form of CSG called CSG with offsetting, or simply
CSGO. Representations in CSGO are trees containing offsetting operators
as non—terminal nodes, in addition to the usual rigid motion and Boolean
operators.

This decision has non-trivial implications, and amounts essentially
to redefining the problem we set out to solve initially. Thus, instead of a
CSG/BRep dual modeller, we shall seek to build a CSGO/BRep modeller.

5.3 BOUNDARY REPRESENTATIONS

CSGO trees are a trivial extension of the usual CSG trees, but BReps
for offset solids are considerably more complex than those used for mod-
ellers that support only the standard quadric and toroidal surfaces. Off-
setting introduces new types of surfaces in a modeller — canal surfaces —
and, since offset solids may be combined by Boolean operations, edges of
intersection between canal surfaces or between canal and standard surfaces
may also appear. Therefore we need representations for canal surfaces and
for subsets of their intersection curves.

74

Chapter 5: Representational requirements

Canal surfaces can be represented indirectly, by their spine curves and
radii. (In essence, these are sweep representations [Requicha 80].) How-
ever, these representations are computationally awkward because they
lead to a nightmare of indirections. Think, for example, of intersecting a
curve with a canal surface represented by a radius and a spine, when the
spine results from the intersection of two other canal surfaces, which in
turn are represented indirectly, and so forth. Our approach is to repre-
sent canal surfaces indirectly (and exactly) but also carry an approximate
representation (in terms of their radii and of an approximation of their
spines), which is used in all the necessary numerical calculations.

The entire curves of intersection between two canal surfaces, or be-
tween a canal and a standard surface may be represented indirectly, by
using pointers to the surfaces. However, these curves need not be one-
manifolds (i.e., they may self-intersect) and therefore a subset of a curve
cannot be represented simply by the host curve and a pair of endpoints
[Requicha 80]. The standard representations for curve segments in solid
modelling are based on parameterizations of the curves, but we do not
know of any general methods for parameterizing the intersections of canal
surfaces. These difficulties led us to represent edges through parameter-
ized approximations. We also carry references to the intersecting surfaces,
which may be used to refine the approximations when needed.

Edge approximation is a crucial issue in our approach. We devised a
new approximation technique, called ptecewise constant curvature approxi-
mation, which is especially well-suited for solid modelling. It is presented
in chapter eight. Edges are approximated by piecewise circular curves,
and the canal surfaces that result from n—offsetting such edges are ap-
proximated by smoothly joined pieces of tori and cylinders. (In the sequel
we use the abbreviation PCC both as a noun to denote “piecewise circular
curve”, and as an adjective to mean “piecewise constant curvature”.)

In summary, our approach is to represent in BReps the new surfaces
and edges introduced by offsets both indirectly (exactly) and by PCC
approximations.

75

CHAPTER VI

COMPUTATION IN CSGO

A large class of blended and offset solids can be represented in CSGO
(Constructive Solid Geometry with Offsetting operations) by a set of
standard primitives transformed by rigid motions and combined through
Boolean and offset operators. CSGO provides powerful and flexible speci-
fication capabilities, but the computation of boundaries and of other prop-
erties of solids defined in CSGO raises many algorithmic issues, which are
analyzed in this chapter.

Today’s solid modellers have facilities for generating calligraphic and
shaded displays of the represented objects, for computing mass proper-
ties, and for evaluating the boundaries of objects defined by Boolean
operations. What algorithms are needed to support such facilities in a
CSGO/BRep system? All applications are based on set membership clas-
sification algorithms that take a set e and a solid S and, return the subsets
of e that lie in the interior of S, on the boundary of S, or in the complement
of S.

Throughout this chapter we assume that the BRep of a solid S con-
tains the following information:

o A sufficient set F of patches (subsets of standard surfaces), whose
union contains the boundary of S. Patches are supersets of the
smooth faces of the solid and are bounded by simple edges (seg-
ments of lines or circles), which also lie in curvature lines and
correspond to constant parameter curves in a simple parameteri-
zation of the host surface that contains the patch. In CSG, patches
correspond to faces of primitives. We use patches (instead of true
faces) because they have a simple explicit representation. In CSGO

76

Chapter 6: Computation in CSGO

we use piecewise toroidal and cylindrical approximations for canal
faces. It follows that no additional patch—type is necessary for
integrating offsetting operations in CSG.

To each patch we associate a normal vector, such that if the patch
contains a face of the solid, the normal points to the exterior of the
solid.

o The set E of edges (singular curves) of the solid. We shall use PCC
approximations for all edges of the represented solids. PCC’s are
discussed in Chapters seven and eight.

o The set V of vertices (singular points) of the solid. Vertices can
bound the edges, but also can be isolated singularities, such as the
apex of a cone.

As we shall see, our algorithms do not use connectivity information,
such as face/edge incidence relations, normally contained in a BRep.

We propose below a high level outline of the major algorithms neces-
sary to support standard applications and boundary evaluation in CSGO.
Our simplified implementation of these algorithms is described in Chapter
ten.

6.1 CURVE MEMBERSHIP CLASSIFICATION

6.1.1 Motivation

Calligraphic displays usually are generated in solid modellers by ap-
plying standard computer graphics techniques to edge lists, or to BReps.
(To display curved surfaces, one also needs profile edges, whose generation
will be discussed later.) Shaded displays, however, often are generated di-
rectly from CSG by ray casting. The basic ray casting algorithm [Roth 82]
can be extended to dual CSGO-BRep modellers. We propose the follow-
ing simplified formulation in pseudo-PASCAL.

77

Chapter 6 : Computation in CSGO 78

procedure SHADE (S);
begin
for each pizel in screen
do begin
e:=ray through view point and pizel;
einS:=TRIM_EDGE(e,S,in);
if e;nS#0
then begin
P:=closest point of e;,S to view point;
I:=intensity of light reflected by S at P;
intensity[pizel]:=1I;
end;
end;
end;

In words: cast a ray e between the viewpoint and each pixel in the
screen, find the first point P where the ray enters the solid S. If P exists,
use an illumination model to compute the appropriate intensity I, and
write it onto the screen.

The essential procedure in this algorithm is TRIM_EDGE, which
takes an “edge” (i.e., a curve segment) e, the dual CSGO-BRep repre-
sentation of a solid S, and a flag IBO (here IBO= in) indicating whether
the result R should be e;,S, €,n,S, or e,.:S, which are respectively, the
subsets of e that are inside, on the boundary of, and outside the solid
S [Tilove 80, Requicha 85]. TRIM_EDGE will be also used below for
boundary evaluation (with IBO = on).

There are many methods for mass—properties calculations, but the
most commonly used in dual-representation modellers are based on ray
casting or cell classification [Lee 82]. The ray casting algorithm involves
the TRIM_EDGE procedure mentioned above. Cell classification uses a
simplified version of the CLASS_POINT procedure described later.

Chapter 6 : Computation in CSGO

6.1.2 Curve classification algorithm

In CSG, edge classification can be done through divide and conquer
methods, by classifying the edge against primitives and by combining the
results [Tilove 80, Requicha 85]. Unfortunately, we do not know how to
infer the classification of an edge e with respect to Sir or S|'r from the
classification of e with respect to S. Therefore, to extend the divide and
conquer method to CSGO, we need an algorithm for classifying edges with
respect to offset solids.

Such an algorithm, outlined below, can be integrated in divide and
conquer methods and used only at offset nodes, but for the sake of sim-
plicity we present it as an independent algorithm, which classifies an edge

e with respect to a solid S represented by a CSGO tree. We assume that
the set F of patches (that include the faces of S) is available, and also
that the BReps of all sub—solids used in the expression of S are available.
(Edges and vertices of S are not needed to classify an edge with respect
to S, and therefore this algorithm is well suited for incremental boundary
evaluation, described later on.)

The procedure TRIM_EDGE takes an edge e and first breaks it into
segments as follows. It computes the set I of intersection—points of e with
the patches of S. Then the set I is sorted along e and coincident points
are merged. Segments bounded by two distinct intersection points are
guaranteed not to cross the boundary of S. Classification of each edge
segment is obtained by classifying the mid—point (or any other convenient
point) of the interior of the segment. Segments whose classification differs
from the desired one (specified by the value of IBO) are discarded. In our
pseudo—-PASCAL formulation the + operator denotes the “union” when
applied to sets.

function TRIM_EDGE(e,S,IBO):R;

begin

I.=9;

for each face f of F do I:=I+CURVE_INT_FACE(e,f);
Sort I along e and merge coincident points;

M:=segments of e bounded by consecutive tntersections of I;.
R:=0;

for each segment m of M

79

Chapter 6: Computation in CSGO 80

do begin
P:=any point of the intertor of m;
(cls,nbh):=CLASS_POINT(P,S);
if cls=IBO then R:=R+{m)};
end;
merge adjacent segments of R;
end;

Our algorithm uses two procedures: CURVE_INT_FACE (discussed
below), which computes the intersection of a curve (or edge) with a patch,
and CLASS_POINT (discussed in Section 6.2), which computes point
membership classification.

The procedure CURVE_INT_FACE computes the intersections of a
edge e with a patch f. This is done as follows. First compute the set J
of intersection points of e with A, the host surface of f. (Curve/surface
intersection is disussed below in Section 6.1.3.) Then classify points of J
against f and discard points that are not on f. Point/face classification is
expensive for true faces of a solid (such faces might be bounded by many
complicated edges), but point/patch classification is straightforward. For
instance, for a cylindrical patch f of radius r (around the Z-axis) limited
by the two planes z = 0 and z = I, we check whether a point j that lies on
the host surface of f is also in f by simply checking whether 0 < j, <.

One could replace patches by their host surfaces in the BRep, thus
avoiding point /face classification. But our algorithm would generate addi-
tional intersection—points, and therefore the edge would be split into more
segments, whose mid—points would have to be classified against the whole
solid. As we shall see, point/solid classification is in general much more
expensive than point/patch classification.

6.1.3 Curve/surface intersection

The standard method for computing intersections of a curve C with
a surface A uses an implicit equation A(z,y,z) =0 for A (for instance, for
a sphere ||P—C||> —r? = 0) and a parametric expression for C (for instance
C(t) = (z(t),y(t),2(t)). The intersection is the set of points C(t) for which
the implicit equation of A is satisfied. To compute such points, we replace
the coefficients z,y,z in the implicit equation of A with the parametric

Chapter 6 : Computation in CSGO 81

expressions of the coefficients of C(t) and solve A(z(t),y(t),z(t)) = 0 for ¢.
The resulting t values are used to generate the corresponding intersection
points on C.

Boundaries of solids represented in CSGO may contain faces that are
part of canal faces, and therefore we need procedures to intersect curves
with canal faces. In general, no implicit equation is known for a canal
face, and therefore we cannot use the standard method for intersecting a
parametric curve with a canal face.

A canal face of radius r and spine S, can be described by a set of
non-linear equations. Iterative methods can be used [Morgan 81] to solve
the intersection problem. Morgan defines the spine S of the canal face as
the intersection of two faces, described by implicit equations §;(P) = 0
and S;(P) =0.

If a point Q@ = C(t) on the curve is also on the canal face (i.e., is an
intersection—point), then the distance from @ to the spine S of the canal
face is r, and therefore there is a point P on S, such that the distance
from P to Q is r and such that P is a normal projection of Q on S. These
constraints lead to a system of four equations:

Si(P)=0
IP - c(e)* - r* =0

(P-c(®) - (M(P) x Ma(P)) =0

where N,(P) and N;(P) are the respective normals at P to S; and S;. The
four equations are solved simultaneously for ¢t and for the three coordinates
of P through numerical methods. Experimental results, in the case where
C(t) is a simple line, indicate that the method is too slow to be used in
interactive systems.

We investigated another iterative algorithm to solve the same prob-
lem. The iterations were guided by geometric criteria. Given a starting
point S(u) on the spine, represented in a parametric form, compute the
intersection C(t) of the curve C with the plane normal to the spine at
S(u). S(u) belongs to the normal projection of C(t) on the spine. If the

Chapter 6: Computation in CSGO

distance ||S(x) — C(t)|| is equal to r, then C(t) is also on the canal face,
and is an intersection of the curve with the canal face. If the distance
|S(u) = C(t)] is not r, a new point S(u’) on the spine is computed from the
relative orientation of the vector (S(u) — C(t)) and of the tangents to the
curve and to the spine at the considered points.

This algorithm was tried on the intersection of a line L with a canal
face around a spine defined as the intersection—curve between two cylin-
ders. Starting points were inferred from the intersections of the spine
with a cylinder of radius r and axis L. Such intersection—points define the
possible range for the starting point S(u). Although no care was taken to
develop an efficient implementation of this algorithm, timing-tests were
discouraging (it took about one second per intersection) and we decided
to approximate canal faces by smoothly joined pieces of standard faces.

6.1.4 Summary of requirements

To classify an edge with respect to a solid defined in CSGO we need
the following routines:

— a point membership classification algorithm (discussed below),

— an algorithm that computes the intersection of a curve with stan-
dard and canal faces. We do this by using PCC approximations
for curves and piecewise toroidal or cylindrical approximations for
canal faces (see Chapter nine).

— a routine that generates, for any solid S defined in CSGO, a set of
patches of S.

82

Chapter 6: Computation in CSGO 83

6.2 POINT MEMBERSHIP CLASSIFICATION

6.2.1 Motivation

To classify points, the procedure TRIM_EDGE uses CLASS_-POINT
discussed below. A simplified version of CLASS_-POINT, can also be used
for computing mass—properties by cell classification [Lee 82].

Point membership classification (PMC) amounts to determining
whether a point is inside, outside, or on the boundary of a given solid.
It can be done in CSG by divide and conquer methods: the point is clas-
sified against primitives and the results are combined according to the
Boolean operators in the CSG tree. The correct processing of cases where
the classified point lies on the boundary of two sub—solids requires the
computation and combination of netghborhoods.

6.2.2 Neighborhoods

The notion of “neighborhood” is used in CSG for the classification
of sets that lie on the boundaries of several sub—solids. For instance,
given a point P that lies on the boundaries of both A and B, one cannot
compute the classification of P with respect to A J* B by combining the
classifications of P with respect to 4 and to B (see Figure 6.1).

FIGURE 6.1: Both points P, and P; are on A and on B, but only P; is on A |J* B.

Chapter 6 : Computation in CSGO

The “neighborhood” of a point P with respect to a solid X is the
intersection of X with an open ball of center P and radius ¢, which we
shall consider infinitely small. Given a set X, if such a neighborhood is
entirely in X, then P is in :+X. On the other hand, if the neighborhood is
in S, the point is out of S. If the neighborhood is partly in and partly out
of X, the point is on the boundary of X.

Edge classification algorithms used for boundary evaluation, displays,
and so on, only require neighborhoods for points lying in the interior of
edge segments [Requicha 85]. The neighborhood of an edge e with respect
to a solid X can be viewed as the intersection with X of the tube efe, and
usually is not constant along the edge. However, in edge classification
algorithms, we break the edge into segments of constant classification. It
follows that one can compute segment classification from a cross—section
of efe at any point lying in the interior of the segment. The cross—section
is obtained by intersecting the neighborhood of ¢ in X with a plane L that
is perpendicular to e at its mid—point P. A two dimensional representa-
tion of the neighborhood is sufficient, and is obtained by generating the
intersection—curves of L with all the patches of X that contain e. To com-
bine neighborhoods at Boolean operator nodes one has to determine the
order in which the curves are organized around P [Requicha 85]. Usually
the tangents to those curves at P provide sufficient information, but if two
curves have the same tangents higher order derivatives are required. For
patches imbedded in quadric surfaces, the intersections with L are conics.
In the worst case one needs only compute their derivatives at P up to the
fourth order. The intersection of a torus with a plane in general is not a
conic and its representation is therefore more complex. Also higher order
derivatives are needed to combine neighborhoods induced by toroidal sur-
faces. Exact neighborhoods of canal faces would be even more complex,
but we use piecewise toroidal and cylindrical approximations for these sur-
faces. We did not study in detail the problem of combining neighborhoods
for tori.

As we shall see later, classification in CSGO requires PMC of points
that do not lie in the interior of edge segments of constant classification.
Neighborhoods of such points generally cannot be represented in 2-D.
Representation for “vertex-neighborhoods” are unwieldy [Requicha 85|,
but we can avoid dealing with them because point classification can be

84

Chapter 6: Computation in CSGO 85

deduced from the classification of a sufficient set of edge segments as
follows.

A point P will be on the boundary of the solid § if and only if there
exists a face F of S such that P lies in the closure of F (i.e.; P can lie in
the interior of F or on its boundary). If such a face F exists, it lies on at
least one patch of S that contains P. Therefore, to classify P with respect
to S we construct the set Fp of patches of S that contain P, and check
whether any of these patches contain a region of 85 in contact with P. (If
Fp contains less than two patches the classification of P does not require
neighborhoods and the technique described here need not be used.) In
the neighborhood of P, a patch F; of Fp is divided into region of constant
classification by intersection—edges E;; of F; with other patches F; of Fp.
If for a given patch such edges exist, classification of each region can be
deduced from the classification of its bounding edges. On the other hand,
if in the neighborhood of P the intersections of a patch F; with other
patches of Fp is not one-dimensional (i.e.; the patches intersect only at
P or are coincident), then F; has (in the neighborhood of P) a constant
classification with respect to S, and this classification can be obtained by
classifying with respect to S any curve (dummy edge) of F; that passes
through P.

The actual classification of a point P with respect to the solid S
can be organized as follows. First find the set Fp of all patches of S
that contain P. If there is less than two, use simple classification without
neighborhoods. If Fp contains more than one patch, compute the pairwise
intersection—edges of the patches of Fp. On each patch of Fp that does not
intersect other patches of Fp in an edge that passes through P, construct
a dummy edge that passes through P and add it to the set of pairwise
intersection—edges. (For instance when P is the apex of a cone, the dummy
edge can be any linear generator of the cone.) At this point we have a
set of edges E;; that pass through P and lie on patches of Fp. For each
edge E;; compute the intersections of E;; with each patch of S that does
not contain E;;. Sorting intersection points along E;; defines segments of
constant classification on E;;. Consider only segments that are adjacent to
P, and classify with respect to S an intermediate point on each segment.
If all such segments are in the interior of §, P is in S. On the other hand,
if all such segments are out of § then P is also out of S. Otherwise P is

Chapter 6: Computation in CSGO 86

on the boundary of S. In fact the classification can be interrupted as soon
as a segment that lies on S, or two segments of different classification are
found. It follows that we only need support PMC for points that lie on
edge segments of constant classification, and the neighborhoods for such
points can be represented in 2-D as noted earlier.

6.2.3 Algorithm

The high level design of a PMC algorithm for CSG [Requicha 77b] can
be extended to CSGO (see below) by simply adding to the case statement
a new branch that corresponds to offset nodes. CLASS_POINT takes a
solid N and a point P that lies on a segment e of constant classification
with respect to S, and returns R and nbk. R indicates whether P is in the
interior, on the boundary, or in the complement of N. When R = ON, nbh
is a 2-D representation of the intersection with N of the neighborhood of
e at P.

function CLASS_POINT(P,N):(R,nbh);
begin
case N.type of
primitive: (R,nbh):=CLASS_POINT_PRIMITIVE(P,N);
motion: begin
P':=APPLY_MOTION({N.motion]-,P);
(R,nbh):=CLASS_POINT(P',N.left);
nbh:=APPLY_MOTION([N.motion/,nbh);
end;
Boolean: begin
(Rl,;nbhl):=CLASS_POINT(P,N.left);
(Rr,nbhr):=CLASS_POINT(P,N.right);
(R,nbh):=COMBINE(RI,Rr,nbhl,nbhr,N.type);
end;
Offset: begin
' (R,nbh):=CLASS_WRT_OFFSET(P,N.left,N.odist);
end;
end;

Point membership classification against primitives can be performed
(procedure CLASS_POINT_PRIMITIVE) by classifying the point against

Chapter 6: Computation in CSGO

the half-spaces that define the primitive; this is done by checking the sign
of a low degree polynomial. For instance, if the primitive S is a sphere
of radius r, a point will be in ¢§ if it is closer than r to the center of
the sphere. Neighborhoods of points with respect to primitives are also
directly available.

Algorithms for combining classifications and edge neighborhoods at
Boolean nodes (procedure COMBINE) are available [Tilove 80], for all
standard surfaces but tori. We still need to provide algorithms for classi-
fying points with respect to offset solids.

6.2.4 Offset nodes

To classify a point against the offset (Str or S|'r) of a solid S defined
in CSGO, we need the BRep® of S. To avoid evaluation of the bound-
ary of S one might be tempted to classify the point with respect to the
offsets of primitives of S and to combine the results accordingly to the
CSG expression of S, but, as shown in chapter three, such an approach
is incorrect because offsetting does not in general distribute over Boolean
operations.

Point classifiers for offset solids are relatively straightforward. Let us
study classification with respect to expanded solids; classification against
shrunk solids is similar. The classification of a point P with respect to S{r
can be organized as follows. First one classifies P against S. If P is in or
on S, then P is also in S1r. If P is out of S, its classification depends on
the distance d(P, S), which by property 3.10, is equal to d(P,dS) for P out
of S.

The function CLASS-WRT_OFFSET takes a point P, a solid S, and
an offset distance r. It returns the classification of P with respect to Sir
and the corresponding neighborhood.

® The BRep of a solid contains a sufficient set F of patches, a set E of singular curves,
and a set V of singular points of the solid.

87

Chapter 6: Computation in CSGO

function CLASS.WRT.OFFSET(P,S,r):(R,nbh);

begin
if CLASS_POINT(P,S)# oUT

then R:=IN

else (R,nbh):=POINT_-O_BDRY(P,S,r);
end;

By property 3.13, Str = S | (8S)1r, and therefore if P is out of S,
it suffices to classify it against the version of 35 expanded by r, which
is done by the procedure POINT_O_-BDRY as follows. POINT_O_-BDRY
checks whether d(P,8S) < r. For this it computes the minimum distances
from P to the vertices, edges, and faces, of 8S.

— If ¢(P,3S) < r then P is in the interior of Str.

— If d(P,85) > r then P is out of Str (or more specifically in the
interior of the complement of Str).

— If d(P,3S) = r then, as pointed out in chapter three, P is on 8(51r)
for open S. If S is closed, one must compute the neighborhood of
P in (8S)1r.

POINT_O_BDRY stops and returns “R=IN” as soon as it finds a
point on 35 that is closer than r to P. The procedure returns “R=0UT",
if d(P,85) > r.

Suppose now that d(P,S) = r and the minimum distance is achieved
several points Q; of 3S. Each @; lies on a boundary element E; of S (i.e.,
a face, an edge, or a vertex of 3S), and P is at a distance greater than
r from all other elements of 3S that do not contain a closest projection
point Q;. It follows that, in the neighborhood of P, (8S){r equals the
union of the solids E;}r whose boundaries are contained in the set of faces
F; obtained by n—offsetting E;. (See Figure 6.3 for an example.) Faces F;
are imbedded in surfaces A;. (For instance, if Q; lies on linear segment
of an edge of S, then P lies on the cylinder obtained by n—offsetting the
line segment.) The orientation of the n—offset surfaces 4; is also available;
solid material is on the same side as Q;. In the neighborhood of P, Sir
can be expressed as the union of the half-spaces defined by the oriented

88

b
g
B
[}
mm
5T

N

-y
(=]
o ©
8 o
n 2
-y

==

FIGURE 6.8: The point A is on the f
are needed to conclude that A is out of A —* (B C).

g
ooy T
-7
@ 8
e

Chapter 6: Computation in CSGO 90

surfaces A;. Neighborhood combination techniques discussed above can
be used here to compute nbh (procedure COMBINE_UNION_NBH).

The distance d(P,dS) is the minimum of the distances from P to the
vertices and to the normal projections of P the edges and faces of S.

The normal projection points h of P on an edge e are defined in chapter
four as the set of points h of e, such that the vector (P—h) is orthogonal to
the tangent to e at k. The computation of point/edge normal projections
depends on the nature and representation of the edge, but in general is
expensive if the edge is more complex than a line or a circle. If a parametric
representation e(t) is available for the edge e, we can compute the normal
projections by finding the values of ¢t for which ||P — ¢(t)||? is extremum.

Each face of S is contained in a patch f of S and therefore is a subset
of A, the host surface that contains f. The normal projections of P on a
face of § are computed in two steps. First we find the normal projections
h of P on A. The computation of normal projections of P on a standard
surface are straightforward. The normal projections of P on a canal face
can be simply computed from the normal projections @ of P on the spine
of the canal face; it suffices to move from Q towards or away from P by
the radius of the canal face.

In the second step we must discard the points k that do not lie on
a face of S. Point/face classification can be done by standard boundary
oriented methods, which require that one store, for each face, a list of
pointers to the edges that bound the face, in addition to the patch or
host surface. Alternatively, we can replace point/face classification by

point /solid classification, because it is sufficient to know whether # lies on
S or not. This can be tested by a recursive call to CLASS_POINT.

Normal projection points h, used to compute the distance from a point
P to a solid S, do not necessarily lie in the interior of an edge segment of
constant classification, and therefore their neighborhoods with respect to
S cannot be represented and combined in two dimensions.

The point h may be “vertex-like”, i.e., the intersection of several
surfaces (see Figure 6.3), and its neighborhood cannot be represented in
2-D. As explained above, the classification of such points will be inferred
from the classification of a sufficient set of edge segments.

-Chapter 6: Computation tn CSGO

Pseudo—code for POINT_-O_BDRY follows. When d(P,S) =r, B con-
tains the list of oriented offset surfaces used for computing the neighbor-
hood of P in S.

function POINT_O_-BDRY(P,S,r):(R,nbh);
begin
B:=0;
for each vertez vof V
do if |[P-v| <~
then return R:=IN
else if |P —v|| =r then B:=B+SPHERE(v,r);
for each edge e of E
do begin
H:=PROJECT-ON_EDGE(P,e);
for each point h of H
do if |[P-h| <~
then return R:=IN
else if |P—h| =r
then B:=B+CANAL_FACE(e,r);
end;
for each face f of F
do begin
H:=PROJECT-ON_SURF(P,HOST_-SURF(f));
for each point h of H
do begin
(Rh,nbh):=CLASS_POINT(h,S);
IF (|P - h|| <r) and(R, = ON)
then begin
if |[P-bhl<r
then return R:=IN

else B:=B+N_OFFSET_FACE(f,r);

end;
end;
end;
if B=¢
then RETURN R:=0UT
else RETURN (R,nbh):=COMBINE_UNION_NBH(P, B)

end;

91

Chapter 6: Computation in CSGO

6.2.5 Summary of requirements

To classify points in CSGO we must compute point/solid distances,
and therefore we need:

— the BReps (i.e., patches, edges and vertices) of all the arguments of
offset nodes in the CSGO tree (we shall see below how such BReps
are computed),

— algorithms that compute normal projections on curves and sur-
faces. Such algorithms will be greatly simplified by our use of
PCC approximations.

(The algorithms used by standard modellers, e.g., to combine neigh-
borhoods, are also necessary, of course.)

6.3 BOUNDARY EVALUATION

Boundary evaluation is a considerably more complicated process than
ray casting or mass-property calculation. Again, there are many ap-
proaches to boundary evaluation, but several CSG/BRep modellers, in-
cluding PADL-2, use a more elaborate version of the following basic algo-
rithms.

6.3.1 Non recursive algorithm

The function BREP_EVAL takes a solid (S) defined in CSG and re-
turns a set F of patches and the set E of the edges of S.

function BREP_EVAL(S):F,E;
begin

F:=PATCHES(S);
E:=T_EDGES(F);
E:=TRIM_ALL_EDGES(E,S,ON);

end.

Thus, one starts with a set F of patches, or tentative faces that are
guaranteed to include the faces of the desired object. In CSG the set F
can be obtained as the union of the faces of the primitives that define S,

92

Chapter 6 : Computation in CSGO

but in CSGO, the generation of a superset of the boundary of the rep-
resented solid requires n—offsetting operations. Specifically, if the CSGO
representation contains an offset node that corresponds to Str, we gener-
ate a superset for 9(S1r) by n—offsetting the edges, faces, and vertices of
S. It follows that the BRep of S must be available before we compute the
BRep of Str. This leads naturally to an incremental boundary evaluation
algorithm.

6.3.2 Incremental boundary evaluation

We propose below an adaptation to CSGO of a simplified recursive
formulation of an incremental boundary evaluation algorithm in CSG [Re-
quicha 85]. The function BREP_EVAL_O takes a node N of a CSGO tree
and returns the corresponding BRep; i.e., the set of patches F, edges E
and vertices V of the solid defined by N. The resulting BRep is attached
to the current node. (A similar algorithm may be used to produce more
elaborate BReps containing explicit connectivity information.)

function BREP_EVAL_O(N):F,E,V;
begin
case N.type of
primitive: (F,E,V):=PRIMITIVE_BREP(N);
motion: begin
(FLEI,Vl):=BREP_EVAL_O(N.left);
(F,E,V):=APPLY_MOTION([N.motion],(FI,El, V1)),
end;
Boolean: begin
(FLEL,Vl):=BREP_EVAL_O(N.left);
(Fr,Er,Vr):=BREP_EVAL_O(N.right);
F:=Fl+Fy;
E:=9;
for each pair of patches f, and f, of F
do E:=E+SURF_INT_SURF(fi, f2);
for each canal face f of F
do E:=E+SELF_CROSS_EDGES(f);
E:=TRIM_ALL_EDGES(E,N,ON);
V:=VERTICES(E);

93

Chapter 6: Computation in CSGO 94

end;
Offset: begin
(FLEIL,Vl):=BREP_EVAL_O(N.left);
F:=N_OFFSET(Fl,El,VI,N.odist);
for each pair (fi,f2) of patches of F
do E:=E+SURF_INT_SURF(f.,f2);
for each canal face f of F
do E:=E+SELF_CROSS_EDGES(f);
E:=TRIM_ALL EDGES(E,N,ON);
V:=VERTICES(E);
end;
attach (F,E,V) to N;

end;

PRIMITIVE_BREP returns the BRep of a primitive, and is straight-
forward since the BReps of standard primitives can be simply inferred
from their types and dimensions. The patches of a primitive are its faces.
The parameters, limits, and rigid motions of such patches can be simply
derived from the parameters of the primitives (see Chapter ten for an
example and a description of patch and primitive representations). The
edges of standard primitives are line segments or circles. The vertices and
singular points can also be simply obtained.

We still must discuss the generation of tentative intersection edges
(procedures SURF_INT_SURF and SELF_CROSS_EDGES), edge classi-
fication TRIM_ALL_EDGES, and the generation of vertices (procedure
VERTICES) and patches for offset nodes (procedure N.OFFSET).

For the sake of clarity we presented a simplified and non—optimized
version of BREP_EVAL_QO, which might compute the same tentative edges
many times during the boundary evaluation of a complex solid. At
Boolean nodes N one actually needs only to generate tentative edges that
are intersections of patches of the left sub—tree with patches of the right
sub—tree. Other tentative edges of N are already available in the BReps
of the two sons of N and need only be classified against the other son.

Chapter 6 : Computation in CSGO

6.3.3 Surface/surface intersection

At Boolean nodes, pairwise intersection of patches generates tenta-
tive edges, which together with self-intersection edges of canal faces are
guaranteed to include those of the object.

The procedure SURF_INT_SURF takes two patches and returns their
intersection, which might be composed of several tentative edges. In
CSGO one might have to compute tentative intersection—edges of canal
faces with other patches.

The problem of generating intersections of two surfaces will be dis-
cussed in the following chapters. Self—crossing edges of canal faces will be
handled by approximating the canal faces with pieces of tori and cylinders,
and by computing their pairwise intersections.

Extraneous portions of these tentative edges are discarded by classi-
fying them with respect to N. The function TRIM_ALL_EDGES takes the
set of edges E, the definition N of the solid, and the flag IBO. It returns the
set of edge segments R that lie on N (if IBO = ON). TRIM_ALL_EDGES
simply calls TRIM_EDGE (already discussed). Therefore we must assume
that the set of patches for N and the BReps of all arguments of offset nodes
in the definition of N are available.

function TRIM_ALL_EDGES(E,N,IBO):R;

begin

R:=9;

for each edge e of E do R:=R+TRIM_EDGE(e,N,IBO);

end;

6.3.4 Patches of offset nodes

At each offset node in a CSGO tree we must generate a sufficient
set of patches, whose union is guaranteed to include the boundary of the
offset object. This amounts to computing a superset of the boundary
of the offset solid S{r or S'r, which may be done by n-offsetting 85, as
shown in chapter four. Therefore we must n-offset the patches, edges and
vertices of 3S. The necessary information is contained in the BRep of S,
and n-offsetting patches, edges and points is straightforward.

95

Chapter 6: Computation in CSGO

The following facts may be used to generate smaller supersets, and
therefore to speed-up patch generation, as well as subsequent computa-
tions. (We assume below that the positive direction of the normal to
patches of S is toward the exterior of S.)

— Negative n-offsets (towards the interior of S) of patches need not
be considered when computing patches for S{r. Similarly, positive
n-offsets of patches are not needed for S|*r.

— Concave edges need not be n-offset for S1r. Similarly, convex edges
are not needed for S{'r. BRep edges that separate tangent faces
are not singular curves, because the normal to 85 is continuous,
and therefore never need to be n-offset.

The procedure N_.OFFSET takes a CSGO representation S, the as-
sociated BRep (F, E,V), and an offset distance r, and returns the set R of
patches of Str. N—offsets for shrinking operations are obtained in a similar
manner.

function N_OFFSET(F,E,V,r):R;

begin

R:=0;

for each face f of F do R:=R+N_OFFSET_FACE(f,r);

for each convez edge e of E do R:=R+CANAL_FACE(e,r);
for each vertez v of Vdo R:=R+SPHERE(v,r);

end;

The function N_.OFFSET_FACE takes a patch f with specified
normal-direction N that points out of the solid, and a distance r, and
returns f||}. Patches are standard faces or canal faces. N—offset of stan-
dard faces and canal faces can be simply obtained as discussed in Chapter
four. The function CANAL_FACE takes an edge e and a radius r and
returns a patch that is a canal face of spine e¢ and radius r. We must
also n—offset the vertices (all singular points) of S. The function SPHERE
takes a point v and a radius r and returns the spherical surface of center
v and radius r.

96

Chapter 6 : Computation tn CSGO

6.3.5 Vertices

Most vertices of a solid S are obtained from the end-points of the
edges of S. Care must be taken here to count only once a vertex that
appears in several adjacent edges.

We also need to n—offset singular points that do not lie on any edge;
for example the apices of semi—cones, or the self—crossing points of a
toroidal surface whose cross—section radius exceeds the radius of its spine.
Such vertices could be treated separately by generating all singular points
of the patches of § and discarding those that are not on S. However,
when neighborhoods need be considered, it is simpler to provide robust
classification algorithm for edges than for points. Points may correspond
to vertices of several sub—solids, and their correct classification requires
three-dimensional neighborhoods, while edge classification is based on
the classification of mid—points, which do not lie on vertices of any sub-
expression, and for which two—dimensional neighborhoods are sufficient
[Requicha 85].

We shall use the following method to avoid direct classification of

isolated singular points. For each patch that contains isolated points we
construct a dummy edge that lies in the patch and contains the isolated
points. (For half-cones this edge is a line, and for elbows, which are
toroidal sections, this edge is a circle.) The dummy edge is not a singu-
larity and in general does not correspond to a singular curve of the solid,
therefore it should not be used in most of the algorithms. However, it
will be classified together with all other edges in the boundary evaluation
algorithm. Let e be such an edge starting at the singular point P. In
the procedure TRIM_EDGE, e is first segmented into subsets whose mid-
points are classified with respect to the solid. If the first segment is on
the solid, then its end-points (which include P) are also on the solid. If
dummy edges are marked, the procedure TRIM_EDGE need not classify
all segments of e, but only those connected with isolated singular points.

The procedure VERTICES returns the end points of all the edges of
the solid (including dummy edges), and therefore will return also isolated
singular points that lie on the solid.

97

Chapter 6: Computation in CSGO 98

6.3.6 Summary of requirements

In addition to all the requirements for edge—classification and for
PMC, we need procedures that compute surface/surface intersections.

6.4 COMPUTATIONAL REQUIREMENTS IN CSGO

We wish to point out that the above algorithms are presented in a
very simplified form. For the sake of clarity we chose to present a non-
optimized version of each algorithm. Some of the details will be discussed
together with the description of our experimental modeller.

From the algorithms presented above we conclude that to perform on
offset solids the usual computations available in solid modellers, we need
the following tools. '

e Procedures to compute the intersection—edges of any two standard
or canal faces.

¢ Procedures to compute the intersection of a curve with a standard
or canal face.

o Procedures to compute the normal projections of a point on an
edge.

These low level tools will be described in the following chapters.

CHAPTER VII

APPROXIMATION OF EDGES

To integrate offsetting operations in standard dual modellers, we
must support canal faces. The introduction of new surface-types com-
plicates considerably the generation, representation and classification of
intersection-edges. To avoid such complications we decided to approxi-
mate each canal face by a set of smoothly joined standard faces. The
torus and the cylinder are simple cases of canal faces and therefore seem
suitable for such approximations.

Piecewise cylindrical approximations of general canal faces are simple
but their are not smooth.® Smoothness is important for offsetting oper-
ations; therefore we chose more complex approximations consisting of a
sequence of smoothly joined pieces of tori or cylinders. Spines of cylinders
are straight lines, and spines of tori are circles. Since canal faces can be
represented by their radius and spine, we can generate a smooth piecewise
cylindrical or toroidal approximation of any canal face by approximating
its spine with a PCC (smooth piecewise linear or circular space curve).

Spines of the canal faces of an offset solid S correspond to intersection-
edges of some sub-solids used in the definition of S. We propose in this
chapter a method for deriving PCC approximations for all intersection-
edges of solids defined in CSGO. Exact parametric representations can be
computed analytically for intersection-edges of standard quadric surfaces.
Therefore, the PCC approximations of such edges could be easily derived
from the corresponding parametric representations. Unfortunately, to the
best of the author’s knowledge, algorithms that compute and process exact

e Throughout this thesis the term smooth denotes G geometric continuity [Barsky 84].

99

Chapter 7: Approzimation of edges

representations of intersection-edges of tori with other standard surfaces
are not available.

To overcome this problem, we developed a method for generating
PCC approximations for intersection-edges between any two “standard
faces” 7 including tori.

In addition to providing a simple approximation for canal faces and
an economical way to fully support the torus, our method allowed us
to simplify most computations performed on intersection-edges. For in-
stance, the intersection of a PCC approximation with a torus can be com-
puted analytically by finding the roots of fourth degree polynomials, while
finding the intersection of an edge approximated by other methods with
a torus generally requires solving much more complex equations. PCC
approximations also are advantageous for computing distances, thus com-
puting the minimum distance between a point and a cylinder/cylinder
intersection-edge requires finding roots of an eighth degree polynomial,
but replacing the edge by its PCC approximation reduces the problem to
root—finding for second degree polynomials.

7.1 GENERATION OF INTERSECTION-EDGES

In this section we present our approach to the problem of comput-
ing PCC approximations for intersection—edges between any two stan-
dard faces (i.e., faces of standard primitives). Our method is a variation
of the parametric grid method [Sabin 80] and can be adapted to non-
standard patches or simply modified to generate smooth piecewise cubic
curves instead of PCC’s. It has the advantage of interpolating the ex-
act intersection—edge at discrete intersection points, and therefore seems
more suitable for solid modelling than recursive subdivision, which con-
verts the faces into a grid of low degree patches (often planar facets)
[Carlson 82, Koparkar 84]. For standard faces, our approach is also sim-
pler and more efficient than tracing methods, which “crawl” along the
intersection—-edges from some starting points [Timmer 77], and compute
the next point through expensive iterations. Our method has three steps:

7 Standard faces are faces of standard primitives: blocks, cylinders, spheres, half-cones
and tori. '

100

Chapter 7: Approzimation of edges

(1) generate intersection points and tangents; (2) sort the points along
the edge; (3) interpolate the points by PCC’s. To meet accuracy require-
ments, one may have to iterate this sequence by recursively refining the

approximation in selected areas.

The first step requires the computation of curve/surface intersections.
For patches (faces of standard primitives), such computations can be re-
duced to the intersection of lines or circles with standard surfaces. An

efficient implementation is proposed in chapter nine.

The second step is usually expensive; it requires sorting a list of points
in space. We solve it efficiently by mapping intersection points in an array
of cells in the two-dimensional parameter space of one patch. Our method
locates consecutive points practically without searching.

In the last step, we interpolate pairs of consecutive intersection-points
and tangents with twisted bi-arcs, thus generating a PCC that interpolates
the actual edge at all intersection points. Computation of twisted bi-arcs

and representation of the PCC are derived in chapter eight.

7.1.1 Constant parameter curves

Given a solid S, defined as a Boolean combination of primitives P;, any
face of S is contained in the union of the faces of all P;. Faces of standard
primitives can be parameterized in such a way that constant parameter
curves correspond to lines of curvature, and are circles or line segments
(see Figure 7.1). A patch can be represented in its bi-parametric form by
a vector-valued function F(u,v) that maps a rectangle in parameter space
(v € [u1,uz) and v € [v;,v;]) into a standard face. Constant parameter
curves (called also generators) are u-curves of the form C,(t) = F(u,t),
and v-curves of the form C,(t) = F(t,v).

101

Chapter 7: Approzimation of edges

FIGURE 7.1: Constant parameter curves of standard faces are straight lines or circles.

7.1.2 Intersection points and tangents

Let F, and F; be two patches contained respectively in the standard
surfaces S; and S;. We assume that the intersection of S, with S, is a set
of dimension one or is empty (special cases such as coincident or tangent
surfaces are treated separately). We generate points that lie on F; and
on S; by using a grid of generators (u-curves and v-curves) of F;. We
compute the intersection points of each generator with S;. Unless we
are in a special case where the whole generator lies on S;, we obtain at
most four intersection points. For example, given a u-curve C, of F,, we
compute its intersection points C,(v;) with S,. These intersection-points
are represented in the parametric space of F; by the parameter values
(u,v:), and lie on F, and on S;, but can be out of F,. Points out of F;
could be easily rejected, since, given a point P on S,, it is easy to obtain
the parameterization (u,v) such that P = F,(u,v). However, we must keep
such points, because they will be needed to generate the last bi-arcs that
are partly on® and partly out of F, (Figure 7.2). It is necessary to
generate similar intersection points for v-curves of F;, otherwise we could

® Such a bi-arc is the approximation of a segment E of the intersection-edge between
S; and S;. By saying that the bi-arc is partly on F; we mean that E is partly on F3, since,
in general the bi-arc is not entirely “on” any of the intersecting surfaces.

102

Chapter 7: Approzimation of edges 103

FIGURE 7.2: The point P; is out of Fz, but is needed to specify the bi-arc (P;, Ps),
which partly lies on Fj.

F2

FIGURE 7.8: Using only u-curves of F;, we miss the intersection edge.

Chapter 7: Approzimation of edges

miss large intersection-edges that are almost parallel to u-curves of F;

(Figure 7.3).

The tangents to intersection points will be used as additional con-
straints for the approximation. The exact tangent to the intersection-
curve at an intersection point P can be computed as the cross-product
of the normals at P to S; and to S,. Normals to standard surfaces are
simple to obtain. When the two normals are colinear, the two surfaces are
tangent, which implies a self-crossing of the intersection-edge. We shall
not attempt to predict such situations, but rather isolate them during the
matching process, as explained below.

7.1.3 Cellular approach

It is desirable to produce evenly spaced intersection points, and to
provide an upper bound on the size of details missed by the approximation.
The generators form a grid, which divides the patch F; into cells. The cell
that corresponds to the parameter interval [u;,u;] X [v1,v3] is defined by
the function F(u,v) for u € [u;,u;] and v € [v;,v,]. The “size” of the cell
is controlled by the two increments éu = u; — u; and év = vz — v;, and the
boundary of such a cell is composed of four segments: the segments of C,,
and of C,, for v € [v;,v;], and the segments of C,, and of C,, for u € [u;,u,).

For general bi-parametric patches, it is difficult to control the maxi-
mum distance between two consecutive u-curves C, and C,,s,, by adjust-
ing the increment éu. We adopt the following definition.

DEFINITION 7.1: The maximum distance between two curves C; and C;
is m(Cl,Cz) =infr for C, Cc Cqir and Cy C Cytr.

It follows from this definition and from the definition of expanded
sets that any point of C, is closer than m(C},C;) to C; and vice versa. For
standard surfaces, we can easily control the maximum distance between
two consecutive generators. This allows us to control the “size” of the
cells, i.e., the maximum distance from any point of a cell to the boundary
of the same cell. Because cells on standard surfaces are bounded by lines
or circles, given a point F(u,v) in the cell defined by [ui,us] X [vy,v2], the
minimum distance from F(u,v) to the boundary of the cell is less than or
equal to the minimum distance d from F(u,v) to the four points F(u,v;),

104

Chapter 7: Approzimation of edges

F(u,v2), F(ui,v), and F(uz,v). An upper bound for the size of the cell
is provided by the maximum of d over all points of a cell. Using our
“natural” parameterization of standard faces, the distance d is maximum
when v = 214%2 and v = 4% and can be simply evaluated for each type
of face.

7.1.4 Matching intersection points

The parameters v; of the intersections of generators C, of F; with
S, are stored in an array V[u], indexed by discrete values of u. Each
element of the array contains at most four v values. The parameters u;
of the intersections of generators C, of F; with S; are stored in a similar
array U|[v], indexed by discrete values of v. Given a cell defined as Fy(u,v)
with u € [u1,u;] and v € [v1,v;], the intersections of its boundary with S,
contains at most sixteen points, which can be found in four lists. Each
list has at most four elements. The intersection points are:

o Fy(u;,v) with v stored in V[u;] and v € [v;,v,],
o Fi(u3,v) with v stored in V[us] and v € [v;,v2],

F1(u,v;) with u stored in U[v;] and u € [u}, 3],

F1(u,vz) with u stored in Ulv,] and u € [u1,us),

If care is taken to count twice intersection points that are at the
corner of a cell, and tangency points where a generator “touches” S,
the boundary of each cell contains an even number of intersection points,
because S; is a closed or infinite surface (see Figure 7.4), and therefore
the curve of intersection between S; and S; cannot terminate (have an
end—-point) within a cell. If we have more than two points for a single
cell, we propose to use adaptive subdivision to match these intersection
points into pairs. We tried heuristic approaches based on the direction of
the tangents associated with each point, but our experiments show that
one cannot guarantee that such approaches will produce the appropriate
results, especially near points where the two surfaces are almost tangent.
An example is shown in Figure 7.5.

When the boundary of a cell contains more than two intersection
points, or when the approximation generated does not satisfy the precision

105

Chapter 7: Approzimation of edges

pan

N
7
\

FIGURE 7.4: Intersection points are mapped into cells of the parametric grid.

B/ Vi

/P £ P

2 2

FIGURE 7.5: Given four intersection points P; and the associated tangents (left), most
approaches based on point position and tangent direction would indicate that the point P
should be matched with P;. It is not the case in reality (right).

106

Chapter 7: Approzimation of edges

criterion discussed below, the cell can be recursively subdivided into four
cells, until all precision criteria are met and all ambiguities resolved, or
until the “size” of the cell is less than a specified limit. To subdivide
a cell, we propose to use generators that correspond to mid-values of
the parameters defining the cell. If the subdivision process reaches the
cell’s minimum size without resolving the matching ambiguities (more
than two intersection points remain on the boundary of the cell), we could
declare that the edge is self-intersecting, but it is easier to match the points
so that the two induced edge segments do not intersect. There is not
enough information to infer the correct topology of the intersection; we
cannot distinguish between possible topologies on the basis of approximate
geometric data. This seems to be of no consequence in solid modelling.

Our cell-based approach to the matching problem seems faster and
more robust than for instance a similar method reported in [Varady 83,
Jared 84] and used in the BUILD modeller. Varady’s method uses only
u-curves and an isosceles—triangle search to sort the intersection points.

7.1.5 Interpolation

After the matching process, each pair of points (with associated tan-
gents) is interpolated by a twisted bi-arc. The generation of such bi-arcs
is discussed in the next chapter. The result is a geometrically smooth
piecewise circular or linear curve (PCC), which interpolates all intersec-
tion points and their tangents. We believe that the PCC is a better
approximation than popular curves such as B-splines, which do not in-
terpolate tangent directions. Although geometrically smooth, a PCC will
not necessarily have continuous derivatives with respect to a specific pa-
rameterization. Its curvature is piecewise constant but not continuous,
and its torsion is null except at junction points. Our approach is local: we
need only to consider two consecutive intersection points at a time. This
requires less computation than most global methods [Harada 82].

107

Chapter 7: Approzimation of edges

7.1.6 Precision

We do not have an explicit parameterization of edges of intersection
of tori and therefore it is difficult to compute a bound on the maximum
distance between the real edge and its PCC approximation. Instead, we
define the error of the approximation as the maximum of the distances
from all points of the PCC to the two surfaces that intersect at the ap-
proximated edge. This error measure is more meaningful than the distance
between curves, because we must ensure that set membership classifica-
tion algorithms classify an edge approximation as “on” the surfaces that
intersect at the true edge.

Point /surface distance is simple to compute for standard surfaces,
(see chapter nine), however computing its maximum over a circular or even
linear arc is too expensive for practical use. Given a surface F(u,v) and a
curve segment C(t), we must compute values of u, v, and t, for which the
distance ||C(t)—F(u,v)| is extremum. Setting to zero the partial derivatives
of the square of this distance with respect to each variable yields three
non-linear equations. Initial investigation indicated that such an approach
is not worth implementing. We propose to replace the exact maximum
distance between an arc and a surface by an estimate computed at specific
points of the interpolating curve, or of its convex hull. The optimum choice
of such points and the derivation of an error bound remain open issues.

7.2 TORUS PROFILE EDGES

Line drawings of curved-face solids require the computation of profile
edges, sometimes called silhouette edges, which are view-point dependent.
Drawing a torus or a sphere should convince the reader of the importance
of profile edges. Simple expressions for profile edges of standard quadrics
are available for both perspective and parallel views. Profile edges of tori
and therefore of piecewise toroidal approximations of canal faces are more
complex. We approximate them by PCC’s, computed as follows.

The profile of a smooth face F is the locus of all profile points P of
F such that the normal N(P,F) to F at P is orthogonal to the viewing
vector W(P). For parallel views, the viewing vector is constant. For
perspective views W = P —V, where V is the view-point. We generate
profile edges by a technique similar to that used for the intersection-edge

108

Chapter 7: Approzimation of edges

generation. We use only u-curves, which are the circular cross-sections
of the torus. Each cross-section has zero or two profile points, and these
can be computed easily. Unfortunately the tangents to the profile edge at
those profile points are not directly available. We only have one constraint
for such tangents: they must be orthogonal to N(P,F). We developed a
scheme for estimating the tangents to a curve that interpolates a series
of points in space. The scheme is explained in chapter eight and can be
used to estimate the tangents necessary for the computation of the PCC
approximation of profile edges as follows. Given a sorted list of profile
points, first obtain an estimated tangent T at each profile point P by
the method of chapter eight. These tangents need not lie in the face F.
Then, to guarantee that the approximation of the profile edge will pass
through the profile points, and will be tangent to F at those points, we
compute the projection of T on the plane tangent to F at P and use the
projected tangents in the PCC fitting algorithm. This tangency constraint
is important when profile edges have to be classified against solids that
contain several instances of the same face F: the tangent can be used
to derive edge neighborhoods for the combination of on/on classification
results.

We have only two profile points per generator, therefore matching is
much simpler that in the case of intersection-edges. Two profile curves
(lists of profile points) are built incrementally, as we go from one u-curve
to the next one.

Profile edges are used only for display purposes and the precision to
which they are approximated is not crucial. However, the classification
of loosely toleranced approximations can, in certain cases, produce wrong
results, which correspond to unrealistic pictures. A similar problem arises
in the classification of approximation curves for intersection edges, and is
addressed in Chapter nine.

109

Chapter 7: Approzimation of edges

7.3 VERTICES

To support offsetting operations, we also need a list of vertices. They
are used for computing point/solid distance, and for generating the bound-
ing supersets of offset solids. Vertices can be obtained as ends of classified
edges. However, since we use approximations for edges, we cannot in
general obtain exact vertices that lie on three intersecting surfaces. For
instance, given two surfaces S, and S;, their common intersection-edge
will be approximated by the PCC denoted E,,. Classifying E,, against
the solid will produce segments of E;;. An end-point of such a segment
will lie on a third surface S;, but will probably not lie on S; nor on S,
because E;; is guaranteed to lie on S; () S; only at intersection points.
Similarly, the corresponding vertex of the edge E,3, intersection of S; with
Sz, will lie on S3, but not on S;, nor on S;. Therefore, the three edge-
approximations E;,, E.3, and E;3 will not meet at S; (] S2 () Sz, and three
different vertices will result. Each of them will lie on one of the three
surfaces and will be within specified tolerance from the two others. For
n-offsetting or for point-solid distance computation we use the center of
mass of the three vertices. Another, and more expensive, solution would
be to compute S;) Sz [Sa directly (using iterative methods) and update
the descriptions of the three edges so that they pass through the true
vertex.

110

CHAPTER VIII

PIECEWISE CIRCULAR CURVES

In this chapter, we present a novel approach to curve approximation.
The interpolation of an ordered set of sampling points in space with a
smooth parametric curve is an important tool in many computer appli-
cations, especially in computer aided design and manufacturing. Most
popular interpolation schemes in three dimensions are based on piecewise
cubic curves. In order to simplify drastically the computations performed
on curves in CAD/CAM systems, a new interpolating scheme was de-
veloped; it produces a smooth® piecewise circular or linear curve called
“PCC”. The whole curve passes through sampling points with specified
tangent directions. If not available, the tangent directions can be derived
from the position of the neighboring sampling points. The computational
advantages of an approximation with simple arcs are important in solid
modelling: PCC approximation allows simple classification of edges, and
permits to approximate offsets of solids without domain extension (i.e.,
avoiding the necessity to introduce new surface-types).

8.1 INTERPOLATION

Much effort has been spent to develop methods that interpolate a
sequence of sampling points in space by a three times differentiable, piece-
wise cubic space curve without undesirable waves [McLaughlin 83]. The
quality of these interpolations is defined by a subjective visual criterion. A
computational price for second order continuity is paid twice, first at the
curve generation time (large matrix inversion for interpolating B-splines

® Smoothness refers to geometric continuity (G') [Barsky 84], which is parameterization
independent (it is also called visual smoothness).

111

Chapter 8: Piecewise Circular Curves

or Ferguson splines) [Schaffner 81], [Liou 76], and a second time when com-
puting the geometric properties of the curve (intersections with surfaces,
minimum distances between points and curves, and so on...). When con-
tinuity of tangent direction (G!) is sufficient, a “smooth” piecewise conic
— or even piecewise circular — curve can be used. Such curves can be
efficiently generated and processed.

One method of generating a piecewise conic curve that passes through
n sampling points P;, ({ = 1...n) is to compute the n+ 1 control points C;
(¢=0...n) of a quadratic B-spline. A quadratic B-spline curve generally
does not pass through its control points, and therefore sampling points
cannot be used as control points. A uniform quadratic B-spline passes

through the mid—-points of any two consecutive control points. Matching

these mid-points with sampling points one obtains n constraints of the
form: C; + C;—, = 2P;, which define a family of quadratic B-splines that
interpolate all n sampling points. Three degrees of freedom remain for
the choice of the n + 1 control points, and fixing any one of the control
points C; is sufficient to specify a particular curve (for instance one could
choose Cy to minimize the sum of the squares of the sides of the polygon
Co,C1,..Cn). Such a constraint influences the shape of the whole curve
and therefore annihilates the local control property of B—splines; modify-
ing a single sampling point will change the whole curve. (Lack of local
control usually produces unpleasant waves.) The resulting curve can be
decomposed into a series of smoothly joined pieces, such that each piece
interpolates two consecutive sampling points in position but not in tan-
gent direction. We show below that each piece is a quadratic Bezier curve
and therefore is a parabolic segments (because the parabola is the only
quadratic parametric curve).

A point P(u) on a B-spline curve is defined as the weighted average
of three consecutive control points (for example Cy, Cy,C3, for u in [0,1])

> (1= u)?
2

By taking B, = (Co + C1)/2, B, = C; and B, = (C; + C2)/2 we can define
the same parabolic arc as a Bezier curve :

P(u) =y + (Co-) +%(Ca- 1)

P(u) = By + (1~ u)*(Bo — By) + v*(B; — By)

112

Chapter 8: Psiecewise Circular Curves |

it is important to note that: ’

P(0)=B,, P(1)=B,;, P'(0)=2(B,-B,), P'(1)=2(B;- B)

We call (Bo, By, B;) the control triangle of the conic arc. The arc passes
through B, and B,, and is tangent to B, — By, and to B; — B;.

We propose a method that, instead of a parabolic piece, uses a circular
bi—arc. Such a bi-arc interpolates two sampling points in position and
in tangent direction, which can be chosen to match the tangent to the
interpolated intersection—edge.

The use of quadratic B-splines induces computational costs, which
can be avoided with PCC’s. For example, the closest distance between
a point X and the parabola satisfies (P(u) — X) - P'(v) = 0 where P(u) is
defined as above. The optimal values of the parameter u can be computed
by finding the roots of a third degree polynomial. If we use a circular bi-
arc instead of a parabola, the minimum distance problem can be solved
more efficiently.

In addition, approximating the spine of a canal surface with a PCC
provides a simple approximation of the canal surface, which is not the
case when the spine is approximates with a quadratic B—spline.

8.2 TWISTED BI-ARCS

We showed in chapter seven that, to approximate the intersection—
edge between two patches (or faces), we can proceed in three steps: gener-
ate a list of sampling points P; and associated tangent directions T;, order
the points along the edge, and finally compute a PCC that interpolates
the sampling points and tangents. We saw how the first step can be done
by intersecting constant parameter curves of one face with the other sur-
face, and how the second step can be optimized by mapping intersection
points into cells in the two—dimensional parameter space.

The third step can be broken into a series of smaller independent sub—
problems: how to fit a simple space curve through two end—points with
specified tangent directions. This can be easily achieved with one cubic
arc (Hermite or Bezier for example). Two smoothly joined conic arcs can

113

Chapter 8: Piecewise Circular Curves

also be used to generate a bi—arc span. Such a method was developed
for circular arcs in two dimensions [Sabin 77| and for parabolic twisted
bi-arcs in three dimensions [Varady 83]. We developed independently a
similar technique for twisted circular bi—arcs in three dimensions.

Given the boundary conditions (two points P, and P, and the associ-
ated tangent unit vectors T; and T;) we wish to construct a smooth curve
that is piecewise linear or circular, and that satisfies at its ends the bound-
ary conditions. In general there is an infinite number of ways to construct
such a curve with two smoothly connected arcs (linear or circular).

A circular arc of center O, radius r and end—points A and C can be
described by its control triangle ABC (Figure 8.1). (If the angle (0A4,0C)
is larger than 180 degrees we use the control triangle that defines the
complement of the arc in the circle.) The control triangle is isosceles, and
the arc interpolates the points A and C and is tangent to the sides AB and
CB. For arcs that are line segments, which correspond to circular arcs of
infinite radius, we obtain a degenerate control triangle: the line segment
AC, which coincides with the arc.

To define a smooth bi—-arc that satisfies the boundary conditions, we
build a control polygon made of two smoothly joined control triangles
A1B,C, and A;B;C,, as shown in Figure 8.2. Thus to determine the eigh-
teen coordinates of the six points 4,, B;, C;, Az, Bz, and C,, we have the
following constraints:

e The polygon satisfies the boundary conditions in position (six equa-
tions):
Ai=P and C;=P;

o The polygon can be decomposed into two isosceles triangles (two
equations):

NIBi— A1l =||C1 — B;|| and |[B; — Az|| = ||Cz — By||

mL

o heo --_L_c]ll;:_;m.-l,mmn g\/wifg\ﬂnllty_nﬂ\(r,\fdﬁlff thoir common

114

Chapter 8: Piecewise Circular Curves 115

A

FIGURE 8.1: The circular arc is completely defined by its control triangle (A, B,C).

FIGURE 8.2: The end points P;, P; and the tangents T, T; are interpolated by a control
polygon (Aj, By, B2,Cs).

Chapter 8: Piecewise Circular Curves 116

¢ The polygon satisfies the boundary conditions in tangent directions
(six equations and two new variables a; and a,):

B, =P +a.T) and By = Py — a1,

It follows that we have twenty equations and twenty one variables,
and therefore one degree of freedom. The whole system of equations can
be simplified by noticing that the control polygon can be constructed as
follows: '

Ay =P
C;=P,
B,=Pi+aTh
By = Py —ayT;
a
Ci =B+ al;az(Bz—Bl)
Az = Cy

Two unknowns remain: a; and a,. They are bound by a single equation:
|B2 — B:|| = a1 + a2
which becomes:

(P2 — a2T2) — (Py + a1Th)|| = a1 + a2

8.2.1 General equation
We can solve this equation for a; by first squaring both terms:

|P2 — Py — (a2T2 + a1 Th)||* = (a1 + a2)?
which, with § = P, — Py, yields:
511 = 25 - (a1 Ty + a2T3) + af| T1|1* + a3 || T2|1* + 2a1a2T: - T
= a2 + a2 + 2q,0,

With ||T;|| = ||Tz|| = 1 we obtain:

S 2
ara2(T1 -T2 - 1) + |—|2l =a1(S - T1) + a2(S - T3)

or

1) —5-T) =a5-1, — I5I2
az(al(Tl Tz) S Tz)—aIS T1 9

Chapter 8: Piecewise Circular Curves

8.2.2 Degenerate case

Let us consider the case where the right-hand side of this equation
is null:
L o2
GIS . Tl - ’2‘”5”

This equation constrains B, to lie in the plane normal to S and passing
through the mid—point 1(P, + P,). In such case, if a;,(Ty - T2 - 1) # S T
then we have one solution: a; = 0, otherwise, a, can take any value. We
shall examine such cases, characterized by the two equations:

1
a(s-1) = glS|?
al(Tl 'Tz - 1) = S‘Tz

Under those conditions, if T) - T; = 1 then T} = T; and S - T; = 0, which
implies that §-T, = 0 and that ||S|| = 0. This corresponds to a degenerate
case, where the bi-arc is reduced to a single point (P, = P, and Ty = T3).
Let us suppose now that T, # T;. We can eliminate a, from the system of
two equations and obtain

2(s-T)(s-T1) = ISI*(Ta - T2 - 1)

Dividing this equation by ||S||?, and choosing a coordinate system such
that S is aligned with the X-axis, we obtain:

22123 = 2123+ y1y2 + 2122 — 1

or
Z1Z2 — Y1y2 — 2123 = —1

where Ty = (z1,y1,21) and T3 = (z2,y2,22). Define the real quantity g as:
9= (z1+ 22+ (y1 — 92)% + (21 — z2)?
Using z? + y? + 22 = 1 and 22 + y3 + 22 = 1, we obtain:

g=13+2z12;+ 23 + v} — 2u1y2 + ¥2 + 2} — 22,23 + 23
=z3 +yl 4+ 23 + 23+ i + 23 + 2(z122 — viv2 — 2122)
=141-2=0

117

Chapter 8: Piecewise Circular Curves

FIGURE 8.8: In the special case where a,(T1 — T3) = S, the second triangle degenerates
into a cusp and a3 is unconstrained.

g is the sum of three positive terms, therefore each term must be null:

Iry = —I3
Y1 = Y2
Z] = 29

This shows that S-T; = —S - T,. The vector a,(T) — T3) is parallel to S and
since S - (2a,T1) = ||S||* we obtain a,(T; — T2) = S. It follows that

Bi=Pi+aT1 =Pi+S+aTo=P+aT;

which implies that the first control trianéle is (P, B1, P;). The second con-
trol triangle is (P,, B;, P;), and it degenerates into a cusp at P, regardless
of the value of a;. This situation is depicted in Figure 8.3.

8.2.3 General solution

In the general case a,(T; -T2 — 1) # S - T, and one can compute a; for
each a; as follows:

__a(s-T) - |Is|?
ag =
al(Tl'Tz—l)-—S'Tz

118

Chapter 8: Piecewise Circular Curves

8.2.4 Equi-sided control polygon

One degree of freedom remains. a; can be chosen to minimize the
curvature, the total arc length, the twist or any other characteristic of the
generated bi—arc. We investigated several of these criteria and concluded
that they lead to expensive computations and often have undesirable side
effects. We chose to fix a; = az = a, which produces very regular curves
for all cases and leads to efficient evaluation.

With a; = a; =a, S = P, — P;, and T =T} + T3, the general equation
is ||S + aT'||?> = 442, which can be written as ||S||? + a?||T)|?> + 2a(S - T) = 44?,
or
a(|T|)* - 4) - 2a(S-T) +|S]I* =0

The discriminant of this second degree equation in a is
d=(5-T)*+s|*(4 - ITI*)

and is never negative since ||T|| < 2. If ||T||? # 4, then we obtain a positive

solution:
o Vd-S§-T
4|2

a is always positive since d = (S -T)* + ||S||2(4 - |IT|]?) > (S - T)>.

Let us suppose now that we are in the special case where ||T||2 = 4,
which is equivalent to T;, - T; = 1 or T} = T,. In this case, if §-T; # 0 then

oo lsp?
4(s-Ty)

If S-T, < 0 then a is negative, but we can still obtain an interpolation
without cusps by using the complement of the circular arcs defined by the
control polygon (see Figure 8.4).

If T, =T; and S -T; =0, we use half circles as shown in Figure 8.5.

8.3 REPRESENTATION

Alternative schemes for representing PCC’s are discussed in the fol-
lowing subsections.

119

Chapter 8: Piecewise Circular Curves 120

FIGURE 8.4: If the coefficient a is negative, we use the complements of the circular arcs
defined by the control polygon.

FIGURE 8.5: When S - T}, = 0, we use half circles.

Chapter 8: Piecewise Circular Curves

8.3.1 Minimal representation

A PCC is completely defined by its sampling points, and the associ-
ated tangent directions, therefore, the minimal representation of a PCC
that interpolates n sampling points requires 5n real numbers (3 for posi-
tion and 2 for tangent direction per sampling point). One could add, to
the minimal representation the coefficient a of each bi-arc. This would
require 6n — 1 real numbers, but would save the cost of recomputing a each
time the bi—arc is processed.

8.3.2 Control polygon

Smooth projections of PCC edges can be efficiently produced by our
display procedure which recursively subdivides the control triangle of each
arc into two equal parts until the projection of the control triangle on the
screen is sufficiently small or almost linear. The computation of the two
new control triangles is simple and economical — see Chapter nine.

Given the control polygon (P,, By, Bz, P;) of a bi-arc, the two control
triangles (P, B,,M) and (M, B,,P;) can be simply obtained by comput-

ing M = B1£Ba, Therefore, PCC representation in terms of the control

polygons seems attractive. It is obtained from the minimal representation
described above, by computing for each pair of sampling points (P;;, P;2)
the coefficient “a;,”, and by generating the associated control polygon
(P;1, Bix, Bia, Pi2)- Since Py, is also the starting point of the control polygon
for the next bi-arc, we need to store only 3 points per bi-arc (plus the
last intersection point of the PCC), which amounts to 3n — 2 points, or
9n — 6 real numbers. (Cases where the coefficient a is negative, or where
the arcs are half—circles may be detected and treated separately, but do
not require additional storage.)

The redundancy of the above scheme can be reduced if one does not
store the sampling points. For each bi-arc (P, B;,B;, P;), but the first
and the last one, one would only store the vertices B, and B,. This ap-
proach only requires 6n real numbers for representing a PCC that interpo-
lates n sampling points. Unfortunately this control polygon representation
does not contain an explicit representation of the sampling points, which
can only be obtained sncrementally by traversing the whole curve as fol-
lows. Let suppose that we represent the PCC by the control polygon

121

Chapter 8: Piecewise Circular Curves

C1,Ca,...,C2n (see Figure 8.6). The control polygon for the first bi-arc
(Pu,Bll,Blz,Plz) is obtained by.

Py =C
By = C;
B2 = Cs
a1 = [|C; — G4
lh =||Cq — G4
P, = C'3+alc4_-c3

h

Then we compute the control polygon (P,, Bz, B2;, P2z) for the second
bi-arcs as follows:

P2y = Py
By =Cy
B3 = Cp
az =11 —a
Iz = ||Ce — Cs||
Py = Cs 'i'azc’6 — Cs

l2
and so on, for all bi—arcs.

The need for an incremental evaluation of the sampling points is
not a major drawback for display algorithms, which process the curve
sequentially.

8.3.3 Explicit trigonometric representation

Control polygon representation is not convenient for the analytic com-
putation of the intersections of the arcs with standard surfaces. For such
applications, we generate the control triangle for each arc and convert it
into a standard trigonometric representation of a circular arc in terms of
its radius, its angle, and the associated rigid motion. Such conversions
are discussed in chapter nine. The rigid motion is defined by 6 numbers,
but usually is represented by the corresponding 3 by 4 matrix. There-
fore the explicit trigonometric representation of a PCC that interpolates
n sampling points (i.e., 2(n — 1) arcs) requires 28(n — 1) real numbers.

122

Chapter 8: Piecewise Circular Curves 123

FIGURE 8.6: The PCC is represented by its control vertices C;, from which we can
compute the control polygons of the individual bi-arcs.

Chapter 8: Piecewise Circular Curves

8.3.4 Representation of curve segments

The result of curve/solid classification is usually a list of segments
(subsets of a curve). A convenient way to represent such segments is to
add a list of parameter intervals to a parametric representation of the
curve.

To use this approach we need to infer a parameterization C(t) for our
PCC representation. The most convenient parameterization is in terms of
arc length. It can be easily obtained from the trigonometric representation
of the PCC, which contains explicitly the radius and angle of each arc.

8.3.5 A convenient representation

In order to achieve a compromise between time and storage costs we
chose the following representation for a PCC. For each sampling point
P; we store the three coordinates of the point, the three coordinates of
the associated unit tangent, the coefficient a;, and the parameter t; such
that C(t;) = P;. Conversion into explicit trigonometric representation is
done only when needed for segment/surface intersection or point/edge
projection.

8.4 INFERRING TANGENTS

To interpolate an ordered set of sampling n points P; (= 1...n)
by a PCC, the tangents T; of the curve at the points P; must be known.
When the sampling points lie on a known curve or on the intersection
of two surfaces, the exact associated tangents can be computed. But in
other applications (free form curve design or profile edge approximation)

onlv the sampling points are known, and tanﬁents must be approximated.
points P,_,, P, Pi;, define one circle Ci;. T'he center O; and radius r; ot

the circle, as well as the normal N; to the plane that contains the circle

124

Chapter 8: Piecewise Circular Curves

can be computed as follows:

V=P_,-P
W=P.,-P
Ni= |V xW|

2 2
R= "—Vz”—(w x Ni) + MZ-“—(N, x V)
Oi=P+R 4
r = |R|

Given the circle C; lying in the plane normal to N;, the tangent
TANG(Cy,S) to C; at a point S is N; x (0; — S), where O; is the center
of the circle. The tangent T, associated with the sampling point P; could
be approximated by TANG(C), P;); however this method is too local and
can produce somewhat “unnatural” waves. Much better results can be ob-
tained by using a weighted average of tangents to three circles constructed
over consecutive points (Figure 8.7):

Ti = wi_1TANG(Ci—1,P;) + w TANG(C,, P\) + w;+1TANG(Ci41, P1)

for I = 3...n — 2 and where C; is the circle passing by the points
Pj_1,Pj,Pj4 for j = 2...n - 1. For non-cyclic curves, tangents T, T3,
Ti-1, and T} are inferred from only one or two circles.

When the weights w; are equal, a smooth curve with little curvature
variations is obtained. In order to approximate correctly straight lines
defined by three or more colinear points, we make the weights propor-
tional to the corresponding radii: w; = r;, which produces infinite weights
for colinear points (Figure 8.8). Another weight formula is proposed in
[Harada 82], where the coefficients w; are slightly more complicated, but
do not seem to produce better results than our approach.

8.5 APPLICATIONS OF PCC’S

PCCQC’s have many applications. We shall only illustrate a few of them
here. '

125

Chapter 8: Piecewise Circular Curves 126

FIGURE 8.7: Tangents are weighted averages of tangent directions induced by three
circles.

FIGURE 8.8: Approximating tangents using equal weights produces a smooth curve
(left). To interpolate three colinear points with a straight line we introduce weights that -
are proportional to the radii of the corresponding circles (right).

Chapter 8: Piecewise Circular Curves

8.5.1 Approximations of torus edges

Exact intersection—edges of a torus with any other standard surface
are very expensive to generate, represent and classify. We propose to
address this problem by using PCC approximations for such edges.

8.5.2 Support of offsetting operations

Canal faces, which are necessary to model the boundary of offset
solids, can be approximated by a set of smoothly joined toroidal or cylin-

drical faces. This requires that their spine be approximated with PCC’s.

In addition, the use of PCC approximations for intersection—edges simpli-
fies set membership classification with respect to solids defined in CSGO.
Our experimental solid modeller approximates all intersection—edges and
spines with PCC’s.

8.5.3 Two—dimensional contouring

To produce illustrations for offsets, the author developed an exper-
imental system for two dimensional contour definition. The contour is
specified and modified graphically in terms of control points which define
line segments, fillets for corners, or points that will be interpolated with
a smooth PCC. Such contours contain only circular or linear segments
and therefore are closed under n-offsetting (see Chapter four). These
contours can be viewed as boundaries of two dimensional solids. Offsets
of such solids can be used to drive numerically controlled cutting tools
in computer aided manufacturing systems. Recursive offsetting (Figure
8.9) can be used as a basis for pocketing algorithms. We conjecture that
it could also be used for the automatic generation of two—dimensional
meshes for finite element analysis; such meshes would have the advantage
of following the geometry of the boundary.

8.5.4 Three—dimensional curves

PCC’s can be used for the design of free form curves. Interpolated
control points of PCC’s can be used in the same way as control points
of B-splines to specify and modify the shape of the curve. PCC’s retain
the important local control feature of B—splines and interpolate control
points.

127

Chapter 8: Piecewise Circular Curves

) &

FIGURE 8.9: The contour (left) can be recursively contracted (right). The resulting
family of contours can be used in pocketing or meshing algorithms.

8.56.6 Cutter path modelling

PCC’s also can be used to define cutter trajectories for machine tools
that allow linear and circular trajectories in space.

8.5.6 Sweeps

Combining PCC 2-D contours with PCC 3-D curves, one can incorpo-
rate sweeps into solid modellers that support only the standard surfaces.
Sweeping along a PCC spine a constant cross—section bounded by con-
tours that are piecewise linear or circular produces solids whose boundary
is composed of standard patches, because the sweep can be decomposed
into rotational sweeps (when the corresponding spine segment is circular)
and translational sweeps (when the corresponding spine segment is linear).

Classification on such sweeps could be organized as follows:

¢ To classify a point P, one computes the normal projections P; of P
on the spine, then classifies P against the two dimensional contours,
- whose position and orientation are defined by each P;. The two di-

T 1. e _a* . Y _ ___f VL a3 at A Lo

128

Chapter 8: Piecewise Circular Curves

e To classify a curve, one computes all the intersections of the curve
with the set of patches that bound the sweep, and then classifies
an intermediate point of each curve segment defined by two con-
secutive intersecting points.

8.5.7 Wire frame display

PCC’s offer an economical representation of smooth approximations
for edges. Such a representation could be stored in display devices to allow
realtime transformations. Recursive subdivision of the control triangle
(described in chapter nine) could presumably be used to drive micro—code
or hardware implementation of display procedures.

~ Hidden-edge detection requires the intersection of edge projections
in the picture plane. If edges are approximated with PCC’s, such inter-
sections are reduced to the intersections of ellipses and lines.

129

CHAPTER IX

COMPUTATION WITH PCC’S

We report in this chapter the mathematical results that were used
in our experimental modeller to implement most of the algorithms that
operate on PCC’s. We derive formulae for converting PCC representa-
tions, for evaluating point/edge and point/face minimum distance, and
for computing arc/surface intersections.

9.1 REPRESENTATION CONVERSION

Let C be a circle of radius r centered at the origin and lying in the
XY plane. We can represent a circular segment in C by the trigonometric
parametric expression

P(u) = O + rcos(u)X + rsin(u)Y

For u € [-t,t], the segment is positioned symmetrically around the X axis,
and the half-angle is t (Figure 9.1). To define an arc at an arbitrary po-
sition and orientation in space, one associates with the arc a rigid motion
represented by a 3 x 4 matrix RM. Points on the arc, at its final position,
are defined by RM(P'(u)), where P/(u) is a homogeneous representation
of P(u), obtained by adding a fourth coordinate equal to 1. The triple
(r,t, RM) defines the trigonometric representation of the arc.

Procedures that compute PCC approximations produce a set of cir-
cular arcs represented by their control triangles. The isosceles non de-
generate triangle (P, P, P3) defines a unique circle and splits it into two
complementary arcs.

130

Chapter 9: Computation with PCC’s 131

FIGURE 9.1: The arc can be represented in its parametric form or by the control polygon
(P 1y P, 2, P, 3) .

P
3 Mz

NG

M,
K

FIGURE 9.2: The arc defined by (P, P;, Ps) is subdivided into two arcs defined by
(Pl,Ml,M.‘) and (M.‘,Mz,Ps).

Chapter 9: Computation with PCC’s

Usually we are only interested in the smaller arc (less than half a
circle), but in certain cases, achieving smoothness of the PCC interpo-
lation requires the use of the larger arc, which may be distinguished by
some additional flag or sign, but is represented by the control triangle of
its complement. The trigonometric representations of an arc and of its
complement can be simply computed one from the other, and therefore
we shall deal only with arcs that are less than half a circle.

The special case of semi—circles should also be treated separately.
They can be represented by a control triangle, in which the tip point is
replaced by a point at infinity.

For some applications (curve/surface intersection for example), we
need the trigonometric representation (r,t, RM) of an arc. It can be eval-
uated from control triangle (P, Py, P;). by the following sequence of as-
signments:

U=P — P,
V=P—- P,
Y=P—-P
X=U+V
=X
a=|U|
h=|Y|
_ab

r —

l
t = x/2 — arctan(h/l)

0 = P; — 24*°X
X
X=-7
Y
Y=+
Z=XxY

RM = (X,Y, Z,0)

The inverse conversion is very simple. Given a trigonometric rep-
resentation (r,t, RM), the points of the corresponding control triangle

132

Chapter 9: Computation with PCC’s

(Py, P;, P3) are computed as follows:

=rcost
s = rsint
d=r?/c
¢c ¢ d
-s 0
(P P, P3)=(RM) 3 0 0
1 1 1

9.2 ARC SUBDIVISION

For display or classification purposes, it is often useful to be able to
subdivide an arc into two parts. Representation in terms of control trian-
gles is well suited for such subdivision. Given a control triangle (P, P;, P3),
we produce the two control triangles (P, M;, M;) and (M;, M,, P;) (see Fig-
ure 9.2) of the two half-arcs by the following sequence of assignments:

U=P1—P2
V=P3—P2
Y=P3—P1
a=|U|
_ ¥l
h="g
m= a
a+h
M1=mU+P2
M2=mV+P2
M; + M.
M'-=__..l_2._.3

For simplicity we assume that a + h # 0. Degenerate arcs corresponding
to a + h = 0 are treated separately. :

133

Chapter 9: Computation with PCC'’s

9.3 POINT EDGE PROJECTION AND DISTANCE

In our experimental modeller, described in chapter ten, we need rou-
tines to compute the normal projection H; of a point P on PCC’s. The
normal projections of P on the linear or circular arcs of the PCC, can
be easily computed from the coordinates (z,y,z) of the point P in the
origin—centered coordinates system of the arc.

Linear arcs in their origin—centered coordinate systems correspond to
the Z-axis, and therefore the only normal projection is H = (0,0, z). The
minimum distance between P and the line is \/z2 + y2.

For the circle of radius r, centered around the origin, and lying in the
XY plane, if P is not on the Z—axis there are two normal projection points
H, and H;, having for coordinates (¢z,qy,0) and (—gz,—qy,0), where ¢ =
r/v/z?> + y2. The minimum distance between P and the circle is |P — H,|.
If P is on the Z—-axis, all the points of the arc are at distance v/r2 + z2 from
P.

9.4 LINE/SURFACE INTERSECTION

To classify PCC’s we need to compute their intersections with stan-
dard surfaces. Such computation can be divided into sub—problems of
finding the intersection of a simple arc with the surface.

Intersections of the line L(t) = P + tD with the surface of implicit
equation F(z,y,z) = 0 can be obtained by replacing z, y, and z with
the coordinates of a point on the line, and by solving for t the resulting
polynomial equation.

9.5 CIRCLE/SURFACE INTERSECTION

. The same method applied to the circle/surface intersection requires
additional work in order to obtain a polynomial form for the resulting
equation. We develop here a method for deriving systematically such
polynomial forms. As a result, we obtain a fourth degree polynomial for
the circle/torus intersection.

134

Chapter 9: Computation with PCC’s 135

9.5.1 Conversion of trigonometric expressions

In origin—centered coordinates, a point Q@ on a circle of radius r is
defined parametrically by: @ = [rcos(8),rsin(8),0]. Applying to @ a rigid
motion M (corresponding to a matrix [M] = [UVWO])*° we obtain P =
[P., Py, P,] which can be expressed in vector form by:

P=rcU+rsV+0

where ¢ = cos(f) and s =sin(8). The coordinates of P are of the form:

P, U, Ve O,
Py|=rc|U, | +rs{V,]|+ | O,
P z U‘ V' Ol

where U, U,, and U, are the coordinates of U, and a similar notation is
used for V, W, O, and P.

In order to find the intersection point between the circle and a quadric
surface, we need to convert into polynomial forms equations that contain
P,, P, P, and P}, P}, P}. The intersection of the circle with a torus
requires in addition the conversion of ||P||? and ||P||* to such polynomi-
als. For all these cases, a fourth degree polynomial equation is sufficient.
We developed a systematic approach to compute the coefficients of such
polynomials.

All the circle/surface intersection problems mentioned above can be
expressed as the solution of the equation E = 0, which contains squares of
terms of the form: z = ¢I + sJ + K. Squaring such a term we obtain:

z? = || I||* + 8*||J||® + 2sc(I - J) + 2¢(I - K) + 25(J - K) + || K||?

and using ¢ = tan(6/2), ¢ = 1z and s = ;2; we can reduce (1 +?)%z? to

a polynomial in ¢t by replacing all terms by their polynomial forms:
I2(1 +¢2)* = (4 - 22 + 1) 1)
IIP(1 +12)? = 46|
2es(I-J)(1+1¢2)* =2(-2t3+2t)(1-J)
2¢(I-K)(1+?)?=2(-t*+1)(I-K)
2s(J- K)(141¢%)% =2(2t3 + 2t)(J - K)
IKIZ(L+¢2)2 = (¢ + 262 + 1)| K2

° We use homogeneous coordinates to transform points by rigid motions.

Chapter 9: Computation with PCC’s

and sorting powers of ¢ in the expression of (1 + t?)2z? yields:
(14¢%)%22 = agt* + ast® + ast? + a1t + a0

where)
ay = ||K - I||
a3 =4J-(K-1)
a; =4|J|2+2(K-1)-(K+1)
ay=4J-(K+1I)
a0 = ||K +1|*
We introduce a matrix notation, where [A(z?)] defines the vector of coef-
ficients a;, which depend on I, J, and K, as indicated above: [A(z?)] =
[a4 a3 a3 a; ao]. The polynomial becomes:
t4
t3
(1+¢%)%2" = [A(?)] | ¢2
t
1

The coefficients a; can be efficiently computed by the following se-
quence of assignments:

Kyr=K-1
Kpr=K+1
as = || Kmi1l?
a3 =4J - Kmi
az = 4|J|? + 2Kn1 - Kpr
ay =4J-Kpy

ao = ||Kpil?

9.5.2 Applications to circle-surface intersection

We apply the above transformations to P2, PZ, P2, || P||?, | P||* and to

constants. For P? we have:
I.=1rU,

Je =1V,
K, =0,

136

Chapter 9: Computation with PCC’s 137

The corresponding matrix [A] will be denoted [A(P2)]. We obtain:

(1+¢%)*P = [A(P)] | &2

Similar expressions are obtained for P? and P? using the notation
[A(P?)] and [A(P?)] instead of [A(PZ)].

In the same manner, we can express || P||4, as a fourth degree polyno-
mial. Using U-V =0 we get:

\P||? =2rc(O-U) +2rs(O-V) + ||O||* + r?

The intermediate coefficients are:

Ip = 2:(0 - U)
Jp =2r(0-V)
Kp=|0|* +r?

Kpr= “O + rU||2
KMI = IIO - TUH2

and denoting [4] by [A(P*)):

t4
ts
(1+%)*|IP|* = [A(P*)] | ¢2
t
1

To convert ||P}}? into a similar polynomial form, one could use ||P||2 =
z2 4+ y? + 22, which yields:

t4
(14 8P = [A(P?) 5:
1

Chapter 9: Computation with PCC’s 138

where [A(P?)] = [A(P2)]+[A(P2)] +[A(P?)]. However, since |[U| = V| =1
and U -V = 0, the coefficients of [A(P?)] can be combined into a simpler
vector form:

ay=|0 —rU|?
az = 4r(V - 0)

az = 2||0||® + 2r?
a; =4r(V -0)

a0 = |0 + rU]?

To express the constant we develop (1 +t%)%, and obtain:

t4
(140 = (4] | ¢
t
1

where [A(1)]=[1020 1].

9.5.3 Circle—cylinder intersection

The equation of the cylinder is: z2+y?—a? = 0. The circle is expressed
in the local system of the cylinder. We multiply the cylinder equation by
(141¢2)2 :
(1 + t2)2$2 + (1 +t2)2y2 _ (1 +t2)2a2 — 0

and substitutine (1 4 ¢2)2z2, (14 t2)2y2, and (1 +t*)%a? by the equivalent
t3

(1421 + La(2D) - a1 @ | =0
1

Chapter 9: Computation with PCC’s

9.5.4 Circle—cone intersection

The equation of the cone is: z2 + y? — b22% = 0, where b is the tangent
of the half-angle. This yields the polynomial:

(1420 + 1] - #la(e2) | | =0

9.5.5 Circle—torus intersection

The equation of the torus is:

(VIPP =2 - 1) + 27 =2

where a is the cross—section radius and b the radius of the spine. To
eliminate the square root, we first obtain:

IPI? + 5% - a? = 25/ P[F — 22
and by squaring both terms:
(IPI? + b* — a?)? — 46*(||P||? - 2*) = 0

which is

IP|* — 2(6* + a*)||P||* + 4b%2% + (b* — 0?)* =0

Using previous results, the corresponding polynomial is:

(1441 - 206 + &) [4(PH)] + 452((22)] + (2 - Pla(0)]) | 2 | =0

139

Chapter 9: Computation with PCC’s

9.5.6 Circle—sphere intersection

The equation of the sphere is:
IP||? —a®=0
We multiply the equation by (1 + t2)? which yields:

t‘
t3

(1a(?) - la(u)) t{ =0

However, the sphere does not require a fourth degree polynomial
solution. Let C be the circle of radius r, centered at the origin O in
the XY-plane. Let S be the center of the sphere of radius a. If the
sphere intersect C then it also intersects the XY-plane in a circle C, of
radius b = /a? — C2, and center S,,, which is the projection of S on the
XY-plane. We can rotate the coordinate system around the Z-axis by
the angle 6 formed between the vector 0S,, and the X-axis. In this new
coordinate system, the two intersections I, and I, (if they exist) are placed
symmetrically around the X-axis at an angle d from it (see Figure 9.3).
The angle is given by

r2 + |04y ||2 — a?
2"“0=v||

cosd =
The points I; are given in this local coordinate system by:
I, = (rcos(d),rsin(d),0) and I, = (r cos(d), —rsin(d),0)

The actual intersection points are obtained by rotating I; by 8 around the
Z—axis. '

140

Chapter 9: Computation with PCC’s

> X

FIGURE 9.3: The intersection between a sphere and a circle can be calculated as a
circle—circle intersection.

9.5.7 Circle plane intersection
For the plane z = 0, we obtain the following polynomial:

(1-t3)rU, +2trV, + (1 4+¢2)0, =0
ordering in t yields:
(Ox—rU)2+ 2trV, + 0, —rU, =0

which (if O, # rU,) has for zeros:

t1 =—-A+4/(42-1)
ty=—A—4/(42 ~1)

— V.
- O./f—U,

Clearly there is no intersection if |4| < 1.

where
A

141

CHAPTER X

EXPERIMENTAL IMPLEMENTATION

To test and illustrate the concepts developed throughout this the-
sis, we designed and implemented an experimental solid modeller, SMOC,
that incorporates offsetting operations in Constructive Solid Geometry.
In order to support canal faces and intersection—edges of tori, all edges
in SMOC are approximated with PCC’s, and therefore we only have to
support one edge type. We propose here a high level outline of our im-
plementation of some of the important algorithms discussed in Chapter
six. In order to help the reader understand the operations involved in
those algorithms, we also describe some of the important representation
schemes.

10.1 BOUNDARY EVALUATION

Given a solid represented in CSGO by the tree S, we create a dual
representation for S by attaching lists of edges, vertices and patches to ar-
guments of offset nodes. This is done incrementally by a recursive bound-
ary evaluation procedure. We start at the node S; the routine returns the
set of edges E, and the set of tentative faces F for the current node N. We
outline below the steps that such a routine performs at each node. The
specific actions depend on the type of the node.

e For PRIMITIVE nodes, we return E, the set of edges, and B, the
set of faces (patches) of the primitive. The edges are marked as
convex. The direction of the normals to patches of B are oriented
towards the outside of the primitive.

142

Chapter 10: Ezxperimental implementation 143

o For MOTION nodes, through a recursive call, we evaluate the edges
E; and the patches F; for the left son, transform them by the rigid
motion associated with the current node, and return the result.

e For a BOOLEAN OPERATOR node, through recursive calls, we
evaluate E; and F; for the left son L, and E, and F, for the right
son R of the current node. If the node is a —* operator, we invert
the concavity of the edges of E, and the orientation of the patches
of F,. If the operator is |J*, we reject'' from E, all portions of
edges that are in L, else we reject from E, all portions of edges that
are out of L. In the same manner, if the operator is ()*, then we
reject from E; all portions of edges that are out of R, else we reject
from E, all portions of edges that are in R ™.

We also compute E., the set of intersection—edges** of each patch
of F; with each patch of F,. If the operator is |J* , we mark those
edges as concave, otherwise we mark them as convex. We reject
from E. all portions of edges that are not on L or not on R.

We return patches, made of the union of F; with F,, and the set of
edges, made by combining what remains from E;, E,, and E. after
the classifications mentioned above.

o For an OFFSET node, through a recursive call, we evaluate the
edges E; and the patches F; for the left son L. We construct a
set of vertices V; from the ends of the edges of E;, and replace the
multiple versions of the same vertex by their centroid. We add to
V; the singular points of the patches of F; that lie on L. Finally, we
attach (E;, F;, and V;) to the node L (it will be used later for PMC
with respect to the current node).

Given the offset distance r attached to the current node, we con-
struct the set of patches F, which contains the n—offsets by r of the
patches of Fj, the canal faces of radius r around the edges of E,

2 The difference operator is considered implicitly in this formulation.
'3 Such intersection edges are PCC’s generated by the method described in chapter seven.

Chapter 10: Ezperimental implementation

We also build tentative intersection—edges E between all pairs of
the patches of F and reject all edges of E that are not on the current
. node. We return F and E.

The edges of S returned by this routine can be used for wire—frame
displays. The patches F, can be used for the generation of shaded pic-
tures, either by ray casting or by depth buffer techniques [Rossignac 85].
This high level description of our boundary evaluation algorithm refers to
several other procedures and uses various representations, which we shall
discuss below.

10.2 PATCHES

This section describes how we represent and generate patches that
constitute supersets of boundaries. Patches correspond to the faces of
primitives or to n—offsets of other patches, edges or vertices. N-offsetting
PCC edges yields piecewise cylindrical or toroidal surfaces. Patches are
subsets of standard surfaces, and can be associated with a vector—valued

parametric function F(u,v). The surface containing a patch is defined by

its type, its parameters and the associated rigid motion, which maps points
of the surface in its origin—centered position into corresponding points of
the surface in its final position. Patches are represented by their type, by
a description of the associated surface (parameters, rigid motion), and by
the limits (uo,u;1,vo,v;) of the parameters v and v. Those limits define the
extent of the patch. We list below the semantics of such representations
for each type of patch.

o Rectangle: defined in the plane z =0 by F(u,v) = (u,v,0). There is
no parameter. uo =0, vo = 0, and u; and v, indicate the extent of
the patch in the X and Y directions.

e Disk: defined in the plane z = 0 by F(u,v) = (vcos(u),vsin(x),0).
There is no parameter. uo = —7, u; = 7, vo = 0, and v; is the radius

of the disk.

o Cylinder: defined in the surface z2 4+ y2 = r2? by

F(u,v) = (rcos(u),rsin(u),v)

144

Chapter 10: Ezperimental implementation

The only parameter is the radius r of the cylinder. v = -7, u; =,
vo = 0, and v, is the length of the cylinder.

o Sphere: defined in the surface z? + y2 + 22 = r2 by
F(u,v) = (rcos(u) cos(v),rsin(u), —r cos(u) sin(v))

The only parameter is the radius r of the sphere. o = —7, u; =,
vo = —7/2, and v; = /2.

o Cone: defined in the surface z? + y? = p?2? by
F(u,v) = (vcos(u)sin(t),vsin(u) sin(t),v cos(t))

The only parameter is the tangent p of the half-angle t of the cone.
uo = —m, u; =7, vo =0, and v; =14/1 + p?, where [is the length of
the cone along the Z—axis.

o Elbow: defined in the toroidal surface (\/a:2 + y? - R)2 +22=r% by

r

0
0
1

F(u,v) = Ry(u) * To(R) * Rz(—7/2) x R,(v)

where R, (b) and R,(b) denote respectively the rotations by an angle -

b around the X-axis and around the Z-axis, and where T.(b) is a
translation along the X-axis by distance b. uo = —t, u; =t where ¢

is the half-angle defining the extent of the elbow. vo = -7, v; = 7.

10.3 PROJECTION ON STANDARD SURFACES

To determine the normal projections H; of a point P = (z,y,2) on a
standard surface S, we assume that P is expressed in the origin—centered
coordinate system of the surface.

For the plane z = 0, the only normal projection is H(z,y,0).

For the sphere of radius r and center O (the origin): if P # O, then
H, = ¢P and H; = —¢P where ¢ = r/||P||. If P = O, then all points of the
sphere are at the same distance r from P.

145

Chapter 10: Ezperimental smplementation

If P is not on the Z—axis, the normal projections of P on the cylinder of
radius r centered around the Z—axis are the points H, = (zq,yg,2) and H, =
(—zg,~yg,2), where ¢ = r/\/z2 4+ y2. If P is on the Z-axis, the minimum
distance from P to S is r, and is attained at all points that lie on the circle
of radius r and center P, parallel to the XY plane.

Let K be a cone centered around the Z—axis, such that its tip is at
the origin and its tip half-angle is ¢t. If P is not on the Z—axis, the normal
projections of P on K are the points

z+

— pr
Hl - r(1+p2) (pz,py,r)

=_27P (o
H2—r(1+p2)(pz, py,r)

where P = tan(t) and r = /22 + y2. The distance from P to the cone is
|P — Hy|| = |r — zp|//1+p2. If P=(0,0,z), then d(P,S) = |z|p/\/1+ p2.

Let S be a torus of cross—section radius r, and having for spine, in
the XY plane, the circle C of radius R and center O. If P is not on the
Z—axis, to compute the normal projections of P on S, we first compute
the normal projections P, and P; of P on C. The four projections of P on
S are at distance r from P; along the vectors P — P; for i = 1,2.

10.4 PRIMITIVES

Patch representations are directly computed from primitives. A prim-
itive P is represented by its parameters; for example, a cylinder can be
represented by its radius and its length. Primitives at the leaves of the
CSGO tree are assumed to be in their origin—centered position, which we
chose so as to simplify computation. We support the following primitives
(Figure 10.1): Block, sphere, cylinder, cone, elbow.

In, on, or out results of the point membership classification proce-
dure of a point P with respect to a primitive S can be elegantly expressed
by the results of two calls to a simpler routine: pclass(P,S), whose result
is true if P € kS and false otherwise. Specifically:

PeiS <« pclass(P,S) AND NOT pclass(P,S)
PedS <« pclass(P,S) AND pclass(P,S)
PekS & NOT pclass(P,S) AND pclass(P,S)

146

Chapter 10: Ezperimental implementation

O

FIGURE 10.1: Standard primitives: cylinder, block, sphere, cone, toroidal elbow.

The combination of pclass(P, S) with pclass(P,S) in a single routine is
very simple and permits in certain cases to avoid evaluating twice the
same expressions. For the sake of clarity, we shall only outline the simple
version of pclass.

Each primitive, defined by a small number of constraints, corresponds
to the intersection of half-spaces (except for the case of the torus—elbow).
pclass(P,S) classifies the point P with respect to the intersection of ver-
sions of those half-spaces expanded by e. pclass(P,S) classifies P with
respect to the union of the expanded versions of the complements of
the half-spaces defining S. Therefore pclass(P,S) is the complement of
pclass(P, S) in which we use shrunk and not expanded versions of prim-
itives. This modification can be simply performed by changing the sign
of ¢ in the formulae used for point/half-space classification. We provide
support for pclass(P,S) by simply passing ¢ as a parameter to pclass.
The formulae proposed below hold for both positive and negative epsilon,
but pclass inverts the final result if ¢ < 0, thus generating classification
with respect to the complement of S.

This approach corresponds to classifying P against a primitive whose
boundary has a thickness of 2¢. Choosing ¢ allows us to compensate for
computer round—off errors and also provides a tool for dealing with errors
introduced by our approximation schemes.

147

Chapter 10: Ezperimental implementation 148

For each type of the primitive S, we present below the inequalities
used in pclass(P, S) to classify against kS the point P, whose coordinates
are (z,y,z).

o The BLOCK defined by its length I, height h, and depth d, contains
the points that satisfy the six constraints:
—e<z<l+te
—e<y<h+e
—€e<z<d+e

e The SPHERFE defined by its radius r, contains the points that
satisfy the constraint:

2+ +22<r’te

o The CYLINDER defined by its length I and radius r, contains the
points that satisfy the three constraints:
224y < (r+e)2
—e<z<l+e

o The truncated HALF-CONE defined by its length I, and maximum
radius r, contains the points that satisfy the three constraints:

) 2
x2+y2 < (rz/l+€ 1+ ('})2)
—e<z<l+4e

o The ELBOW (or truncated torus) defined by the radius r of
its cross—section, and by the radius R and half-angle ¢t of its
spine (circular-arc), contains the points that satisfy the three con-

straints:
€ €

\/——;;———:F—_;; < angle(:c,y) <t-+4 —\/T—W;
24+ (V22 +y2-R)* < (r+¢)?
In these calculations we assume that ¢ < 1/z2 + y2, and we use the

procedure angle(z,y) which returns the angle between the vector
(z,y) and the X-axis.

-t —

Chapter 10: Ezperimental implementation

10.5 BOUNDARY OF PRIMITIVES

We know exactly the boundary of primitives and use their exact faces
in lieu of patches. The parameters, limits, and rigid motions of such
patches can be simply derived from the parameters of the primitives. For
instance, in the case of a cylinder of length ! and radius r, we obtain three
patches:

e The front disk with v; =r, and the rigid motion M = T,(I).

o The back disk with v; =r, and M = R,(7) to orient the normal out
of the primitive.

e The cylindrical patch with r for parameter, and with v; =1. M is
the identity transformation.

The edges of standard primitives are line segments or circles. For
instance, the edges of the cylinder of radius r and length ! are two circles
of radius r, centered around the Z—axis and lying in planes 2 = 0 and z = I.
To generate representations of such edges, we use routines that generate
constant parameter curves for standard patches. For instance, the edges
of the cylinder can be obtained as the v—curves F(u,r) of the disks.

10.6 PMC

We propose a classification routine class(P,S), which returns a
Boolean value that is TRUE if the point P is in the closure of a solid
S defined in CSGO, and FALSE otherwise. As in the case of pclass,
the routines class(P, S) and class(P,S) can be combined to provide more
efficient standard classification routines. class(P,S) is implemented by
passing S and a signed ¢ as parameters to class.

The procedure class(P,S) uses a recursive formulation. Let L and
R denote respectively the left and the right sons (when they exist) of the
current node N. Depending on the type of the current node, we perform
the following computations:

e For motion nodes, we return class(P’,L), where P’ is the trans-
formed version of P by the inverse of the rigid motion attached to
N.

149

Chapter 10: Ezperimental implementation
o For primitive nodes, we return pclass(P,N).

e For offset nodes, we return oclass(P, L,r), where r is the signed dis-
tance associated with the offset node. The procedure oclass(P, L,r)
is described below.

¢ For nodes that represent Boolean operations, if the operationis |J*,
we return (class(P,L) OR class(P, R)); if the operation is *, we
return (class(P,L) AND class(P,R)); and if the operation is —*,
we return (class(P,L) AND class(P,R)).

10.7 CLASSIFICATION AGAINST OFFSETS

If r > 0, the procedure oclass(P,N,r) is used to find whether the
point P is in or on the Nir. If r < 0, the procedure oclass(P, N,r) is used
to find whether the point P is in or on N['r

If r > 0, the result of oclass(P, N, r) is pclass(P,N) OR (dist(P,0N) <
R+ ¢), where dist(P,0N) returns the distance from P to the boundary of
N. Such a distance is computed as explained in chapter six. If r < 0, the
result of oclass(P,N,r) is pclass(P,N) AND (dist(P,8N) > R —¢).

The classification oclass(P,N,r) of P against the offset by r of the
complements of N is simply deduced from oclass(P, N,r) performed with
a negative e.

10.8 PCC CLASSIFICATION

The simplest approach for classifying a PCC curve C with respect
to a solid S is to generate the explicit trigonometric representation for
each arc of C, and classify the arc with respect to S. Arc classification,
as discussed in chapter six, is done by segmenting the arc into subsets of
constant classification, and by classifying an intermediate point in each
segment. Arc segmentation is done by computing the intersections of the
arc with all the patches of S.

Arc/surface intersection may require finding the roots of a fourth
degree polynomial (see chapter nine). Computational costs are reduced
by the following speed-ups. '

150

Chapter 10: Ezperimental implementation

The accuracy of the approximation for PCC is controlled by the maz-
imum size s of the cells used in our parametric grid method (see Chapter
seven). It follows that the distance between the two end—points of an arc
is less than v2s. QOur approach does not guarantee to detect intersec-
tion edges that are smaller than s, therefore, we could also ignore edge
classification changes that are local to a single cell. This tolerance can
be used as follows. If the two end—points of a bi-arc lie on the same
side of a surface A one needs not produce the trigonometric representa-
tions of both arcs and compute their intersection with A. The speed-up
can be carried even further. To classify a PCC curve C with respect to
a CSGO solid S we classify all sampling points of C first. If between
two consecutive sampling points the classification does not change, we
consider that the bi-arc defined by these two points and the associated
tangent directions has the same classification as both points. (Since the
sampling points lie on the edge and we know the exact edge tangent at
these points, edge-neighborhood evaluations as discussed in chapter six
can be supported.) If two consecutive sampling points have a different
classification with respect to the solid, the trigonometric representations
of the two arcs are constructed and classified by the method described in
chapter eight. This involves computing intersections of each arc with the
host surfaces of patches of S, and classifying mid—points of the resulting
segments.

To represent classification results, we use the edge parameterization
described in chapter six. A parameter list can be attached to each arc, or
to the whole edge. Vertices are obtained as edge points that correspond
to ends of parameter intervals.

10.9 EXPERIMENTAL RESULTS

Our experience with PCC approximations for edges was successful.
Only a small number of segments is necessary to approximate complicated
edges with PCC’s that cannot be visually distinguished from the exact
edges.

Timing results are promising. Although speed was not an objec-
tive for our simple implementation, we found that PCC-based algorithms

151

Chapter 10: Ezperimental itmplementation

compare advantageously with other non—analytic schemes. Wireframing a
simple object with pixel accuracy (Figure 10.2) takes only a few seconds,
and edges of more complex objects (Figure 10.3) can be generated and
classified in a couple of minutes.

Unfortunately, performance decreases significantly when offsetting
operations are used. Imagine expanding by r a simple solid S that has p
patches, v vertices, and e edges, each being approximated with b bi-arcs.
Offsetting S will produce a solid whose boundary is contained in p+ v + be
patches. To generate the edges of Str one needs to compute all pairwise
intersections of its patches. This requires computing the intersections of
the generators of each patch with half of the other patches, on average.
For example, a large n—offset patch might contain a hundred generators,
and all of them must be intersected with be toroidal patches obtained by
n—offsetting the edges of S. Similarly, shading such offset solids (see Fig-
ure 10.4), with a depth—buffer technique adapted to CSGO [Rossignac 85],
requires classifying hundreds of thousands of points with respect to the
offset solid. This implies computing the normal projections of all these
points on the arcs of the PCC approximation of each edge. Our experi-
mental implementation shows that the efficiency of boundary evaluation
for offset and blended solids must be improved significantly to achieve
speeds suitable for interactive operations.

Costs of computing edges could be reduced in the following two ways:
(1) use boxes around patches (or other efficiency—enhancement techniques
normally used in modellers) to avoid computing intersections of patches
that are far one from another, and (2) while computing the intersections
of two patches, use the generators of the smallest one. Similarly, costs for
point/edge projection can be reduced by using rejection tests based on the
convex hulls (triangles) of the arcs of the PCC approximation of the edge.
And several other speed-up techniques undoubtedly deserve investigation.

Although we did not test such speed—ups, we fear that boundary eval-
uation costs will remain high. However, since to the best of our knowledge,
no other method for supporting offsetting operations on complex solids is
currently available, our simple implementation has the merit of provid-
ing an experimental tool and a reference for further development of more
efficient systems.

152

Chapter 10: Ezperimental implementation 153

[J

E

FIGURE 10.2: The intersection edge of a toroidal and a cylindrical face (left) was gen-
erated (right) in three seconds.

FIGURE 10.3: More complicated wireframes require longer, but acceptable delays.

Chapter 10: Ezperimental implementation 154

FIGURE 10.4: The difference of two cylinders (top) is expanded (bottom).

Chapter 10: Ezperimental implementation

Boundary evaluation procedures for tori are currently being imple-
mented in the PADL-2 system at the Production Automation Project,
by using PCC approximations and the algorithms described here. The
PADL-2 implementation should produce useful information on efficiency

issues.

155

CHAPTER XI

CONCLUSION

11.1 BLENDING

The initial objective of this work was to attack the under—specified
problem of providing blending facilities in modern solid modellers. After
studying the semantics of blend specification, we decided to focus our
attention on constant radius blends because they are the most common
in mechanical parts.

Instead of trying to develop rules for inferring user’s intentions from
ambiguous specifications of blends, we decided to provide the user with
a simple and powerful tool for describing solids that may contain com-
plex blends, but are mathematically well defined. This was achieved by
integrating global blending operations in a Constructive Solid Geometry
(CSQG) specification. Our approach has three major advantages:

— Models of blended solids (or even parametrized families of solids)
can be specified in a compact, user accessible language, allowing
simple archiving and modification of part descriptions, and provid-
ing a clean and flexible interface between the solid modeller and
application programs.

— Specification of complex blends, or of fillets on sequences of edges
(e.g., the concave edges of a pocket), can often be reduced to simple
operations. Sequencing, successive blending, and Boolean opera-
tions offer wide possibilities for describing unambiguously interfer-
ing blends and for trimming the blends near complicated vertices.

— Application algorithms for CSG, based on divide and conquer
methods, can be extended to blended solids. CSG-based algo-
rithms for set membership classification are simpler and often more
robust than their counterparts in boundary-based systems.

156

Chapter 11: Conclusion
11.2 OFFSETTING

We discovered that constant radius blending operationé can be mod-
elled by a combination of two offsetting operations (expanding and shrink-
ing). Offsetting per se has numerous applications in solid modelling. For
example, automatic planning of cutter paths in NC machining or of colli-
sion free robot motions rely on offsetting. Therefore we decided to study
offsets and provide the theory and algorithms to support offsetting oper-
ations in CSG.

In two dimensions, offsetting areas that are bounded by circular and
linear edges can be done without domain extension. Unfortunately, in
three dimensions, offsetting Boolean combinations of standard primitives
(blocks, spheres, cylinders, cones and tori) produces solids that are partly
bounded by canal faces, not supported in current modellers.

11.3 PCC’S

Providing exact representations and algorithms for canal surfaces and
their intersection edges seemed very difficult, if not impossible, and we
opted for an approximation technique. Our method is based on a new
curve interpolation technique, which approximates intersection-edges by
smooth piecewise linear or circular curves (PCC’s). Approximating the
spines of canal surfaces with PCCs implies that canal surfaces are approx-
imated by smoothly joined (G!) pieces of cylinders and tori. We devel-
oped algorithms to generate PCC approximations for intersection—edges
between any two standard faces, and therefore also for torus intersection—
edges. PCC approximations greatly facilitate the computations required
to evaluate edge/surface intersections and minimum point/solid distances.
PCC’s can also be used in CAD/CAM to design smooth free—form space
curves, and to model, without domain extension, sweeps of a constant
cross—section along any trajectory in space.

157

Chapter 11: Conclusion

11.4 EXPERIMENTAL IMPLEMENTATION

To test and illustrate the theory and algorithms developed in this
thesis we designed and implemented an experimental solid modeller based
on a CSGO representation. It supports all standard primitives combined
through Boolean and offset operations. To support the torus and canal
faces necessary to model boundaries of offset solids, we approximate all
edges with PCC. This considerably reduced the amount of code necessary
to compute and process intersection edges.

To improve performance and reliability, our approach must be en-
hanced in two ways.

1) We must devise efficient ways to estimate a tight bound for the
maximum distance between points on a linear or circular arc and
a standard surface. (As a first cut one might try to detect whether
a maximum is attained for interior points of an arc.)

2) We need efficient rejection tests to speed—up tentative edge gen-
eration and point membership classification. Standard efficiency-
enhancement techniques for geometric algorithms seem appropri-
ate.

11.56 SUMMARY OF CONTRIBUTIONS

Finally, our main contributions can be summarized as follows.

¢ a CSG compatible approach to blending through global blending
operations,

e precise definitions of solid offsetting operations and a study of their
properties,

o the study of the boundaries of offset solids (canal surfaces),
e the definition of blending through offsetting operations,

o algorithms for boundary evaluation and other applications in

CSGO,

e PCC approximations for space curves,

158

Chapter 11: Conclusion 159

e a cell based sorting method for matching intersection points in edge
approximation algorithms,

o a simplified approach to the computation of curve/surface inter-
sections.

APPENDIX A

CANAL SURFACES

We defined a canal face as the sweep of a circular cross-section of
radius r (called generating circle) along a smooth spine C. Canal faces
are also included in canal surfaces of spheres of constant radius. The
definitions and properties of canal surfaces — as well as their relations to
the boundaries of sphere-sweeps — will be studied in this appendix.

Usually a smooth curve C is either an infinite or a closed curve (degen-
erate cases of geometrically discontinuous curves are not considered here).
However, in solid modelling we must deal with edges that are segments of
continuous curves.

A.1 DEFINITION

DEFINITION A.1: A canal surface of spheres of constant radius (hereafter
called simply canal surface) is defined mathematically [Monge 1849] as

the envelope of a family of spheres of a constant radius whose centers

describe a smooth curve C (called spine).

Such surfaces have a tubular shape (figure A.1) and are classified as
Right Circular Constant Generalized Cylinders by Shafer [Shafer 83], who
defines them as the sweep of a circular (normal) cross—section centered on
the spine. Both definitions are equivalent as it will be shown below.

160

Appendiz A : Canal surfaces

FIGURE A.1: Canal surface of spheres of constant radius swept along a spine.
A.2 EQUATION

The derivation of the equations that define canal surfaces can be
found in standard books on analytic and differential geometry [Salmon
1882]. We shall summarize results useful for our work. For simplicity, we
use an arc length parametrization C(t) for the spine.

Point P on a sphere centered at C(t) must verify the equation:
IP—c()ll=r

Such a sphere can be associated with the parameter t. Its implicit equation
depends on t and can be expressed as

F(P,t)=0

where
F(pt)=|P-cC(t)|* -

We shall use the standard methods of calculus to find the equation
of the envelope of a family of parametrized surfaces: we shall consider a
second sphere, F(P,t + dt), infinitely close to the first one (d¢t — 0); both
spheres will intersect in a circle that defines the contact curve between the
two spheres and their envelope. This curve is called the characteristic. A

161

Appendiz A : Canal surfaces 162

point P lies on the characteristic, and therefore on the envelope, if — for
t tending to 0 — it simultaneously verifies the two equations:

F(Pt)=0
F(Pt+dt)=0

Combining these two equations when t tends to zero, we obtain:

(F(P,t+dt) - F(P,t))
dt—0 dt
which is
OF(P,t) _

ot 0

The canal surface is defined as the locus of these characteristic curves
defined by the two equations:

F(Pt)=0
dF(P,t) _
a0

By eliminating ¢ from these two equations, we can obtain the implicit
equation of a canal surface in the form

sS(P)=0

This can be achieved for simple cases, where the spine is a simple pla-
nar curve (a linear spine produces a cylindrical surface, a circular spine
produces a toroidal surface). However, the elimination of ¢ in the general
case may be extremely complex (or perhaps impossible) and the resulting
surface equation might be expensive to represent and to evaluate.

The second equation implies that F(P,t) passes by an extremum while
t is varying. The geometrical interpretation is revealed by analyzing the
form of the second equation in the case of the sphere. Partial differentia-
tion with respect to ¢ yields:

-2 (fd-g—‘l) (P-c(®)) =0

Here “” denotes the scalar product and dC(t)/dt denotes the tangent T'(t)
to the spine at C(t). It follows that the vector (P - C(t)) is orthogonal to
this tangent; consequently:

Appendiz A : Canal surfaces

PROPERTY A.1: The characteristic of every sphere of a canal surface is
a circle that lies in the plane orthogonal to the spine at the center of the

circle.

This property demonstrates that a canal surface can be obtained by
sweeping a circular cross—section along the spine.

A.3 PARAMETRIZATION

We showed that the canal surface can be viewed as a sweep of a
circular cross—section along the spine; therefore, the parametrization of the
spine defines a parametrization of the surface in the longitudinal direction.
The parametrization of the cross—section is more subtle, and requires the
choice of an origin. We shall assume that such an origin exists at each
point of the spine.

We shall use a parametrization that is associated with the Frenet’s
moving trihedron (T(t),N (t),B(t)) [Struik 50], and will be undefined for
portions of the spine where the curvature is equal to zero. These cases
lead to a locally cylindrical canal surface which can be dealt with in other
ways.

A point P on a canal surface will be parametrized by ¢, the arc-length
position of the center of a characteristic on the spine, and by 4, the angle
along the characteristic.

P(t,0) =cC(t) + r(cos(o)N(t) + sin(ﬂ)B(t))

A.4 NORMAL TO THE CANAL SURFACE
The normal vector at P to the canal surface S can be defined as the

cross—product
N(P,S) = (3_”(‘_"’2) y (M)

ot a9

if these partial derivatives exist.

(W) =T(@)+r (cos oa—lgt(L) + sinoa—f’;—gt—)>

163

Appendiz A : Canal surfaces

and since
—xT(t) + 7B(t)

and
dB(t)
ot

where 7 is the torsion and « the curvature, we have

= —rN(t)

(%) = (1 - krcos8)T(t) — rrsinN(t) + rr cos 0 B(t)
we also have
(%%’ﬂ) = —rsindN(t) + rcos B(t)

And the normal to S at P is:

N(P,S) =r(1 - xrcosb) (cos ON(t) + sinOB(t))

The normal is defined at points where
1 # krcosé

x is the curvature and we define g as the radius of curvature (g = 1/«).
The normal is defined everywhere if g # r cos 9.

Since cos 8 varies between —1 and 1 along a characteristic, the normal
will be defined everywhere along this characteristic if and only if

g>r
Since the above expression of the normal is differentiable in terms of

t and of 0, we have shown that:

PROPERTY A.2: If the Frenet’s moving trihedron is defined for a curve
C, the canal surface of radius r will be smooth everywhere if the radius

of curvature of C is larger than r.

164

Appendiz A : Canal surfaces

Points where
g=rcosé

are called focal points. They are also defined as the intersection of any
two infinitely close characteristics.

The two focal points of the same characteristic can be intuitively
considered as defining the axis of instantaneous rotation of the circular
cross—section. They divide the cross—section in two regions, one moves
forward along the spine while the other one moves backward (regresses).
This is shown by studying the sign of the projection of (3P(t,6)/8t) on

T(t):
(%tt’o)) -T(t) = (1 - krcos)

The focal points form a curve called edge of regression. The equation
of the edge of regression can be derived from the three equations:

F(P,t)=0
F'(Pt)=0
F'(P,t)=0

where F/ and F” denote the first and second partial derivatives of F with
respect to t.

The third equation F”(P,t) = 0 applied to the sphere is:

_g2%C(t) . (P-c()+2=0

at?

Here 82C(t)/at? is the derivative of the tangent to the spine and can be
written as kN, where N is the principal normal to the spine at C(t). This

is equivalent to:
(P-c(t)-N=g¢
Here ¢ is the radius of curvature of the spine C. It follows that:

PROPERTY A.3: If g (the radius of curvature of the curve C) is greater
than r then the canal surface of radius r and spine C has no edge of
regression.

165

Appendiz A : Canal surfaces

From the expression of the normal in the Frenet’s moving trihedron
we see that:

PROPERTY A.4: The normal to the canal surface at a point P of the char-
acteristic K passes by the center O of this characteristic and is orthogonal

to the tangent to the spine at O.

Even when it is smooth, a canal surface can intersect itself, and these
self-intersection edges are different from the edges of regression. When
two parts of the canal-surface are intersecting, it can be a local intersection
due to a curvature that is larger than 1/r or a global intersection due to
the fact that separate sections of the spine are too close to each other.
In both cases, each one of the two parts of the surface is smooth — even
though a self-intersection edge exists. When dealing with the boundary
of sweeps of spheres, we are interested in the outer part of the surface,
and the self—crossing edges become singularities of the boundary of the
sweep.

166

[Barnhill 74]

[Barsky 84]

[Barton 80]

[Braid 80]

[Brown 82]

[Catmull 78]

[Chiyokura 83]

[Carlson 82]

[Doo 78a]

[Doo 78b]

[Faux 79]

REFERENCES

R. E. Barnhill and R. F. Riesenfeld, Eds., Computer Aided Geometric Design.
New York: Academic Press, 1974.

B. A. Barsky and T. D. DeRose, “Geometric continuity of parametric
curves” Report No. UCB/CSD 84/205, Computer Science Dept., Univ. of
California, Berkeley, October 1984.

E. E. Barton and 1. Buchanan, “The polygon package”, Computer Aided
Design, vol. 12, no. 1, pp. 3-11, January 1980.

I. C. Braid, “Superficial blends in geometric modelling”, C.A.D. Group
Document No. 105, Univ. of Cambridge, February 1980.

C. M. Brown, “PADL-2: A technical summary”, IEEE Computer Graphics
& Applications, vol. 2, no. 2, pp. 69-84, March 1982.

E. E. Catmull and J. Clark, “Recursively generated B-spline surfaces on
arbitrary topological meshes”, Computer Aided Design, vol. 10, no. 6, pp.
350-355, November 1978.

H. Chiyokura and F. Kimura, “Design of solids with free—form surfaces”,
Proc. ACM SigGraph ’88, Detroit, MI, pp. 73-82, July 25-29, 1983.

W. E. Carlson, “An algorithm and data structure for 3D object synthesis
using surface patch intersection”, Proc. ACM SigGraph ’82. Boston, MA,
PP. 255-263, July 26-30, 1982.

D. W. H. Doo, “A subdivision algorithm for smoothing down irregular
shaped polyhedrons”, Proc. Int’l. Conf. on Interactive Techniques in CAD,
Bologna, Italy, pp. 157-165, September 1978.

D. W. H. Doo and M. Sabin, “Behaviour of recursive division surfaces near
extraordinary points”, Computer Aided Design, vol. 10, no. 6, pp. 356-360,
November 1978. '

I. D. Faux and M. J. Pratt, Computational Geometry for Design and Man-
ufacture. Chichester, U.K.: Ellis Horwood, 1979.

167

[Fisher 78]

[Fridshal 82]

[Harada 82]

[Hoffmann 85)

[Jared 84]

[Lee 82]

[Liou 76]

[Lozano-Perez 79]

[Koparkar 84]

[Matheron 75]

[McLaughlin 83]

References

W. B. Fisher, A. A. G. Requicha, N. M. Samuel and H. B. Voelcker, “Part
and assembly description languages — II”, Tech. Memo. No. 20b, Produc-
tion Automation Project, Univ. of Rochester, June 1978. -

R. Fridshal, K. P. Cheng, D. Duncan and W. Zucker, “Numerical control
part program verification system”, Proc. Conf. on CAD/CAM Technology in
Mechanical Engineering, Cambridge, MA, pp. 236-254, March 24-26, 1982.

K. Harada and E. Nakamae, “Application of the Bezier curve to data inter-
polation”, Computer Aided Design, vol. 14, no. 1, pp. 55-59, January 1982.

C. Hoffmann and J. Hopcroft, “Automatic surface generation in computer
aided design”, TR 85-661, Computer Science Dept., Cornell Univ., Ithaca,
NY, January 1985. '

G. E. M. Jared and T. Varady, “Synthesis of volume modelling and sculp-
tured surfaces in BUILD”, Proc. CAD ’84, Brighton, UK., pp. 481-495,
April 3-5, 1984.

Y. T. Lee and A. A. G. Requicha, “Algorithms for computing the volume
and other integral properties of solids: I — Known methods and open issues,
pp. 635-641; II — A family of algorithms based on representation conversion
and cellular approximation”, pp. 642-650, Comm. ACM, vol. 25, no. 9,
September 1982,

M. Liou, “Spline fit made easy”, IEEE Trans. on Computers, vol. C-25, no.
5, May 1976.

T. Lozano—Perez and M. A. Wesley, “An algorithm for planning collision—
free paths amongst polyhedral obstacles”, Comm. ACM, vol. 22, no. 10, pp.
560-570, October 1979.

P. A. Koparkar and S. P. Mudur, “Computational techniques for processing
parametric surfaces”, Computer Vision, Graphics, and Image Processing, vol.
28, no. 3, pp. 303-322, December 1984.

G. Matheron, Random sets and integral geometry. New York: John Wiley &
Sons, 1975. :

H. W. McLaughlin, “Shape-preserving planar interpolation: An algorithm”,
IEEE Computer Graphics & Applications, vol. 3, no. 3, pp. 568—67, May 1983.

168

[Mendelson 75]

[Monge 1849]

[Morgan 81]

[Nadler 78]

[Pressman 77]

[Requicha 77a)

[Requicha 77b]

[Requicha 78]

[Requicha 80)

[Requicha 82]

[Requicha 83]

[Requicha 85]

References

B. Mendelson, Introduction to topology. Boston, MA: Allyn and Bacon, 3rd
ed., 1975.

G. Monge, Applications de l’analﬁae d la géométrie. Paris: Bachelier, 5th ed.,
1849.

A. P. Morgan, “An algorithm for solving the line-tube classification prob-
lem”, Report GMR-3858, Mathematics Dept., General Motors Research
Labs., Warren, M1, October 1981.

S. B. Nadler Jr., Hyperspaces of sets. New York: Marcel Dekker, 1978.

R. S. Pressman and J. E. Williams, Numerical Control and Computer-Aided
Manaufacturing. New York: John Wiley & Sons, 1977.

A. A. G. Requicha, “Mathematical models of rigid solid objects”, Tech.
Memo. No. 28, Production Automation Project, Univ. of Rochester, Novem-
ber 1977.

A. A. G. Requicha and H. B. Voelcker, “Constructive solid geometry”, Tech.
Memo. No. 25, Production Automation Project, Univ. of Rochester, Novem-
ber 1977.

A. A. G. Requicha and R. B. Tilove, “Mathematical foundation of construc-
tive solid geometry: General topology of closed regular sets”, Tech. Memo.
No. 27a, Production Automation Project, Univ. of Rochester, June 1978.

A. A. G. Requicha, “Representations for rigid solids: Theory, methods, and
systems”, ACM Computing Surveys, vol. 12, no. 4, pp. 437-464, December
1980.

A. A. G. Requicha and H. B. Voelcker, “Solid modelling: A historical sum-
mary and contemporary assessment”, IEEE Computer Graphics & Applica-
tions, vol. 2, no. 2, pp. 9-24, March 1982.

A. A. G. Requicha and H. B. Voelcker, “Solid modelling: Current status
and research directions”, JEEE Computer Graphics & Applications, vol. 3,
no. 7, pp. 26-37, October 1983.

A. A. G. Requicha and H. B. Voelcker, “Boolean operations in solid mod-
elling: Boundary evaluation and merging algorithms”, Proc. IEEE, vol. 3,
no. 1, pp. 30-44, January 1985.

169

[Ricei 73]

[Rockwood 83|

[Rossignac 85]

[Roth 82]

[Sabin 77]

[Sabin 80]

[Salmon 1882]

[Samuel 76]

[Sarraga 83]

[Serra 82)

[Shafer 83]

[Shaffner 81]

References

A. Ricci, “A constructive geometry for computer graphics®, Computer Jour-
nal, vol. 16, no. 2, pp. 157-160, May 1973.

A. P. Rockwood, “Introducing sculptured surfaces into a geometric mod-
eler”, in M. S. Pickett and J. W. Boyse, Eds., Solid Modeling by Computers.
New York: Plenum Press, pp. 237-258, 1984.

J. R. Rossignac and A. A. G. Requicha, “Depth-buffering display techniques
for Constructive Solid Geometry”, Tech. Memo 64, (in draft), Production
Automation Project, University of Rochester, 1985.

S. D. Roth, “Ray casting for modeling solids”, Computer Graphics & Image
Processing, vol. 18, no. 2, pp. 109-144, February 1982.

M. Sdbin, “The use of piecewise forms for the numerical representation
of shape”, Report 60, Computer and Automation Institute, Hungarian
Academy of Science, 1977.

M. Sabin, “Contouring — A review of methods for scattered data”, in K.
W. Brodlie, Ed., Mathematical Methods sn Computer Graphics and Design.
New York: Academic Press, 1980.

G. Salmon, A Treatise on the Analytic Geometry of Three Dimensions.
Dublin: Hodges, Figgis and Co., 4th ed., 1882.

N. M. Samuel, A. A. G. Requicha and S. A. Elkind, “Methodology and
results of an industrial part survey”, Tech. Memo. No. 21, Production Au-
tomation Project, Univ. of Rochester, July 1976.

R. F. Sarraga and W. C. Waters, “Free—form surfaces in GMSOLID: Goals
and issues”, in M. S. Pickett and J. W. Boyse, Eds., Solid Modeling by
Computers. New York: Plenum Press, pp. 187-209, 1984.

J. Serra, Image analysis and mathematical morphology. New York: Academic
Press, 1982.

S. Shafer and T. Kanade, “The theory of straight homogeneous generalized
cylinders”, Report CMU-CS-83-105, Computer Science Dept., Carnegie~
Mellon Univ., January 1983.)

S. C. Shaffner, “Calculation of B-spline surfaces using digital filters”, ACM
Computer Graphics, vol. 15, no. 4, pp. 437-457, December 1981.

170

[Shirma 83]

[Struik 50]

[Tiller 83]

[Tiller 84]

[Tilove 80]

[Timmer 77]

[Van Wijk 84]

[Varady 83]

[Veenman 82]

[Willmore 58]

References

Y. Shirma, N. Okino, and Y. Kakazu, “Research on 3-D geometric mod-
elling by sweep primitives”, Proc. CAD ’82, Brighton, U.K., pp. 671-680,
March 30-April, 1982.)
D. J. Struik, Lectures on classical differential geometry. Reading, MA: Ad-
dison Wesley Press, 1950.

W. Tiller, “Rational B-splines for curve and surface representation”, IEEE
Computer Graphics & Applications, vol. 3, no. 6, pp. 61-69, September 1983.

W. Tiller and E. G. Hanson, “Offsets of two—dimensional profiles”, IEEE
Computer Graphics & Applications, vol. 4, no. 9, pp. 36-46, September 1984.

R. B. Tilove, “Set membership classification: A unified approach to geomet-
ric intersection problems”, IEEE Trans. on Computers, vol. C-29, no. 10,
pp. 874-883, October 1980.

H. G. Timmer, “A solution to the surface intersection problem”, Report
MDC J7789, McDonnell Douglas Corporation, November 1977.

J. J. Van Wijk, “Ray tracing objects defined by sweeping a sphere”, Proc.
Eurographics ’84, Copenhagen, September 12-14, 1984.

T. Varady, “Surface-surface intersections for double—quadric parametric
patches in a solid modeller”, Computer and Automation Institute, Hun-
garian Academy of Science, 1983.

P. Veenman, “The design of sculptured surfaces using recursive subdivision
techniques”, Proc. Conf. CAD/CAM Technology in Mechanical Engineering,
Cambridge, MA, pp. 5463, March 24-26, 1982.

T. J. Willmore, Differential geometry. Oxford: Oxford University Press,
1958.

171

